Summer Term 2025
- Hochenergieastrophysik (MVSpec)
Vorlesung
heiCO-Info Link to Registration
Anmeldung abgelaufen
more information - Einführung in die Astronomie und Astrophysik II (WPAstro.2)
Vorlesung Dehnen W, Rix H
Homepage heiCO-Info Link to Registration
Anmeldung abgelaufen
more information1300111201
Anmeldung abgelaufen
Link to RegistrationContent
• Galaxien: Aufbau und Eigenschaften normaler Galaxien und der Milchstraße; Skalierungsrelationen; Spektren; Leuchtkraftfunktion; kosmologische Entwicklung der Sternentstehung; schwarze Löcher in Galaxien, aktive Galaxien und ihre Eigenschaften; vereinheitlichte Modelle • Galaxienhaufen: optische Eigenschaften und Haufengas; hydrostatisches Modell; Skalierungsrelationen; Häufigkeit und Entwicklung • Gravitationslinsen: Grundlagen, Massenverteilung in Galaxien und Galaxienhaufen; kosmologischer Linseneffekt • Großräumige Verteilung von Galaxien und Gas: Strukturen in der räumlichen Galaxienverteilung; Rotverschiebungseffekte; Biasing; Lyman-α- Wald; Gunn-Peterson-Effekt und kosmische Reionisation • Kosmologische Rahmenbedingungen: Friedmann-Lemaître-Modelle, kosmologisches Standardmodell; Ursprung und Entwicklung von Strukturen; Halos aus dunkler Materie; Entstehung von Galaxien
- Astronomical Techniques (MKEP5)
Vorlesung Pasquali A
Homepage heiCO-Info Link to Registration
Anmeldung abgelaufen
more information1300112105
Anmeldung abgelaufen
Link to RegistrationContent
* Optical telescopes: optics and characteristic parameters, telescope types, diffraction, resolution, aberrations and corrections, applications * Optical detectors: detector types, semiconductors and CCDs, quantum efficiency, readout, noise sources, multi-chip cameras, applications * Imaging: techniques, photometry, data reduction and characterisation, signal-to-noise * Atmospheric effects and corrections: extinction, turbulence, seeing, active and adaptive optics, laser guide stars, applications * Spectroscopy: types of spectrographs and spectrometers, dispersive elements, integral field units, data reduction and characterisation, applications * Infrared astronomy: detectors and techniques, sources, applications * Radio astronomy: detectors and instrumentation, synthesis techniques, types of radiation and sources, applications * Astronomical interferometry: wavelength regimes, instrumentation, applications * X-ray and gamma-ray astronomy: detectors and instrumentation, types of radiation and sources, applications * Astroparticle physics: neutrino and Cherenkov detectors, sources and acceleration mechanisms of neutrinos and cosmic rays, applications * Gravitational-wave astronomy: detection, sources, applications. * In-situ exploration and remote sensing.
Goal
After completing this course, the students have firm insight into the concepts, technologies, and the underlying physical principles and limitations of modern observational techniques along with scientific applications. They have knowledge of basic detector designs for different types of radiation and particles. They understand the environmental influence on astronomical observations. They are able to select and judge the adequate observational technique for studying an astronomical object of interest.
- Introduction to Astronomy and Astrophysics (MVAstro0, MVSpec)
Vorlesung Mapelli M, Pössel M
heiCO-Info Link to Registration
Anmeldung abgelaufen
more information1300112200
Anmeldung abgelaufen
Link to RegistrationContent
- Astronomical basics: astronomical observations, methods and instruments; orientation at the celestial sphere; fundamental terms of electromagnetic radiation; distance determination, Earth-Moon system; terrestrial and gas planets, small bodies; extra-solar-planets - Inner structure of stars: state variables, stellar atmospheres and line spectra; Hertzsprung-Russell diagram; fundamental equations, energy transfer and opacity; nuclear reaction rates and tunnelling; nuclear fusion reactions - Stellar evolution: Main sequence, giants and late phases; white dwarfs, Chandrasekhar limit; supernovae, neutron stars, Pulsars and supernova remnants; binaries and multiple systems; star clusters - Interstellar medium: cold, warm, hot gas phases dust, cosmic rays, magnetic fields; ionization and recombination, Stroemgren spheres; heating and cooling; star formation, matter cycle, chemical enrichment - Galaxies: Structure and properties of normal galaxies and the Milky Way; scaling relations; integrated spectra, luminosity function; cosmological evolution of star formation; Black Holes in galaxies, active galaxies and their properties, unified models - Galaxy clusters: optical properties and cluster gas; hydrostatic model; scaling relations; number densities and evolution - Gravitational lensing: Concepts, mass distribution in galaxies and galaxy clusters; cosmological lensing effect - Large scale distribution of galaxies and gas: Structure in the spatial galaxy distribution; redshift effects; biasing; Lyman-α-forest; Gunn-Peterson effect and cosmic reionization - Cosmology: Friedmann-Lemaître models, cosmological standard model; origin and evolution of structures; halos of Dark Matter; Formation of galaxies
Goal
The students have gained basic knowledge and understanding of astronomical objects, measuring units and methods, and the relevant astrophysical processes. They have a firm grasp of the fundamental interrelations of objects and processes on different scales. They are able to reproduce the basic features of the modern world view including the physical reasoning, and connect astronomical and astrophysical phenomena to previously acquired knowledge in physics.
- Stellar Astrophysics (MVAstro2, MVSpec)
Vorlesung Jordan S
Homepage heiCO-Info Link to Registration
Anmeldung abgelaufen
more information1300112202
Anmeldung abgelaufen
Link to RegistrationCourse Information
Lecture: Thursdays, 14:15-15:45Tutorial Group 1: Thursday, 15:45-17:15Philosophenweg 12, Kleiner HörsaalTutorial Group 2: Thursday, 15:45-17:15Neuer Hörsaal, Philosophenweg 12To excel in the module MVAstro2 "Stellar Astrophysics," it is essential to complete an adequate number of exercises and attend the tutorials. Merely submitting exercises through the Übungsgruppensystem is insufficient; you must also be prepared to present your solutions during the tutorial sessions.Credit points cannot be awarded solely based on participation in the written exam; attendance at the tutorials is also required to receive credit.Preliminary Schedule:17.4.25: Introduction (Stefan Jordan)24.4.25: Stellar structure 1 (Stefan Jordan)01.5.25: May 1, holiday08.5.25: Stellar structure 2 (Stefan Jordan)15.5.25: Stellar structure 3 (Stefan Jordan)22.5.25: Energy transport (Stefan Jordan)29.5.25: Himmelfahrt, holiday05.6.25: Energy production (Stefan Jordan)12.6.25: Main sequence (Stefan Jordan)19.6.25: Fronleichnam, holiday26.6.25: Stellar evolution to the AGB (Stefan Jordan)03.7.25: Late stages of stellar evolution (Stefan Jordan)10.7.25: Stellar pulsations, rotation, magnetic fields (Stefan Jordan)17.7.25: Stellar spectra (Stefan Jordan)23.7.25: (Wednesday!) Written exam, 10-12 CEST, Neuer Hörsaal (Stefan Jordan)Seminar:2-3 full days between July 28 and Aug 1, 2025The communication will be performed via the Übungsgruppensystem.Content
If there are any problems registering for this module, please sent an Email to jordan@ari.uni-heidelberg.de. Lecture: Thursdays, 14:15-15:45 Location: Philosophenweg 12, Kleiner Hörsaal Tutorial Group 1: Thursday, 15:45-17:15 (Kleiner Hörsaal) Tutorial Group 2: Thursday, 15:45-17:15 (Übungsraum 61, Erdgeschoss, Philosophenweg 12) Do not mind to which exercise group you register. We will ensure that both exercise groups are approximately equally large. At the beginning of the semester, we can make adjustments if you want to collaborate with a specific person in a different group. This module consists of the lecture, the tutorials and the seminar. Exercises will be submitted via the "Übungsgruppensystem" in groups of two or three. To excel in the module MVAstro2 "Stellar Astrophysics," it is essential to complete an adequate number of exercises and attend the tutorials. Merely submitting exercises through the Übungsgruppensystem is insufficient; you must also be prepared to present your solutions during the tutorial sessions. Credit points cannot be awarded solely based on participation in the written exam; attendance at the tutorials is also required to receive credit. Preliminary Schedule: 17.4.25: Introduction (Stefan Jordan) 24.4.25: Stellar structure 1 (Stefan Jordan) 01.5.25: May 1, holiday 02.5.25: Stellar structure 2 (Stefan Jordan) 08.5.25: Stellar structure 2 (Stefan Jordan) 15.5.25: Stellar structure 3 (Stefan Jordan) 22.5.25: Energy transport (Stefan Jordan) 29.5.25: Himmelfahrt, holiday 05.6.25: Energy production (Stefan Jordan) 12.6.25: Main sequence (Stefan Jordan) 19.6.25: Fronleichnam, holiday 26.6.25: Stellar evolution to the AGB (Stefan Jordan) 03.7.25: Late stages of stellar evolution (Stefan Jordan) 10.7.25: Stellar pulsations, rotation, magnetic fields (Stefan Jordan) 17.7.25: Stellar spectra (Stefan Jordan) 24.7.25: Written exam (Stefan Jordan) Seminar: 2-3 full days between July 28 and Aug 1, 2025 The communication will be performed via the Übungsgruppensystem. https://uebungen.physik.uni-heidelberg.de/v/1992
- Galactic and Extragalactic Astronomy (MVAstro3, MVSpec)
Vorlesung Grebel E
heiCO-Info Link to Registration
Anmeldung abgelaufen
more information1300112203
Anmeldung abgelaufen
Link to RegistrationContent
Module Part 1: Lecture “Galactic and Extragalactic Astronomy” (4 CP) - Galaxy types and classification, correlations with physical properties, stellar populations, population synthesis, chemical evolution concepts and models (2); - Milky Way (3): halo, bulge / pseudo bulge, central black hole, thin and thick disk, spiral structure, star clusters, star formation history and chemical enrichment, formation scenarios (e.g., Eggen-Lynden-Bell-Sandage), multi- phase interstellar medium, dust, Galactic fountain, satellites, substructure problem, Local Group; - Spiral and elliptical galaxies (4): Surface photometry, profiles, origin of spiral structure, mass measurement methods, rotation / velocity dispersion, Tully-Fisher / Faber-Jackson relation, fundamental plane, super massive black holes, active galaxies; - Groups and clusters (3): morphology-density relation etc., mass measurements, gravitational lensing, luminosity functions, interactions; intergalactic gas; dark matter; - Growth of structure (3): Origin of matter and elements, large-scale- structure formation, large-scale matter distribution, redshift surveys, weak lensing, galaxy formation and evolution, red / blue sequence, downsizing, scaling relations, Butcher-Oemler effect, cosmic star formation history, Lyman alpha forest, high-redshift universe, reionization, problems in galaxy formation. Module Part 2: Seminar (2 CP) - Presentations and discussions on selected topics in Galactic and extragalactic astronomy
Goal
When successfully completing this course, the students are able to report on the properties of the wide range of galaxy types, understand their origin and evolution, and can elucidate the physical factors governing their evolution. They understand the main physical processes that shape the appearance of galaxies and galaxy clusters. They know about the connection between cosmological structure formation and the populations of visible objects. They have gained experience in applying dimensional and scaling arguments to estimate the relative importance of different physical processes.
- Cosmology Compact (MVAstro4)
Vorlesung Pillepich A
heiCO-Info Link to Registration
LV-Anmeldung möglich
more information1300112204
LV-Anmeldung möglich
Link to RegistrationContent
- Friedmann-Lemaître-cosmologies: cosmological redshift, parameter set, effects of curvature and of the cosmological constant, Hubble expansion and Cepheid-measurements - Age of the Universe: age from the cosmological model, radiometric dating and nuclear cosmochronology, age of the oldest cosmic objects - Distance-redshift relation of standard candles: distance-redshift relations, calibration of supernovae, acceleration and dimming, determination of densities and equations of state, evidence for dark energy - Abundance of chemical elements: thermal evolution, big bang nucleosynthesis, other modes of nucleosynthesis (stellar, spallation, explosive), reaction chains, element abundances - Cosmic microwave background: formation of atoms, simplified description of temperature anisotropies, measurement results and conclusions from them (in particular spatial flatness), secondary anisotropies - Cosmic structures: linear growth, need for (nonbaryonic) dark matter, large-scale distribution of galaxies, cosmic web - Formation of galaxies: gravitational collapse, flat rotation curves and virial equilibria, need for dark matter, abundance of haloes - Gravitational lensing: gravitational light deflection, lens equation, weak and strong lensing, measurements of lensing effects and their inversion
Goal
In this course, students gain fundamental understanding of the cosmological standard model and the cosmological evolution, including the impact of the basic observations and the connection to the physical framework. They gain a solid overview of the empirical basis of modern cosmology.
- Numerical Techniques for modeling Relativistic Hydrodynamics (MVSpec)
Vorlesung Hujeirat A
heiCO-Info Link to Registration
Anmeldung abgelaufen
more information - Small Stellar Systems (MVSpec)
Vorlesung Koch-Hansen A
heiCO-Info Link to Registration
Anmeldung abgelaufen
more information - Star Clusters (MVSpec)
Vorlesung Parmentier G
heiCO-Info Link to Registration
Anmeldung abgelaufen
more information1300112305
Anmeldung abgelaufen
Link to RegistrationContent
1. Systems of star clusters (e.g around the giant elliptical galaxy M87, https://apod.nasa.gov/apod/ap040616.html ) --cluster age and mass distributions, formation/evolution/observational-biases interplay 2. Cluster age and mass estimates from their integrated photometry --introduction to stellar population synthesis models 3. Cluster dynamical evolution Gas-free evolution: clusters lose stars and eventually dissolve. How fast? 4. From gas-embedded clusters to gas-free ones: expulsion of the residual star-forming gas and consequences (e.g. from the gas-embedded Orion Nebula Cluster to the Pleiades open cluster https://apod.nasa.gov/apod/ap120715.html https://apod.nasa.gov/apod/ap120903.html ) 5. Formation of star clusters (https://academic.oup.com/mnras/article/413/4/2741/964588): --Modelling of star cluster formation, concept of star formation efficiency per freefall time, gas density-probability distribution functions 6. Colour-magnitude diagrams (https://esahubble.org/videos/heic1017b/): -- cluster age estimates for the resolved stellar-population case, kinematic-based "cleansing" of cluster CMDs
- Schwarze Löcher und die Fragen der modernen Astrophysik - Teil 9 (MVSpec)
Vorlesung Britzen S
heiCO-Info Link to Registration
Anmeldung abgelaufen
more information1300112307
Anmeldung abgelaufen
Link to RegistrationContent
Vorgestellt werden aktuelle Fragestellungen der Forschung und zur Zeit laufende oder in Planung befindliche Forschungsprojekte. Themen sind: Schwarze Löcher (stellar, intermediär, supermassiv), Gravitationslinsen, Gravitationswellen, Dunkle Materie, etc. Termine und Themen sind auf folgender Webseite zu finden: https://blog.mpifr-bonn.mpg.de/silkebritzen/vorlesung-universitat-heidelberg/ Die Veranstaltung findet online statt und beginnt am 25.04. um 14 Uhr. Der zoom-link lautet: https://eu02web.zoom-x.de/j/9084381833?pwd=YU1UdWJRa1BzajF4Tyt4YVlSdU1BUT09 Meeting ID: 908 438 1833
Goal
Mein Ziel ist es, Interesse an aktuellen Fragen der Forschung zu wecken und über spannende Forschungsprojekte zu informieren. Des Weiteren möchte ich den Studenten Informationen über den Alltag in der Forschung liefern und Möglichkeiten für Master- und Doktorarbeiten aufzeigen.
- Physics and chemistry of the ISM (MVSpec)
Vorlesung Glover S
heiCO-Info Link to Registration
Anmeldung abgelaufen
more information - Computational Astrophysics (MVSpec)
Vorlesung Röpke F
Homepage heiCO-Info Link to Registration
Anmeldung abgelaufen
more information - Stars Squared: Evolution of Binary Stars (MVSpec)
Vorlesung Schneider F
Homepage heiCO-Info Link to Registration
Anmeldung abgelaufen
more information1300112310
Anmeldung abgelaufen
Link to RegistrationCourse Information
The first lecture will take place on Friday, April 25 at 9:15am at Philos.-weg 12 / R 106A.
Lectures are mostly blackboard-style accompanied by slides, interactive elements, figures and animations. All materials will be made available.
Covered topics range from basics of binary star evolution such as the classical two-body problem, tides and mass exchange to more complex processes such as stellar mergers, common-envelope evolution and compact-object binaries including gravitational-wave merger events.
Background knowledge on stellar evolution is helpful but a recap of the most important aspects will be given.
- Numerische Methoden der Plasmaastrophysik (MVSpec)
Vorlesung Spanier F
heiCO-Info Link to Registration
Anmeldung abgelaufen
more information - Sternwinde und Massenverlust (MVSpec)
Vorlesung Sander A
heiCO-Info Link to Registration
Anmeldung abgelaufen
more information1300112341
Anmeldung abgelaufen
Link to RegistrationContent
Why do stars lose mass and what are the mechanisms behind it? This lecture will provide on overview of the different types of winds we find in stars and their physical origin. After exploring the different wind regimes (solar wind, hot stars, cool stars), the lecture will also cover the consequences of strong mass outflow on the evolution and environment of stars.
- Molecular astrophysics (MVSpec)
Vorlesung Kreckel H
heiCO-Info Link to Registration
Anmeldung abgelaufen
more information1300112352
Anmeldung abgelaufen
Link to RegistrationContent
This lecture is an introduction to molecular astrophysics and astrochemistry.
Goal
The spectroscopic and continuum observations of simple inorganic and complex organic molecules in space are at the forefront of observational astronomy. Powerful new facilities such as the Atacama Large Millimeter/submillimeter Array and the James Webb Space Telescope have enabled us to probe the molecular composition of the Universe from the Big Bang to local interstellar space, and from the distant past to the present. The wealth of diagnostic data is driving extensive laboratory and theoretical studies aimed at extracting key information about the physics and chemistry of space from these data. Our understanding of the life cycle of matter in the Universe is also intertwined with such a fundamental question as the origin of life. In this course, you will learn how molecules can be detected in a variety of interstellar environments, from the interstellar medium to planetary atmospheres, and how they are formed and destroyed there. You will learn about the basic spectroscopic properties of molecules and solids, how molecular lines and solid-state bands are used to study the underlying physical and chemical properties of the matter. The major processes of molecule formation and destruction in space, and the interplay between the gas-phase and surface reactions will be discussed from both experimental and theoretical perspectives. You will learn about the formation of the first elements after the Big Bang and the main chemical processes in the early Universe. You will also learn about the formation of other elements in stars, and what happens to these elements after they are ejected into the interstellar space at the end of the star's life. Finally, you will learn about exoplanets, atmospheres, habitability, and the origin of life.
- Principles of Radio Astronomy (MVSpec)
Vorlesung Walter F
heiCO-Info Link to Registration
Anmeldung abgelaufen
more information1300112354
Anmeldung abgelaufen
Link to RegistrationContent
In this lecture, we will discuss the principles of radio and millimeter astronomy. This field is progressing rapidly, thanks to new facilities that reach unprecedented sensitivities and resolutions, such as ALMA and MeerKat, and soon the ngVLA, DSA-2000 and the SKA. We will discuss the physical processes that give rise to radio and millimeter wave emission, from star forming regions in the Milky Way to galaxies in the very young universe. A focus will also be the technology by which to capture radio and millimeter emission, including the concepts of radio and millimeter interferometry.
- Introduction to Gravitational Lensing (MVSpec)
Vorlesung Wambsganß J
heiCO-Info Link to Registration
Anmeldung abgelaufen
more information1300112360
Anmeldung abgelaufen
Link to RegistrationContent
Historic/current definitions of 'planet'; Discovery methods: radial velocity, transit, astrometry, gravitational microlensing, direct imaging; strengths/weaknesses/biases; Formation and evolution of planets and planetary systems: simulations & observation
- Einführung in die Computerphysik (UKWR2)
Vorlesung Girichidis P, Nelson D
heiCO-Info Link to Registration
Anmeldung abgelaufen
more information1300112411
Anmeldung abgelaufen
Link to RegistrationContent
The course "Introduction to Computational Physics" can be part of both Bachelor and Master studies in physics. Its description can be found in the Bachelor Handbook. Regarding physical knowledge, basic knowledge is again useful for a deeper understanding (we will work on topics from mechanics, statistical physics and quantum mechanics, for example), but the technical & numerical tasks can be solved by only following the explanations in the lecture and tutorials.
- Einführung in die Astronomiedidaktik (ADIDA)
Vorlesung Kraus S, Liefke C, Pössel M
heiCO-Info Link to Registration
Anmeldung abgelaufen
more information1300114300
Anmeldung abgelaufen
Link to RegistrationContent
Das Modul zur Einführung in die Astronomiedidaktik (ADIDA) im Rahmen des Erweiterungsfachs Astronomie für Lehramtstudierende an Gymnasien an der Universität Heidelberg wird am Haus der Astronomie durchgeführt (zu erreichen mit den Buslinien 30 und 39 oder mit der Bergbahn). Es findet immer im Sommersemester statt und beginnt vor Beginn der Vorlesungszeit im April mit einem einwöchigen Blockkurs zur Einführung jeweils von 9:30-12:30 Uhr. Der praktische Anteil findet semesterbegleitend in der Vorlesungszeit statt. Die Veranstaltung führt in die astronomische Fachdidaktik ein und behandelt unter anderem Elementarisierung und Modelle, Versuche und Messungen, Medien und Hilfsmittel, Methodik sowie die Ausarbeitung von Unterrichtseinheiten im Fach Astronomie.
- Astronomie für Neugierige
Vorlesung Fendt C, Wambsganß J
heiCO-Info Link to Registration
Anmeldung abgelaufen
more information1300116004
Anmeldung abgelaufen
Link to RegistrationContent
Diese Vorlesung wendet sich an Hörer aller Fakultäten, die einen Einblick in die moderne Astronomie und Astrophysik bekommen wollen. Es werden keine besonderen physikalischen oder mathematischen Vorkenntnisse benötigt. Folgende Themen werden abgedeckt (die Termine sind vorläufig): 14.4.25 Astronomie heute (Wambsganβ, Fendt) 21.4.25 (keine Vorlesung, Ostermontag) 28.4.25 Geschichte der Astronomie (Wambsganβ) 5.5.25 Licht, Teleskope, Instrumente (Fendt) 12.5.25 Sterne – Klassifikation (Fendt) 19.5.25 Sonne, Erde, Mond (Wambsganβ) 26.5.25 Das Planetensystem (Wambsganβ) 2.6.25 Sterne – Aufbau & Entwicklung (Fendt) 9.6.25 (keine Vorlesung, Pfingstmontag) 16.6.25 Interstellares Medium & Sternentstehung (Fendt) 23.6.25 Die Milchstrasse (Fendt) 30.6.25 Exoplaneten & Leben (Wambsganβ) 7.7.25 Galaxien (Wambsganβ) 14.7.25 Aktive Galaxien, Quasare, Schwarze Löcher (Fendt) 21.7.25 Eventuell Besuch auf dem Königstuhl mit Besichtigung der astronomischen Institute
- Physik B
Vorlesung von Krosigk B
Homepage heiCO-Info Link to Registration
LV-Anmeldung möglich
more information - Advanced python course for scientists (UK)
Vorlesung Mapelli M
heiCO-Info Link to Registration
Anmeldung ab 01.06.2025 möglich
more information1300120401
Anmeldung ab 01.06.2025 möglich
Link to RegistrationContent
DAY 1: short summary of python basics DAY 2: classes and object oriented programming DAY 3: accuracy & speed (general, not python only), parallelization & regular expressions DAY 4: pandas, scipy for ordinary differential equations DAY 5: some examples of machine learning (ML)
- Experimental Methods in Atomic & Molecular Physics (MVAMO3, MVSpec)
Vorlesung Oberthaler M
Homepage heiCO-Info Link to Registration
Anmeldung abgelaufen
more information1300122203
Anmeldung abgelaufen
Link to RegistrationContent
We will treat the following topics: • Spectroscopy and metrology • Atom-light interactions • Cavity Quantum Electrodynamics • Matter waves • Cooling and trapping • Mass measurements • Quantum gases • (Ultracold) Collisions • Single atoms and molecules • Quantum information • Femto- and attosecond processes
Goal
After completing this course the students will be able to ż describe modern aspects of experimental research in atomic, molecular and optical physics, ż analyse standard experimental approaches of atomic, molecular and optical physics, ż design simple experimental set-ups in atomic, molecular and optical physics, ż apply the methods to simple practical examples.
- Attosecond Physics (MVSpec)
Vorlesung Moshammer R, Ott C, Pfeifer T
Homepage heiCO-Info Link to Registration
Anmeldung abgelaufen
more information1300122219
Anmeldung abgelaufen
Link to RegistrationCourse Information
This lecture will provide an introduction to the fundamentals and current work in the research area of Attosecond Physics. The pioneers of this field were awarded the Physics Nobel Prize in 2023 for providing the ultrashort flashes of light (attosecond pulses), and current opportunities to employ their techniques for the understanding and steering of electron motion in matter are quickly expanding.
The lecture will be accompanied by a tutorial (right after the lecture) for praticing our understanding of key concepts and physics pictures, also including (computational) experiments.
Important Dates:
- 22 April 2025, 14:15: First Lecture and Tutorial introContent
This lecture will provide an introduction to the fundamentals and current work in the research area of Attosecond Physics. The pioneers of this field were awarded the Physics Nobel Prize in 2023 for providing the ultrashort flashes of light (attosecond pulses), and current opportunities to employ their techniques for the understanding and steering of electron motion in matter are quickly expanding. The lecture will be accompanied by a tutorial (right after the lecture) for praticing our understanding of key concepts and physics pictures, also including (computational) experiments. Important Dates: - 15 April 2025, 14:15: First Lecture and Tutorial intro
- Quantum electrodynamics: theory and key experiments (MVSpec)
Vorlesung Harman Z, Quint W
heiCO-Info Link to Registration
Anmeldung abgelaufen
more information1300122221
Anmeldung abgelaufen
Link to RegistrationContent
Special lectures on the quantum electrodynamics of precision spectroscopic experiments, covering both theoretical and experimental aspects
- Quantum Simulation (MVSpec)
Vorlesung Weidemüller M
Homepage heiCO-Info Link to Registration
Anmeldung abgelaufen
more information - Bildgebenden Verfahren für Fortgeschrittene (MVSpec)
Vorlesung Zöllner F
heiCO-Info Link to Registration
LV-Anmeldung möglich
more information1300132215
LV-Anmeldung möglich
Link to RegistrationContent
https://moodle.umm.uni-heidelberg.de/moodle/course/view.php?id=133
Goal
The participants will select a paper given in the Materials selection below and present the content to the group followed by a discussion. Afterwards, the paper is summerized in a report.
- Volumenvisualisierung (MVSpec)
Vorlesung Hesser J, Zheng L
heiCO-Info Link to Registration
LV-Anmeldung möglich
more information - Inverse Probleme (MVSpec)
Vorlesung Hesser J, Zheng L
heiCO-Info Link to Registration
LV-Anmeldung möglich
more information - Computerspiele / Med. Simulatoren (MVSpec)
Vorlesung Hesser J, Zheng L
heiCO-Info Link to Registration
LV-Anmeldung möglich
more information - Medical Physics 2 (MVMP2, MVSpec)
Vorlesung Kuder T, Schröder L
heiCO-Info Link to Registration
LV-Anmeldung möglich
more information1300132222
LV-Anmeldung möglich
Link to RegistrationContent
Subject: Magnetic Resonance Imaging (MRI) and Nuclear Medicine See website: https://medphysrad-teaching.dkfz.de/medphys2.html
- Biophysics (MVSpec)
Vorlesung Hesser J
heiCO-Info more information1300132232
Zu dieser LV ist keine Anmeldung möglichContent
see module handbook
- The physics of charged particle therapy (MVSpec)
Vorlesung Seco J
heiCO-Info Link to Registration
LV-Anmeldung möglich
more information - Biophotonics I (MVSpec)
Vorlesung Petrich W
heiCO-Info Link to Registration
Anmeldung abgelaufen
more information - Advanced Condensed Matter Physics (MKEP2)
Vorlesung Klingeler R
Homepage heiCO-Info Link to Registration
LV-Anmeldung möglich
more information1300142101
LV-Anmeldung möglich
Link to RegistrationContent
* Structure of solids in real and reciprocal space * Lattice dynamics and phonon band structure * Thermal properties of insulators * Electronic properties of metals and semiconductors: band structure and transport * Optical properties from microwaves to UV * Magnetism * Superconductivity (each chapter includes experimental basics)
Goal
After completing the course the students - have gained a thorough understanding of the fundamentals of condensed matter physics and can apply concepts of many-particle quantum mechanics to pose and solve relevant problems. - will be able to describe the priciples of formation of solids and can propose appropriate experimental methods to study structural properties. They are familiar with and can apply the concept of reciprocal space. - they can apply fundamental electronic models to explain and predict properties of crystalline materials as metals, semiconductors, and insulators. - they can ascribe optical, magnetic properties of matter to electronic and structure degrees of freedom. - they can describe and theoretically explain fundamental properties of superconductivity. - they are able to choose appropriate experimental methods for probing structural, optical, magnetic, and electronic properties of condensed matter and can analyse the experimental results.
- Physik des Alltags (PDA)
Vorlesung Jochim S
heiCO-Info Link to Registration
Anmeldung abgelaufen
more information1300152101
Anmeldung abgelaufen
Link to RegistrationContent
Die folgende Liste der Themen ist als Anhalt gedacht: • Modell eines Tornados: Drehimpulserhaltung, Unterdruck, herleiten wie groß die Windgeschwindigkeit und Unterdruck sind. • Magnetfeld Erde: Ausrechnen welche Sonnenteilchen/Kosmische Strahlen abgelenkt werden. Wie gefährlich wäre der Sonnenwind (vor allem coronal mass ejections) für Astronauten? • Autounfall: Ausrechnen bei welcher Geschwindigkeit ein Airbag noch Sinn macht bei einem Frontal-Zusammenstoß. • Alternative Energie: Ausrechnen wie viel Windmühlen und wie viel m^2 Sonnenzellen man braucht, damit Deutschland 100 Prozent auf neuerbare Energiequellen umgeschaltet ist. • Raketengleichung: Herleitung und Anwendung. Warum war die Saturn V Rakete so riesig, obwohl man mit einem Mini-Lunar Module von der Mond wegkommen konnte? • Flugzeugflügel: wieso können Flugzeuge fliegen? • Tsunamis: Shallow water equation für die Analyse von Tsunamis. Warum (und unter welchen Umständen) sind Tsunamis so gewaltig? • Blitze (Gewitter): Wie funktionieren sie ungefähr, und wie kann man die Lautstärke berechnen. Vielleicht eine Abschätzung davon, wie viel Hagelkörner man braucht um genügend Ladungs-Separation zu machen um überhaupt Blitze zu erzeugen. • GPS-Navigation: Spezielle und allgemein-Relativistische Effekte.
Goal
Die Studierenden sind in der Lage durch einfache mathematische bzw. physikalische Modelle selbstständig alltägliche physikalische Phänomene zu verstehen. Sie kennen Herangehensweisen bei der Bildung von Abschätzungen, durch die komplexe physikalische Phänomene durch geschickte Vereinfachungen und Annäherungen auf den Kernaspekt reduziert werden können. Sie sind in der Lage die weniger wichtigen Aspekte zu benennen, die vernachlässigt werden können, um so zu einem Verständnis zu kommen.
- Physikdidaktische Grundlagen (PDG)
Vorlesung Welzel-Breuer M
heiCO-Info more information1300152102
Zu dieser LV existiert kein AnmeldeverfahrenContent
Vorgaben des Bildungsplans Physik Gymnasium Einführung in fachdidaktische Denk- und Arbeitsweisen Grundlagen der Planung und Analyse von Physikunterricht zu ausgewählten Teilgebieten der Physik unter Einbeziehung heterogener Lerngruppen Experimente, Medieneinsatz und Aufgabenkultur im Physikunterricht Leistungsbewertung im Physikunterricht Fachdidaktische Reflexion von Physikunterricht
Goal
Die Studierenden ż kennen die Vorgaben des aktuellen Bildungsplans und grundlegende Methoden im Physikunterricht ż kennen Konzepte fachbezogener Bildung und können diese kritisch analysieren, bewerten und anwenden. ż können fachdidaktische Lerninhalte vernetzen und situationsgerecht anwenden ż verfügen über erste reflektierte Erfahrungen im Planen, Gestalten und Durchführen von kompetenzorientiertem Unterricht
- Environmental Physics (MKEP4)
Vorlesung Aeschbach W, Frank N
Homepage heiCO-Info Link to Registration
Anmeldung abgelaufen
more information1300152104
Anmeldung abgelaufen
Link to RegistrationCourse Information
MKEP4 - General information
This platform – the physics department's exercise management system – serves for registration and for the electronic handling of the exercises (i.e., you can upload your solutions here).
The central platform for this lecture is the following Moodle page:
https://moodle.uni-heidelberg.de/course/view.php?id=26709
The enrolment key for Moodle will be provided in the first lecture and via e-mail.
On Moodle you will find all materials for the lectures (e.g., textbooks and lecture notes, additional information and links). You will also find exercise sheets with problems to solve for download there (but the upload of solutions is via this site here).
The videos of lectures from previous online semesters will also be made available via Moodle but will not be updated to match the current content of the lectures. They are only meant as a backup for students who may not be able to attend in person at some dates.
Content
This lecture introduces all physical concepts of the fundamentals of Environmental Physics and it is accompanied by exercises and tutorials every week. The content spans: • The fundamentals about the Earth climate system and its compartments, flow, transport, and the global radiation balance. • Geophysical fluid dynamics, i.e. the fundamental laws of free and forced fluid movement and vorticity, and a practical guide to the first principles of turbulence. • Global circulation of atmosphere and ocean, boundary layer physics, and slow flow through porous media and of ice. • Gas and heat exchange between ocean and atmosphere. Global fluxes and cycles (energy, water, carbon). • Isotope fractionation and isotope methods to study the Earth environments, focus on water and carbon isotopes. • Introduction to models of environmental systems, basic principles of numerical climate modelling. • Basic principles of radiative transfer. Climate system radiative forcing and sensitivity. Global climate change past, present and future.
Goal
Students achieve a fundamental understanding of the key physical processes and interactions in the Earth surface system and its compartments, as well as of the human impact on these systems and the related societal implications. They are able to solve basic problems of environmental physics and interpret the results in the context of fundamental questions regarding the physics of the earth surface environments and the methodologies to observe and study those.
- Physics of Aquatic Systems (MVEnv3, MVSpec)
Vorlesung Aeschbach W
Homepage heiCO-Info Link to Registration
Anmeldung abgelaufen
more information1300152203
Anmeldung abgelaufen
Link to RegistrationCourse Information
PHYSICS OF AQUATIC SYSTEMS (MVEnv3)
Summer 2025
Prof. Dr. Werner Aeschbach
Institut für Umweltphysik, Universität Heidelberg
Moodle page of the lecture: https://moodle.uni-heidelberg.de/course/view.php?id=26710
Code for registration will follow per e-mail to students registered here
General information
This platform – the physics department's exercise management system – serves for registration and for the electronic handling of the exercises (i.e., you can upload your solutions here).
The central platform for this lecture is the moodle page given above. There you will find the material for the lectures (lecture notes and slides, additional information and links) well in advance of the scheduled lecture times. You will also find exercise sheets with problems to solve for download there (but the upload of solutions is via this site here).
Videos for asynchronous study from the Covid years will be made available via the moodle site. These videos will not be updated and are only meant as a backup for students who may not be able to attend in person at some dates.
Remarks on the contents
„Aquatic Physics“ or „Physics of Aquatic Systems“ is a part of environmental physics that deals with physical processes in natural waters such as oceans, lakes, rivers, and groundwater. The importance of studying the hydrosphere follows on the one hand from the sheer size of the oceans and their pivotal role in the climate system, on the other hand from the limited fresh water reserves and the related societal problems. The focus of this lecture lies on the most important continental water reservoirs, lakes and groundwaters. However, fundamentals of physical oceano¬graphy are also treated.
In the first part of the lecture, the physical properties of water and the aquatic systems, as well as the physical processes in these systems are treated. The laws of fluid dynamics (e.g., Navier-Stokes), as well as the theory of transport processes (e.g., advection, (turbulent) diffusion, heat and gas exchange), which are known from the general lecture on environmental physics (MKEP4) are applied to these special systems.
The second part of the lecture deals with the application of environmental tracer methods to study aquatic systems, the so-called isotope hydrology. In this part, various tracers (e.g., stable isotopes, 3H, noble and transient gases, 14C) and the basics of the respective methods are introduced and it is shown how these methods can be applied to determine physical parameters of aquatic systems.
The lecture "Physics of Aquatic Systems" is part of the Master programme in physics. However, it can also be heard by Bachelor students. Knowledge from the general lecture on environmental physics (MKEP4) is useful, but it is possible to hear this lecture in parallel to MKEP4.
Online textbooks for this lecture:
Stewart, R. H., 2008. Introduction to Physical Oceanography. On-line textbook, available at https://open.umn.edu/opentextbooks/textbooks/introduction-to-physical-oceanographyMook, W.G. (ed.), 2001: UNESCO/IAEA Series on Environmental Isotopes in the Hydrological Cycle - Principles and Applications. Available online at http://www-naweb.iaea.org/napc/ih/IHS_resources_publication_hydroCycle_en.html.
Woessner, W. W., Poeter, E. P., 2020. Hydrogeologic Properties of Earth Materials and Principles of Groundwater Flow. https://gw-project.org/books/hydrogeologic-properties-of-earth-materials-and-principles-of-groundwater-flow/
Cook, 2020. Introduction to Isotopes and Environmental Tracers as Indicators of Groundwater Flow. https://gw-project.org/books/introduction-to-isotopes-and-environmental-tracers-as-indicators-of-groundwater-flow/
Solomon, D. K., Gilmore, T. E., 2024. Age Dating Young Groundwater. https://gw-project.org/books/age-dating-young-groundwater/
W. Aeschbach
April 2025Content
• Fundamentals of physical oceanography, limnology, and hydrogeology • Heat and mass transfer between water and atmosphere • Flow and transport in surface and ground water • Tracer methods in the hydrological cycle
Goal
Students achieve an advanced understanding of the physical processes in aquatic systems, the methods to study them, and their role in the climate system. They are able to solve advanced problems and interpret the results in the context of current questions in research and application. They can assess and use current scientific literature to further develop their knowledge base, enabling them to conduct independent master research projects in physics of aquatic systems.
- Climate Dynamics (MVSpec)
Vorlesung Fiedler S
heiCO-Info Link to Registration
Anmeldung abgelaufen
more information1300152204
Anmeldung abgelaufen
Link to RegistrationContent
Global climate system: - Climate forcing and response - Atmosphere-ocean circulation and dynamics - Energy cycle Processes and interactions: - Aerosols and meso-scale dynamics - Atmosphere-ocean interactions - Atmosphere-land interactions Tools for climate studies: - Satellite data and reanalysis - Earth system models - Climate scenarios and projections
Goal
Students achieve a specialised understanding of Earth system dynamics and complex climate models to study it, with focus on modern climate change. They are able to review literature, perform a climate data analysis, and interpret the results in the context of their project questions. They gain skills in critically reflecting the state of knowledge about climate change, design and articulate their results with a poster, and present and defend results at a poster conference. They have deepened their knowledge to conduct a research project in climate physics, and broadened their technical skills for programming and poster design.
- Inverse methods in the atmospheric sciences (MVSpec)
Vorlesung Butz A, Landgraf J
heiCO-Info Link to Registration
LV-Anmeldung möglich
more information1300152212
LV-Anmeldung möglich
Link to RegistrationContent
1 week block lecture, language: English, Sep. 22-26, 2025, 9-18h, INF229, R108 (first floor), lecturer: Dr. Jochen Landgraf.
- Moderne Physik II für Lehramt (PMPL2)
Vorlesung Jäckel J
Homepage heiCO-Info Link to Registration
Anmeldung abgelaufen
more information - Moderne Physik II für Lehramt (PMPL2)
Vorlesung Jäckel J
Homepage heiCO-Info Link to Registration
Anmeldung abgelaufen
more information - Experimentalphysik II - Transportprozesse, Elektrodynamik, Relativität (PEP2)
Vorlesung Schöning A
Homepage heiCO-Info Link to Registration
Anmeldung abgelaufen
more information1300161107
Anmeldung abgelaufen
Link to RegistrationContent
Elektrodynamik (45 %) • Elektrostatik • Elektrische Ströme • Magnetostatik • Zeitlich veränderliche Felder (Maxwell Gleichungen) Wellen (15 %) • Grundbegriffe, Wellengleichung • Akustik • Elektromagnetische Wellen Optik (20 %) • Wellenoptik, Fouriertransformationen • Geometrische Optik • Optische Instrumente Spezielle Relativitätstheorie (20 %) • Maxwell Gleichungen und Lorentztransformationen • Relativistische Kinematik • Relativistische Dynamik, Energien
Goal
Die Studierenden können die grundlegenden physikalischen Eigenschaften auf dem Gebiet der Elektrodynamik, der Wellenmechanik, der Optik erläutern sowie den Aufbau der wichtigsten Experimente beschreiben. Sie erkennen die Zusammenhänge zwischen den physikalischen Experimenten und den entsprechenden mathematischen Formulierungen und sind in der Lage, die zugrundeliegenden physikalischen Probleme mathematisch zu formulieren und mindestens näherungsweise zu lösen. Sie können die Grundkonzepte der Speziellen Relativitätstheorie beschreiben und zugehörige Probleme mathematisch formulieren. Sie sind in der Lage, ihr erworbenes Wissen anzuwenden, indem sie selbstständig physikalische Probleme bearbeiten.
- Experimentalphysik IV - Kern- und Teilchenphysik (PEP4)
Vorlesung Hansmann-Menzemer S
Homepage heiCO-Info Link to Registration
Anmeldung abgelaufen
more information1300161143
Anmeldung abgelaufen
Link to RegistrationContent
• Mehrelektronensysteme (15 %) • Wechselwirkung von Teilchen mit Materie (10 %) • Teilchen (20 %) • Symmetrien und Erhaltungssätze (20 %) • Fundamentale Wechselwirkung (15 %) • Kernmodelle (10 %) • Kernreaktionen (10 %)
Goal
Die Studierenden können die grundlegenden physikalischen Phänomene der Kern- und Teilchenphysik erläutern sowie den Aufbau der wichtigsten Experimente beschreiben. Sie erkennen die Zusammenhänge zwischen den physikalischen Experimenten und den entsprechenden mathematischen Formulierungen und sind in der Lage, die zugrundeliegenden physikalischen Probleme mathematisch zu formulieren und mindestens näherungsweise zu lösen. Sie sind in der Lage, ihr erworbenes Wissen anzuwenden, indem sie selbstständig physikalische Probleme bearbeiten.
- The Physics of Particle Detectors (MVSpec)
Vorlesung Schultz-Coulon H, Stamen R, Toschi F
Homepage heiCO-Info Link to Registration
Anmeldung abgelaufen
more information1300162201
Anmeldung abgelaufen
Link to RegistrationContent
Lecture Homepage The course consists of a lecture and an accompanying journal club Focus of the lecture is the physics, the design and the application of particle detectors used in modern particle physics experiments. Covered topics are - Interaction of particles with matter - Scintillators and ToF detectors - Gas detectors - Silicon detectors - Calorimeters - Detector for particle identification - Large detector systems - ...
Goal
After completion of the course the student has gained basic knowledge about interactions of particles with matter, the physics of particle detectors, their working principles, and their applications in experiments. The course consists of a lecture and an accompanying journal club Lecture: Introduction into the physics and the technical realization of particle detectors; 2 hours/week; Wednesday 9:15 to 11:00. Journal Club: Deepening of knowledge on the basis of recent detector papers; discussion of particular detector research; 1 hour/week; Fridays 11:15.
- Quark Gluon Plasma (MVSpec)
Vorlesung Masciocchi S, Mazeliauskas A
Homepage heiCO-Info Link to Registration
Anmeldung abgelaufen
more information1300162205
Anmeldung abgelaufen
Link to RegistrationContent
As two lead nuclei collide at the Large Hadron Collider at CERN, they create extreme conditions not seen since the beginning of our Universe. The collision creates a blob of plasma hundreds of times denser than the nucleus of the atom and a hundred thousand times hotter than the core of a star. This new form of matter is composed of strongly interacting quarks and gluons---the fundamental building blocks of matter---and is called the Quark-Gluon Plasma. Measuring the properties of QGP and understanding the emergent many-body phenomena of QCD are the goals of heavy-ion physics. This course is dedicated to modern aspects of QGP physics. We will provide a broad introduction to heavy-ion physics, both from the theoretical and experimental points of view. The lectures are aimed at bachelor, master, and graduate students.
- Particle Physics II (before Standard Model I) (MVSpec)
Vorlesung Degenkolb S, Plehn T, Uwer U
Homepage heiCO-Info Link to Registration
Anmeldung abgelaufen
more information - Theoretische Physik II - Analytische Mechanik und Thermodynamik (PTP2)
Vorlesung Schwarz U
Homepage heiCO-Info Link to Registration
Anmeldung abgelaufen
more information1300171102
Anmeldung abgelaufen
Link to RegistrationContent
Teilmodul 1: Analytische Mechanik • Zwangsbedingungen • Lagrange’sche Gleichungen 1. und 2. Art, Wirkungsprinzip • Variationsrechnung (†) • Symmetrien und Erhaltungssätze • Noether-Theorem (†) • Starrer Körper, Trägheitstensor, Kreisel • Differentialformen (†)(*) • Hamilton-Formalismus, Poisson-Klammer, Phasenraum, Liouville-Theorem • Integrable und nichtintegrable Probleme, Chaos • Partielle Differentialgleichungen (†) • Physik der Kontinua und Felder, ideale Hydrodynamik • Potenzialströmung, Navier-Stokes-Gleichung (*) • Weiche Materie (*) Teilmodul 2: Thermodynamik und statistische Physik • Ensembles, Fluktuationen, statistische Grundkonzepte am Beispiel des idealen Gases • Diffusion • Boltzmann-Verteilung • Legendre-Transformation (†) • Temperatur, mikroskopische Definition der Entropie • 1. Hauptsatz, Carnot-Prozess, makroskopische Definition der Entropie, 2. Hauptsatz • Thermodynamische Potenziale und Phasenübergänge Die mit (†) gekennzeichneten Teile markieren die Mathematikinhalte, die einen wesentlichen Teil der Vorlesung ausmachen; die mit (*) gekennzeichneten Inhalte repräsentieren moderne Aspekte und können je nach Dozent variieren.
Goal
Nach erfolgreicher Teilnahme am Modul ż kennen und verstehen die Studierenden die Grundlagen, Methoden und Konzepte der Theoretischen Physik im Bereich der analytischen Mechanik der Punktmassen, des starren Körpers und der Kontinua, der theoretischen Thermodynamik sowie der elementaren Statistik, ż haben die Studierenden die notwendigen mathematischen Kenntnisse und Fähigkeiten die zum Verständnis der genannten Themenbereiche notwendig sind, ż besitzen die Studierenden die Fertigkeiten, Problemstellungen aus den genannten Bereichen der Theoretischen Physik eigenständig zu strukturieren, differenziert zu analysieren und mit den vermittelten Konzepten und Methoden Lösungsansätze und Modelle zu erarbeiten, diese aus physikalischer Sicht zu bewerten und zu kommunizieren, ż sind die Studierenden in der Lage, sich weitere, verwandte Themen und Methoden der theoretischen Physik durch Literaturarbeit selbst zu erschließen.
- Theoretische Physik IV - Quantenmechanik (PTP4)
Vorlesung Hebecker A
Homepage heiCO-Info Link to Registration
Anmeldung abgelaufen
more information1300171104
Anmeldung abgelaufen
Link to RegistrationContent
• Widersprüche zwischen Experiment und klassischer Physik • Postulate der Quantenmechanik • Hilbertraum, Zustände, Operatoren • Unschärferelation • Schrödingergleichung • Harmonischer Oszillator • Bewegung im Zentralpotenzial, Drehimpuls, Spin • Wasserstoffatom • Potenzialstreuung • Mehrteilchenprobleme • Schrödinger- vs. Heisenbergbild • Zeitabhängige und zeitunabhängige Störungsrechnung • Variationsverfahren • Symmetrien und Invarianzen • Dichtematrix, Messprozess • Pfadintegral
Goal
Nach erfolgreicher Teilnahme am Modul ż kennen und verstehen die Studierenden die Grundlagen, Methoden und Konzepte der Theoretischen Physik im Bereich der Quantenmechanik mit deren wichtigsten Anwendungen, ż haben die Studierenden die notwendigen mathematischen Kenntnisse und Fähigkeiten die zum Verständnis der genannten Themenbereiche notwendig sind, ż besitzen die Studierenden die Fertigkeiten, Problemstellungen aus den genannten Bereichen der Theoretischen Physik eigenständig zu strukturieren, differenziert zu analysieren und mit den vermittelten Konzepten und Methoden Lösungsansätze und Modelle zu erarbeiten, diese aus physikalischer Sicht zu bewerten und zu kommunizieren, ż sind die Studierenden in der Lage, sich weitere, verwandte Themen und Methoden der theoretischen Physik durch Literaturarbeit selbst zu erschließen.
- Methoden der mathematischen Physik 1 (MMP1)
Vorlesung Salmhofer M
Homepage heiCO-Info Link to Registration
Anmeldung abgelaufen
more information1300171201
Anmeldung abgelaufen
Link to RegistrationContent
Die Vorlesung MMP 1 richtet sich an Viertsemestrige im Bachelorstudiengang Physik. Sie ergänzt die Mathematik-Pflichtvorlesungen fuer Physiker durch weiterführende, für die Physik relevante mathematische Inhalte. In diesem Semester sind folgende Themen vorgesehen: Elemente der komplexen Analysis Hilbert- und Banachräume, Theorie linearer Operatoren Anwendungen in der Quantenmechanik Die Lehrveranstaltung findet größtenteils in Präsenz, an wenigen Terminen online statt. Einzelheiten werden den registrierten Teilnehmer(inn)en direkt mitgeteilt.
- General Relativity (MKTP3)
Vorlesung Bartelmann M
Homepage heiCO-Info Link to Registration
Anmeldung abgelaufen
more information1300172103
Anmeldung abgelaufen
Link to RegistrationContent
* Manifolds * Geodetics, curvature, Einstein-Hilbert action * Einstein equations * Cosmology * Differential forms in General Relativity * The Schwarzschild solution * Schwarzschild black holes * More on black holes (Penrose diagrams, charged and rotating black holes) * Unruh effect and hawking radiation
Goal
After completing the course the students * have a thorough knowledge and understanding of Einstein's theory of General Relativity including the necessary tools from differential geometry and applications such as black holes, gravitational radiation and cosmology, * have acquired the necessary mathematical tools from differential geometry, are trained in their application to physical situations with strong gravity and are familiar with their interpretation, * have advanced competence in the fields of theoretical physics covered by this course, i.e. the ability to analyze physical phenomena using the acquired concepts and techniques, to formulate models and find solutions to specific problems, and to interpret the solutions physically and communicate them efficiently, * are able to broaden their knowledge and competence in this field of theoretical physics on their own by a systematical study of the literature.
- Advanced Quantum Field Theory (MVTheo1, QFTII, MVSpec)
Vorlesung Berges J
Homepage heiCO-Info Link to Registration
Anmeldung abgelaufen
more information1300172201
Anmeldung abgelaufen
Link to RegistrationContent
• Effective action • Symmetries and conservation laws • Gauge theories: QED, QCD, QFT, quantized • Feynman rules in Lorentz covariant gauges • Renormalization in Gauge theories • One-loop QED • Spontaneous symmetry breaking and Higgs mechanism • Renormalization groups, Wilson renormalization, lattice gauge theory
Goal
After completing the course the students ż have a thorough knowledge and understanding of the regularisation and renormalisation programme in ż4-theory, of renormalisation in QED and non-abelian gauge theories (1-loop order), of the effective action and the modern renormalisation group approach, ż have acquired the necessary mathematical knowledge and competence for an in-depth understanding of this research field, ż have advanced competence in the fields of theoretical physics covered by this course, i.e. the ability to analyze physical phenomena using the acquired concepts and techniques, to formulate models and find solutions to specific problems, and to interpret the solutions physically and communicate them efficiently, ż are able to broaden their knowledge and competence in this field of theoretical physics on their own by a systematical study of the literature.
- Condensed Matter Theory 2 (MVTheoCM2, MVSpec)
Vorlesung Haverkort M, Schmidt R
Homepage heiCO-Info Link to Registration
Anmeldung abgelaufen
more information1300172204
Anmeldung abgelaufen
Link to RegistrationCourse Information
Condensed Matter Theory II:The complexity of 1023 particles interacting with each other in a solid give rise to many emergent phenomena one would not predict from the simple interactions between two electrons. In this lecture we will, starting from simple models and theories work our way into the contemporary theory of many particle physics.The lecture builds on the concepts discussed during the condensed matter physics I lecture series. We will use these to look at interacting many body systems.Background knowledge assumed to be present:(you can find these topics in the lecture notes, look at youtube videos of the previous lectures or ask during the lectures for more information)- Second quantization
- Tight binding representation of Hamiltonians and how to solve the band-structure (Fourier transform, crystal momentum)
- Green's functions for non-interacting system and Dyson equation to calcualte impurity or surface states.
Concepts of many particle systems discused are:- Response functions.
- The difference in response functions between interacting and non-interacting systems.
- Green's functions and diagramatic expansions for interacting systems.
Content
- Introductory materials: bosons, fermions and second quantisation - Green's functions approach - Exactly solvable problems: potential scattering, Luttinger liquids etc. - Theory of quantum fluids, BCS theory of superconductivity - Quantum impurity problems: Kondo effect, Anderson model, renormalisation group approach Depending on the lecturer more weight will be given to solid state theories or to soft matter.
Goal
After completing the course the students - have a thorough knowledge and understanding, of the nowadays 'traditional' diagrammatic technique and the problems solved by this technique, including Landau's theory of quantum liquids and BCS theory of superconductivity, - of advanced non-perturbative approaches such as renormalization group transformations, bosonisation and Bethe Ansatz and there application to examples of quantum impurity problems such as potential scattering in Luttinger liquids, inter-edge tunneling in fractional quantum Hall probes and Kondo effect in metals and mesoscopic quantum dots, - have acquired the necessary mathematical knowledge and competence for an in-depth understanding of this research field, - have advanced competence in the fields of theoretical physics covered by this course, i.e. the ability to analyze physical phenomena using the acquired concepts and techniques, to formulate models and find solutions to specific problems, and to interpret the solutions physically and communicate them efficiently, - are able to broaden their knowledge and competence in this field of theoretical physics on their own by a systematical study of the literature.
- Advanced Quantum Theory (MVAMO2, MVSpec)
Vorlesung Haverkort M
Homepage heiCO-Info Link to Registration
Anmeldung abgelaufen
more information1300172205
Anmeldung abgelaufen
Link to RegistrationContent
Contents: 1) Relativistic quantum theory (Dirac equation, relativistic light-matter interaction) 2) Quantum theory of light and matter (quantized fields, interaction with atoms) 3) Open quantum systems (matter and radiation, decoherence, Lamb-shift, natural line width) 4) Dynamics, time evolution and response theory 5) Many electron atoms and lattice models
- Advanced Cosmology (MVSpec)
Vorlesung Amendola L, Heneka C
Homepage heiCO-Info Link to Registration
Anmeldung abgelaufen
more information1300172206
Anmeldung abgelaufen
Link to RegistrationContent
The course will cover advanced topics in Cosmology. More information on http://www.thphys.uni-heidelberg.de/%7Eamendola/advcosm-ss2025.html
- Theoretical Biophysics (MVBP2, MVSpec)
Vorlesung Bereau T
Homepage heiCO-Info Link to Registration
Anmeldung abgelaufen
more information1300172207
Anmeldung abgelaufen
Link to RegistrationCourse Information
Content
This course is MVBP2 in the modul handbook and is addressed to physics master students with an interest in biophysics. Motivated bachelor or PhD-students are also most welcome, as are students from neighboring disciplines. There are two lectures each week, each for 90 minutes, plus weekly homework and exercises. Together you can earn 6 credit points from this course. This lecture can be used for the oral master examination if combined with e.g. the lecture on statistical physics or the lecture on simulation methods, or with two short specialized lectures (like non-linear or stochastic dynamics). The details for the tutorial will be discussed in the first lecture, which is on Tue April 15.
Previous knowledge
A background in statistical physics and/or experimental biophysics is helpful, but not required.
Objectives
Get a broad overview over the way concepts and methods from theoretical physics are being used to understand and analyze biological systems.
Type of exam
Oral examination upon request, otherwise 60% of exercise credits required for pass without grade.
Recommended reading
A script is availabe from earlier editions of this lecture. A standard textbook would be R. Phillips, J. Kondev and J. Theriot, Physical Biology of the Cell, 2nd edition, Garland Sci. 2012.
Content
This course is MVBP2 in the modul handbook and is addressed to physics master students with an interest in biophysics. Motivated bachelor or PhD-students are also most welcome, as are students from neighboring disciplines. There are two lectures each week, each for 90 minutes, plus weekly homework and exercises. Together you can earn 6 credit points from this course. This lecture can be used for the oral master examination if combined with e.g. the lecture on statistical physics or the lecture on simulation methods, or with two short specialized lectures (like non-linear or stochastic dynamics). The details for the tutorial will be discussed in the first lecture, which is on Thu April 18.
- Quantum field theory of many-body systems (MVSpec)
Vorlesung Gasenzer T
Homepage heiCO-Info Link to Registration
Anmeldung abgelaufen
more information1300172208
Anmeldung abgelaufen
Link to RegistrationCourse Information
Students with very good knowledge in quantum mechanics and statistical
physics should be able to follow the course. Knowledge in quantum
field theory is very helpful.Content
Basics and applications of nonequilibrium quantum field theory to particle physics/early universe cosmology and experiments with ultracold quantum gases: path integral formulation, resummation techniques, renormalization, classical aspects of nonequilibrium quantum fields, nonequilibrium instabilities, far-from-equilibrium scaling phenomena, thermalization.
- Introduction to Mathematica with applications to physics and statistics (MVSpec)
Vorlesung Amendola L
Homepage heiCO-Info Link to Registration
LV-Anmeldung möglich
more information1300172210
LV-Anmeldung möglich
Link to RegistrationContent
The course is ONLINE only. It will provide an introduction to Mathematica with applications to physics and statistics. You need to have Mathematica installed on your computer. The course will start on May 20, and continues for 8 lectures, every Tuesday at 11:15-13:00. More info https://www.thphys.uni-heidelberg.de/%7Eamendola/intromath-ss2025.html - Basics of Mathematica: functions, graphics, input/output, modules, algebraic manipulations, arrays, numerical methods - Solving common mathematical, physical, and statistical problems
- Quantum Field Theory on Curved Backgrounds (MVSpec)
Vorlesung Eichhorn A
Homepage heiCO-Info Link to Registration
Anmeldung abgelaufen
more information1300172211
Anmeldung abgelaufen
Link to RegistrationContent
Bauteile gegenwärtiger Computer erreichen die Größenordnung von Atomen. Da für atomare und subatomare Physik die Quantenmechanik die akzeptierte und bestens bestätigte Theorie ist, wurde der Vorschlag von Feynman aus dem Jahr 1982 immer aktueller: nämlich Computer zu bauen und Algorithmen zu implementieren, die nach den Prinzipien der Quantenmechanik funktionieren. Beim Bau universell programmierbarer Quantencomputer und ihrer Nutzung wurden große Fortschritte erzielt und es gibt Hinweise dafür, dass sie in Zukunft gewisse Aufgabenstellungen wesentlich effizienter lösen können als klassische Computer. Ein viel diskutiertes und beachtetes Beispiel ist die Entschlüsselung aktuell verwendeter, bisher als sicher geltender Verschlüsselungsverfahren. Es ist nicht überraschend, dass gerade die der Anschauung am stärksten widersprechenden und daher im Anfangsstadium der Theorie am heftigsten kritisierten Konzepte der Quantenmechanik, wie Superposition und Verschränkung von Zuständen in verschiedenen Anwendungen einen Quantencomputer einem klassischen Computer überlegen machen. In der Vorlesung wollen wir insbesondere auf die Verknüpfung von Physik und Informatik in der Quanteninformationstheorie eingehen. - Wir beginnen mit einer Vorstellung aktueller Herausforderungen der Digitalisierung und bekannter Grenzen (klassischer) Computer und geben eine kurze Einführung in Berechenbarkeitstheorie, Rechenmodelle, Algorithmen und reversibles Rechnen. Danach werden das Quantenbit und Rechenschritte darauf definiert, Quantenregister und Quantenschaltkreise eingeführt, wichtige Algorithmen untersucht und gezeigt, wie diese implementiert werden können. - Im Zusammenhang mit der Quanteninformatik wird der formale Aufbau der Quantenmechanik noch einmal vorgestellt. Dabei werden die Aspekte, die für die Funktionsweise eines Quantencomputers wesentlich sind, besonders hervorgehoben, z.B. Messprozess, E. Schmidt´scher Formalismus, Quantenkanäle, Superoperatoren und die Quanten-Fouriertransformation. - In einem dritten Teil wird die klassische Komplexitätstheorie kurz vorgestellt, um mögliche entscheidende Vorteile eines Quantencomputers aufzeigen zu können. - Der nächste Teil der Vorlesung besteht in einer Beschreibung und Diskussion des Shore´schen Algorithmus. Er beruht auf Ergebnissen der Zahlentheorie und der Quanten-Fouriertransformation. Er ist nicht nur der Algorithmus, der aktuell für die größte Aufmerksamkeit sorgt, sondern an ihm lassen sich auch die wesentlichen Vorteile des Quantencomputers und Elemente der Quantenkomplexität sehr gut darstellen. - Ein weiterer essentieller Punkt für die Entwicklung der Quantencomputer war die Entdeckung von Verfahren zur Fehlerkorrektur, die wir in diesem Teil der Vorlesung betrachten werden. - Die Eigenschaften der Quantenmechanik erlauben die Implementierung abhörsicherer, verschlüsselter Kommunikation. Diese wurde bereits über viele 100 km erfolgreich getestet (Nobelpreis für Physik 2022) und ist wesentliche Voraussetzung für ein Quanteninternet. - Abschließend sollen verschiedene Ansätze zum Bau von Quantencomputern und zur Realisierung von Gates vorgestellt werden.
- Theory of Ultracold Atoms (MVSpec)
Vorlesung Enss T
Homepage heiCO-Info Link to Registration
Anmeldung abgelaufen
more information1300172212
Anmeldung abgelaufen
Link to RegistrationCourse Information
The field of ultracold atomic gases has undergone a remarkable development over the past few years and is now a key area of many-body physics at the interface to condensed matter, atomic and nuclear physics. This course introduces the theoretical concepts and methods of ultracold quantum gases and covers many timely examples, as seen in current experiments also in Heidelberg. Many of the topics that we discuss for cold atoms (Bose-Einstein condensation, superfluidity, fermion pairing, quantum phase transitions, thermalization) are at the same time more general paradigms of many-body physics and are used also in other areas of physics. The exercises also show how to compute experimental observables.
Contents
1. Strongly interacting fermions: the BCS-BEC crossover
1.1. Scattering theory and Feshbach resonances
1.2. BCS theory of superconductivity
1.3. Bose-Einstein condensation and superfluidity
1.4. Unitary Fermi gas and scale invariance
1.5. Contact density and Tan relations
1.6. Fermi polarons and spectroscopy
2. Bosons in optical lattices: the Mott Insulator—Superfluid transition
2.1. Optical lattices and Bose-Hubbard model
2.2. Mott Insulator—Superfluid transition
2.3. Quantum Critical Point, excitations and Higgs mode
2.4. Fermi-Hubbard model
2.5. Quantum Simulation
3. Real-time dynamics and transport
3.1. Nonequilibrium dynamics and thermalization
3.2. Collective modes and transportDates and Location
Lecture Monday and Wednesday 11.15-13.00h, Phil12 kHS.
Tutorial Tuesday 14.15-16.00h, Phil12 kHS.
Written exam Wed 16 July 2025, 11-13h, Phil12 kHS.Prerequisites
- Quantum Mechanics (PTP4)
- Theoretical Statistical Physics (MKTP1)
- recommended: Advanced Quantum Theory (MVAMO2)
Literature
As an introduction, the lecture notes by Ketterle and Zwierlein are particularly recommended.
- Ketterle and Zwierlein, Making, probing and understanding ultracold Fermi gases, Varenna lecture notes (2008).
- Pitaevskii and Stringari, Bose-Einstein Condensation, Clarendon Press 2003.
- Pethick and Smith, Bose-Einstein Condensation in Dilute Gases, Cambridge University Press 2008.
- Zwerger (ed.), The BCS-BEC Crossover and the Unitary Fermi Gas, Springer Lecture Notes in Physics 826 (2012) (PDF available from the university library).
- Diehl, Many-Body Physics with Cold Atoms, Innsbruck lecture notes (2013).
- Bloch, Dalibard, and Zwerger, Many-body physics with ultracold gases, Rev. Mod. Phys. 80, 885 (2008).
- Fetter and Walecka, Quantum Theory of Many-Particle Systems, Dover 2003.
Content
1. Strongly interacting fermions: the BCS-BEC crossover 1.1. Scattering theory and Feshbach resonances 1.2. BCS theory of superconductivity 1.3. Bose-Einstein condensation and superfluidity 1.4. Unitary Fermi gas and scale invariance 1.5. Contact density and Tan relations 1.6. Fermi polarons and spectroscopy 2. Bosons in optical lattices: the Mott Insulator—Superfluid transition 2.1. Optical lattices and Bose-Hubbard model 2.2. Mott Insulator—Superfluid transition 2.3. Quantum Critical Point, excitations and Higgs mode 2.4. Fermi-Hubbard model 2.5. Quantum Simulation 3. Real-time dynamics and transport 3.1. Nonequilibrium dynamics and thermalization 3.2. Collective modes and transport
- SU(2) Yang-Mills thermodynamics, blackbody anomaly (theory and experimental status), and ultralight axions in cosmology (MVSpec)
Vorlesung Hofmann R
heiCO-Info Link to Registration
LV-Anmeldung möglich
more information1300172213
LV-Anmeldung möglich
Link to RegistrationContent
We derive the thermal ground state for the deconfining phase of SU(2) Yang-Mills Thermodynamics, discuss its thermal quasiparticle excitations, and compute the polarization tensor of the effective massless gauge mode. Next, we use these results under the postulate that thermal photon gases of sufficiently large spatial volumes are described by an SU(2) rather than a U(1) gauge principle. For the CMB this gives rise to a modified temperture-redshift relation with an interesting link to 3D Ising criticality. Moreover, we argue that the CMB large-angle anomalies may be traced to SU(2) screening effects and that an axial anomaly with chiral symmetry breaking at the Planck scale yields an ultralight axion particle whose temperature dependent mass essentially is determined by the SU(2) thermal ground state. The super-horizon sized condensate of these particles is a candidate for dark energy. To test the above postulate recents results of a terrestial blackbody-cavity experiment are discussed and interpreted in the context of SU(2) Yang-Mills thermodynamics. Objectives: instanton, Matsubara sum, caloron, thermal ground state, thermal quasiparticle dispersion law, critical exponent, cosmological model, Veneziano-Witten, emissivity, Dicke switch, difference of dBm of noise power
- Neutrino Physics: Theory and Experiments (MVSpec)
Vorlesung Buck C, Rodejohann W
heiCO-Info Link to Registration
Anmeldung abgelaufen
more information1300172214
Anmeldung abgelaufen
Link to RegistrationContent
History of the neutrino Flavor physics Neutrino Oscillations in Vacuum and Matter Neutrino Masses in the SM and beyond Dirac and Majorana neutrinos Neutrinoless double beta decay Neutrinos from the Sun and the atmosphere Reactor and accelerator neutrinos Neutrinos in cosmology High energy astrophysical neutrinos Coherent elastic neutrino-nucleus scattering
- Advanced Dark Matter (MVSpec)
Vorlesung Arcadi G
heiCO-Info Link to Registration
LV-Anmeldung möglich
more information1300172217
LV-Anmeldung möglich
Link to RegistrationContent
The main purpose of the course is to cover advanced topics on Particle Dark Matter, mostly connected with production mechanism in the Early Universe. You can find below a tentative program of the course. I am nevertheless open to feedback and proposals from the students. Program Thermal freeze-out: a critical reappraisal. Dark Matter Production in non-Standard Cosmological histories. Dark Matter Production via freeze-in;
- Theoretical Quantum Optics (MVSpec)
Vorlesung Evers J
Homepage heiCO-Info Link to Registration
Anmeldung abgelaufen
more information1300172218
Anmeldung abgelaufen
Link to RegistrationCourse Information
There is a moodle course with more information and lecture materials: https://moodle.uni-heidelberg.de/course/view.php?id=26925
The enrollment password is quantum2025
- Flows, renormalization, and convergent expansions, in quantum field theory and statistical mechanics (MVSpec)
Vorlesung Salmhofer M
Homepage heiCO-Info Link to Registration
Anmeldung abgelaufen
more information - Dynamical Systems (MVSpec)
Vorlesung Ziebert F
Homepage heiCO-Info Link to Registration
Anmeldung abgelaufen
more information1300172220
Anmeldung abgelaufen
Link to RegistrationCourse Information
Lecture time & place: Wed 2:00pm at großer Hörsaal, Philosophenweg 12
Motivation:
Nonlinear dynamics is an interdisciplinary part of mathematical physics, with applications in such diverse fields as mechanics, optics, chemistry, biology, ecology, to name but a few. Equations with nonlinearities show a much more diverse behavior than their linear counterparts, for instance self-sustained oscillations, nonlinear competition (as linear superposition does not hold anymore), chaotic dynamics and pattern formation.
Contents:
The lecture deals with nonlinear dynamics on the level of ordinary differential equations (ODEs), introducing concepts like phase space analysis, attractors, (in)stability of solutions and bifurcations, multiple scale analysis and nonlinear oscillations.
Prerequisites:
The course is designed for physics students in advanced bachelor and beginning master semesters (students from other disciplines are also welcome). It will be given in English. A basic understanding of physics and differential equations is sufficient to attend. Exercises will be discussed in the tutorials (please register).
Literature:
- SH Strogatz, Nonlinear dynamics and chaos, Westview 1994
Content
Lecture time & place: Wed 2:00pm at großer Hörsaal, Philosophenweg 12 Motivation: Nonlinear dynamics is an interdisciplinary part of mathematical physics, with applications in such diverse fields as mechanics, optics, chemistry, biology, ecology, to name but a few. Equations with nonlinearities show a much more diverse behavior than their linear counterparts, for instance self-sustained oscillations, nonlinear competition (as linear superposition does not hold anymore), chaotic dynamics and pattern formation. Contents: The lecture deals with nonlinear dynamics on the level of ordinary differential equations (ODEs), introducing concepts like phase space analysis, attractors, (in)stability of solutions and bifurcations, multiple scale analysis and nonlinear oscillations.
- Effective Field Theories: From Axions to SMEFT (MVSpec)
Vorlesung Goertz F
Homepage heiCO-Info Link to Registration
Anmeldung abgelaufen
more information1300172228
Anmeldung abgelaufen
Link to RegistrationContent
Effective Field Theories (EFTs) furnish an elegant means to take the first step towards the next quantum field theory of nature, because they allow to include physics beyond the standard model (SM) in a model-independent way via higher dimensional operators. Beyond that, they are useful to tackle problems with separated scales, that arise in many areas of fundamental physics. EFTs allow to describe the important physics conveniently in terms of degrees of freedom that are most relevant at a given length-scale. In particular, they allow to consistently re-sum large logarithms of ratios of scales, that would otherwise spoil the perturbative expansion, and provide a modern notion of renormalization. This lecture provides a comprehensive introduction to the concept of EFTs and modern applications, including the bottom-up approach to physics beyond the SM as a guide to the next theory of nature. The topics covered include: - General concept of EFTs and resummation - EFT of weak interactions: Fermi-Theory and Flavor Physics - EFT of QCD: Chiral Perturbation Theory - EFTs and Electroweak Symmetry Breaking: the non-linear Sigma Model - EFT of Axions / Axion-like particles - EFTs and neutrino physics - Bottom-up approach to a more fundamental theory of nature: SM-EFT and its variants - EFT for Dark Matter
- Introduction to the functional renormalisation group and selected applications (MVSpec)
Vorlesung Pawlowski J
Homepage heiCO-Info Link to Registration
Anmeldung abgelaufen
more information - Computational Statistics and Data Analysis (MVComp2, MVSpec)
Vorlesung Amendola L
Homepage heiCO-Info Link to Registration
Anmeldung abgelaufen
more information1300182202
Anmeldung abgelaufen
Link to RegistrationContent
- Axioms of Probability Theory; random variables, important distributions - Bayesian inference - Linear regression, non-linear regression - Regularized regression to fit high-dimensional data - Hypothesis testing: fundamental concepts - Parametric and non-parametric tests - Classification - Cluster analysis - Model selection
Goal
After completion of this module, the students understand fundamental concepts of stochastics, and are able to relate them to concrete problems. They understand and are alert of possible pitfalls such as overfitting, multiple comparisons, or susceptibility to outliers. They know and are able to apply basic countermeasures and they have access to more advanced literature on the subject. Students are familiar with relevant high-level languages and statistical programming libraries, and know how to apply them to real-world data provided in the exercises.
- Time Series Models: From Statistics to AI (MVSpec)
Vorlesung Durstewitz D
heiCO-Info Link to Registration
Anmeldung abgelaufen
more information1300182209
Anmeldung abgelaufen
Link to RegistrationContent
Time series are ubiquitous in nature, medicine, economics, society, and engineering, and provide a very rich source of information about the underlying system. General goals of time series analysis reach from forecasting future progression to a thorough scientific understanding of the underlying dynamical system that generated the observed series. This course will deal with models for time series analysis (and less so with more ‘traditional’ methods like Fourier analysis), that is with insights and predictions that could be gained by inferring a mathematical model of the dynamical process from the observed data. The course will start with simple statistical models, like auto-regressive moving average models, will cover state space models, deep recurrent neural networks (RNNs), and Neural ODEs, and will discuss recent Transformer-based architectures and modern RNNs like Mamba. We will also review foundation models for time series, and special topics like deep learning based prediction of tipping points and post-tipping dynamics. In the practical part of the course, you will analyze various time series data yourself, using provided or simple self-written code.
- Computer Vision (MVSpec)
Vorlesung Rother C
heiCO-Info Link to Registration
Anmeldung abgelaufen
more information1300182219
Anmeldung abgelaufen
Link to RegistrationContent
Please find all information here: https://hci.iwr.uni-heidelberg.de/content/computer-vision *** Formalities: Teaching assistants (main point of contact): Friedrich Feiden: johann-friedrich.feiden@iwr.uni-heidelberg.de Registration: Moodle: https://moodle.uni-heidelberg.de/course/view.php?id=25516 Prerequisite: no prerequisites, but it is recommended to have Machine Learning Background, e.g. Fundamentals of Machine Learning or equivalent Exam: Either oral exam or mini-project (as in last years). Leistungspunkte: 6 LP Usability: Physics, MSc., Angewandte Informatik, MSc. Scientific Computing
Goal
Lernziele (erwartete Lernergebnisse und erworbene Kompetenzen): - Brief Introduction to necessary Machine Learning (incl. U-Net, ResNet, Vision Transformers) - Basic Image Processing (incl. linear/non-linear Filtering) - Sparse feature Detection and Description (incl. SIFT and LIFT) - Projective Geometry, Epipolar Geometry - Sparse 3D Reconstruction , SLAM and Camera Localization - Neural Randiance Fields (NERF) - Robust Matching (incl. Differentiable RANSAC) - Object Tracking (incl. Particle Filter, Kalman Filter, ) - Object Recognition - Image Generation (incl. GAN, Diffusion, VAE, Flows) - Training Data Generation