Summer Term 2025
Keywords All Master/Core Modules Master/Specialization Master/Colloquia Bachelor/Wahlbereich Bachelor/ÜK Astronomy and Astrophysics Atomic, Molecular and Optical Physics Biophysics, Medical Physics Condensed Matter Physics Environmental Physics Particle Physics Theoretical Physics Scientific Computing
- Astronomical Techniques (MKEP5)
Vorlesung Pasquali A
heiCO-Info more information1300112105
Zu dieser LV existiert kein AnmeldeverfahrenContent
* Optical telescopes: optics and characteristic parameters, telescope types, diffraction, resolution, aberrations and corrections, applications * Optical detectors: detector types, semiconductors and CCDs, quantum efficiency, readout, noise sources, multi-chip cameras, applications * Imaging: techniques, photometry, data reduction and characterisation, signal-to-noise * Atmospheric effects and corrections: extinction, turbulence, seeing, active and adaptive optics, laser guide stars, applications * Spectroscopy: types of spectrographs and spectrometers, dispersive elements, integral field units, data reduction and characterisation, applications * Infrared astronomy: detectors and techniques, sources, applications * Radio astronomy: detectors and instrumentation, synthesis techniques, types of radiation and sources, applications * Astronomical interferometry: wavelength regimes, instrumentation, applications * X-ray and gamma-ray astronomy: detectors and instrumentation, types of radiation and sources, applications * Astroparticle physics: neutrino and Cherenkov detectors, sources and acceleration mechanisms of neutrinos and cosmic rays, applications * Gravitational-wave astronomy: detection, sources, applications. * In-situ exploration and remote sensing.
Goal
After completing this course, the students have firm insight into the concepts, technologies, and the underlying physical principles and limitations of modern observational techniques along with scientific applications. They have knowledge of basic detector designs for different types of radiation and particles. They understand the environmental influence on astronomical observations. They are able to select and judge the adequate observational technique for studying an astronomical object of interest.
- Introduction to Astronomy and Astrophysics (MVAstro0, MVSpec)
Vorlesung Mapelli M, Pössel M
heiCO-Info more information1300112200
Zu dieser LV existiert kein AnmeldeverfahrenContent
- Astronomical basics: astronomical observations, methods and instruments; orientation at the celestial sphere; fundamental terms of electromagnetic radiation; distance determination, Earth-Moon system; terrestrial and gas planets, small bodies; extra-solar-planets - Inner structure of stars: state variables, stellar atmospheres and line spectra; Hertzsprung-Russell diagram; fundamental equations, energy transfer and opacity; nuclear reaction rates and tunnelling; nuclear fusion reactions - Stellar evolution: Main sequence, giants and late phases; white dwarfs, Chandrasekhar limit; supernovae, neutron stars, Pulsars and supernova remnants; binaries and multiple systems; star clusters - Interstellar medium: cold, warm, hot gas phases dust, cosmic rays, magnetic fields; ionization and recombination, Stroemgren spheres; heating and cooling; star formation, matter cycle, chemical enrichment - Galaxies: Structure and properties of normal galaxies and the Milky Way; scaling relations; integrated spectra, luminosity function; cosmological evolution of star formation; Black Holes in galaxies, active galaxies and their properties, unified models - Galaxy clusters: optical properties and cluster gas; hydrostatic model; scaling relations; number densities and evolution - Gravitational lensing: Concepts, mass distribution in galaxies and galaxy clusters; cosmological lensing effect - Large scale distribution of galaxies and gas: Structure in the spatial galaxy distribution; redshift effects; biasing; Lyman-α-forest; Gunn-Peterson effect and cosmic reionization - Cosmology: Friedmann-Lemaître models, cosmological standard model; origin and evolution of structures; halos of Dark Matter; Formation of galaxies
Goal
The students have gained basic knowledge and understanding of astronomical objects, measuring units and methods, and the relevant astrophysical processes. They have a firm grasp of the fundamental interrelations of objects and processes on different scales. They are able to reproduce the basic features of the modern world view including the physical reasoning, and connect astronomical and astrophysical phenomena to previously acquired knowledge in physics.
- Stellar Astrophysics (MVAstro2, MVSpec)
Vorlesung Jordan S
heiCO-Info more information1300112202
Zu dieser LV existiert kein AnmeldeverfahrenContent
Lecture: Thursdays, 14:15-15:45 Tutorial Group 1: Thursday, 15:45-17:15 Tutorial Group 2: Thursday, 15:45-17:15 (possible second group) Location: Philosophenweg 12, Kleiner Hörsaal Preliminary Schedule: 18.4.24: Introduction (Stefan Jordan) 25.4.24: Stellar structure 1 (Ralf Klessen) 02.5.24: Stellar structure 2 (Ralf Klessen) 09.5.24: Himmelfahrt 16.5.24: Stellar structure 3 (Ralf Klessen) 23.5.24: Energy transport (Stefan Jordan) 30.5.24: Fronleichnam 06.6.24: Energy production (Stefan Jordan) 13.6.24: Main sequence (Stefan Jordan) 20.6.24: Stellar evolution to the AGB (Stefan Jordan) 27.6.24: Late stages of stellar evolution (Stefan Jordan) 04.7.24: Stellar atmospheres, stellar spectra (Stefan Jordan) 11.7.24: Stellar pulsations, rotation, magnetic fields (Ralf Klessen) 18.7.23: Stellar spectra (Ralf Klessen) 25.7.23: Written exam (Ralf Klessen, Stefan Jordan) Seminar: 2-3 full days between July 29 and Aug 2, 2023
- Galactic and Extragalactic Astronomy (MVAstro3, MVSpec)
Vorlesung Grebel E
heiCO-Info more information1300112203
Zu dieser LV existiert kein AnmeldeverfahrenContent
Module Part 1: Lecture “Galactic and Extragalactic Astronomy” (4 CP) - Galaxy types and classification, correlations with physical properties, stellar populations, population synthesis, chemical evolution concepts and models (2); - Milky Way (3): halo, bulge / pseudo bulge, central black hole, thin and thick disk, spiral structure, star clusters, star formation history and chemical enrichment, formation scenarios (e.g., Eggen-Lynden-Bell-Sandage), multi- phase interstellar medium, dust, Galactic fountain, satellites, substructure problem, Local Group; - Spiral and elliptical galaxies (4): Surface photometry, profiles, origin of spiral structure, mass measurement methods, rotation / velocity dispersion, Tully-Fisher / Faber-Jackson relation, fundamental plane, super massive black holes, active galaxies; - Groups and clusters (3): morphology-density relation etc., mass measurements, gravitational lensing, luminosity functions, interactions; intergalactic gas; dark matter; - Growth of structure (3): Origin of matter and elements, large-scale- structure formation, large-scale matter distribution, redshift surveys, weak lensing, galaxy formation and evolution, red / blue sequence, downsizing, scaling relations, Butcher-Oemler effect, cosmic star formation history, Lyman alpha forest, high-redshift universe, reionization, problems in galaxy formation. Module Part 2: Seminar (2 CP) - Presentations and discussions on selected topics in Galactic and extragalactic astronomy
Goal
When successfully completing this course, the students are able to report on the properties of the wide range of galaxy types, understand their origin and evolution, and can elucidate the physical factors governing their evolution. They understand the main physical processes that shape the appearance of galaxies and galaxy clusters. They know about the connection between cosmological structure formation and the populations of visible objects. They have gained experience in applying dimensional and scaling arguments to estimate the relative importance of different physical processes.
- Cosmology Compact (MVAstro4)
Vorlesung Pillepich A
heiCO-Info more information1300112204
Zu dieser LV existiert kein AnmeldeverfahrenContent
- Friedmann-Lemaître-cosmologies: cosmological redshift, parameter set, effects of curvature and of the cosmological constant, Hubble expansion and Cepheid-measurements - Age of the Universe: age from the cosmological model, radiometric dating and nuclear cosmochronology, age of the oldest cosmic objects - Distance-redshift relation of standard candles: distance-redshift relations, calibration of supernovae, acceleration and dimming, determination of densities and equations of state, evidence for dark energy - Abundance of chemical elements: thermal evolution, big bang nucleosynthesis, other modes of nucleosynthesis (stellar, spallation, explosive), reaction chains, element abundances - Cosmic microwave background: formation of atoms, simplified description of temperature anisotropies, measurement results and conclusions from them (in particular spatial flatness), secondary anisotropies - Cosmic structures: linear growth, need for (nonbaryonic) dark matter, large-scale distribution of galaxies, cosmic web - Formation of galaxies: gravitational collapse, flat rotation curves and virial equilibria, need for dark matter, abundance of haloes - Gravitational lensing: gravitational light deflection, lens equation, weak and strong lensing, measurements of lensing effects and their inversion
Goal
In this course, students gain fundamental understanding of the cosmological standard model and the cosmological evolution, including the impact of the basic observations and the connection to the physical framework. They gain a solid overview of the empirical basis of modern cosmology.
- Small Stellar Systems (MVSpec)
Vorlesung Koch-Hansen A
heiCO-Info more information1300112304
Zu dieser LV existiert kein Anmeldeverfahren - Star Clusters (MVSpec)
Vorlesung Parmentier G
heiCO-Info more information1300112305
Zu dieser LV existiert kein AnmeldeverfahrenContent
Systems of star clusters (APOD40616): -->> cluster age and mass distributions, formation/evolution/observational-biases interplay Cluster age and mass estimates from their integrated photometry --> introduction to stellar population synthesis models Cluster dynamical evolution - Gas-free evolution (SDSS web site): -->> clusters lose stars and eventually dissolve From gas-embedded clusters to gas-free ones (APOD120715, APOD120903 ): -->> expulsion of residual star-forming gas and consequences Formation of star clusters (MNRAS web site): -->> Modelling of star cluster formation, concept of star formation efficiency per freefall time, gas density-probability distribution functions Colour-magnitude diagrams (HST web site): -->> cluster age estimates for the resolved stellar-population case, kinematic-based "cleansing" of cluster CMDs
- Hochenergieastrophysik (MVSpec)
Vorlesung Zacharias M
heiCO-Info more information1300112306
Zu dieser LV existiert kein Anmeldeverfahren - Schwarze Löcher und die Fragen der modernen Astrophysik - Teil 9 (MVSpec)
Vorlesung Britzen S
heiCO-Info more information1300112307
Zu dieser LV existiert kein AnmeldeverfahrenContent
Vorgestellt werden aktuelle Fragestellungen der Forschung und zur Zeit laufende oder in Planung befindliche Forschungsprojekte. Themen sind: Schwarze Löcher (stellar, intermediär, supermassiv), Gravitationslinsen, Gravitationswellen, Dunkle Materie, etc. Termine und Themen sind auf folgender Webseite zu finden: https://blog.mpifr-bonn.mpg.de/silkebritzen/vorlesung-universitat-heidelberg/ Die Veranstaltung findet online statt und beginnt am 19.04. um 14 Uhr. Der zoom-link lautet: https://eu02web.zoom-x.de/j/9084381833?pwd=YU1UdWJRa1BzajF4Tyt4YVlSdU1BUT09 Meeting ID: 908 438 1833
Goal
Mein Ziel ist es, Interesse an aktuellen Fragen der Forschung zu wecken und über spannende Forschungsprojekte zu informieren. Des Weiteren möchte ich den Studenten Informationen über den Alltag in der Forschung liefern und Möglichkeiten für Master- und Doktorarbeiten aufzeigen.
- Physics and chemistry of the ISM (MVSpec)
Vorlesung Glover S
heiCO-Info more information1300112308
Zu dieser LV existiert kein Anmeldeverfahren - Stars Squared: Evolution of Binary Stars (MVSpec)
Vorlesung Schneider F
heiCO-Info more information1300112310
Zu dieser LV existiert kein Anmeldeverfahren - Sternwinde und Massenverlust (MVSpec)
Vorlesung Sander A
heiCO-Info more information1300112341
Zu dieser LV existiert kein AnmeldeverfahrenContent
Why do stars lose mass and what are the mechanisms behind it? This lecture will provide on overview of the different types of winds we find in stars and their physical origin. After exploring the different wind regimes (solar wind, hot stars, cool stars), the lecture will also cover the consequences of strong mass outflow on the evolution and environment of stars.
- Principles of Radio Astronomy (MVSpec)
Vorlesung Walter F
heiCO-Info Link to Registration
Anmeldung ab 01.03.2025 möglich
more information1300112354
Anmeldung ab 01.03.2025 möglich
Link to RegistrationContent
This lecture will discuss the principles of radio and millimeter astronomy. This field is progressing rapidly, thanks to new facilities that reach high sensitivities and resolutions, such as ALMA and MeerKAT. We will discuss the physical processes that give rise to radio and millimeter wave emission, from star forming regions in the Milky Way to galaxies in the very young universe. A focus will also be on the technology by which to capture radio and millimeter emission, including the concepts of radio and millimeter interferometry. Note: block course from April 1 - 11, 2025, 9:15-12:00.
- Experimental Methods in Atomic & Molecular Physics (MVAMO3, MVSpec)
Vorlesung Oberthaler M
heiCO-Info more information1300122203
Zu dieser LV existiert kein AnmeldeverfahrenContent
We will treat the following topics: • Spectroscopy and metrology • Atom-light interactions • Cavity Quantum Electrodynamics • Matter waves • Cooling and trapping • Mass measurements • Quantum gases • (Ultracold) Collisions • Single atoms and molecules • Quantum information • Femto- and attosecond processes
Goal
After completing this course the students will be able to ż describe modern aspects of experimental research in atomic, molecular and optical physics, ż analyse standard experimental approaches of atomic, molecular and optical physics, ż design simple experimental set-ups in atomic, molecular and optical physics, ż apply the methods to simple practical examples.
- Attosecond Physics (MVSpec)
Vorlesung Moshammer R, Ott C, Pfeifer T
heiCO-Info more information1300122219
Zu dieser LV existiert kein Anmeldeverfahren - Quantum electrodynamics: theory and key experiments (MVSpec)
Vorlesung Harman Z, Quint W
heiCO-Info more information1300122221
Zu dieser LV existiert kein Anmeldeverfahren - Nano- and Quantum Photonics (MVSpec)
Vorlesung Pernice W
heiCO-Info more information1300122225
Zu dieser LV ist keine Anmeldung möglich - Quantum Simulation (MVSpec)
Vorlesung Weidemüller M
heiCO-Info more information1300122226
Zu dieser LV existiert kein Anmeldeverfahren - Medical Physics 2 (MVMP2, MVSpec)
Vorlesung Kuder T, Schröder L
heiCO-Info more information1300132222
Zu dieser LV existiert kein AnmeldeverfahrenContent
Subject: Magnetic Resonance Imaging (MRI) and Nuclear Medicine See website: https://medphysrad-teaching.dkfz.de/medphys2.html
- The physics of charged particle therapy (MVSpec)
Vorlesung Seco J
heiCO-Info more information1300132235
Zu dieser LV existiert kein Anmeldeverfahren - Biophotonics I (MVSpec)
Vorlesung Petrich W
heiCO-Info more information1300132238
Zu dieser LV ist keine Anmeldung möglich - Advanced Condensed Matter Physics (MKEP2)
Vorlesung Klingeler R
heiCO-Info more information1300142101
Zu dieser LV existiert kein AnmeldeverfahrenContent
* Structure of solids in real and reciprocal space * Lattice dynamics and phonon band structure * Thermal properties of insulators * Electronic properties of metals and semiconductors: band structure and transport * Optical properties from microwaves to UV * Magnetism * Superconductivity (each chapter includes experimental basics)
Goal
After completing the course the students - have gained a thorough understanding of the fundamentals of condensed matter physics and can apply concepts of many-particle quantum mechanics to pose and solve relevant problems. - will be able to describe the priciples of formation of solids and can propose appropriate experimental methods to study structural properties. They are familiar with and can apply the concept of reciprocal space. - they can apply fundamental electronic models to explain and predict properties of crystalline materials as metals, semiconductors, and insulators. - they can ascribe optical, magnetic properties of matter to electronic and structure degrees of freedom. - they can describe and theoretically explain fundamental properties of superconductivity. - they are able to choose appropriate experimental methods for probing structural, optical, magnetic, and electronic properties of condensed matter and can analyse the experimental results.
- Environmental Physics (MKEP4)
Vorlesung Aeschbach W, Frank N
heiCO-Info more information1300152104
Zu dieser LV existiert kein AnmeldeverfahrenContent
This lecture introduces all physical concepts of the fundamentals of Environmental Physics and it is accompanied by exercises and tutorials every week. The content spans: • The fundamentals about the Earth climate system and its compartments, flow, transport, and the global radiation balance. • Geophysical fluid dynamics, i.e. the fundamental laws of free and forced fluid movement and vorticity, and a practical guide to the first principles of turbulence. • Global circulation of atmosphere and ocean, boundary layer physics, and slow flow through porous media and of ice. • Gas and heat exchange between ocean and atmosphere. Global fluxes and cycles (energy, water, carbon). • Isotope fractionation and isotope methods to study the Earth environments, focus on water and carbon isotopes. • Introduction to models of environmental systems, basic principles of numerical climate modelling. • Basic principles of radiative transfer. Climate system radiative forcing and sensitivity. Global climate change past, present and future.
Goal
Students achieve a fundamental understanding of the key physical processes and interactions in the Earth surface system and its compartments, as well as of the human impact on these systems and the related societal implications. They are able to solve basic problems of environmental physics and interpret the results in the context of fundamental questions regarding the physics of the earth surface environments and the methodologies to observe and study those.
- Physics of Aquatic Systems (MVEnv3, MVSpec)
Vorlesung Aeschbach W
heiCO-Info Link to Registration
Anmeldung ab 01.04.2025 möglich
more information1300152203
Anmeldung ab 01.04.2025 möglich
Link to RegistrationContent
• Fundamentals of physical oceanography, limnology, and hydrogeology • Heat and mass transfer between water and atmosphere • Flow and transport in surface and ground water • Tracer methods in the hydrological cycle
Goal
Students achieve an advanced understanding of the physical processes in aquatic systems, the methods to study them, and their role in the climate system. They are able to solve advanced problems and interpret the results in the context of current questions in research and application. They can assess and use current scientific literature to further develop their knowledge base, enabling them to conduct independent master research projects in physics of aquatic systems.
- Climate Dynamics (MVSpec)
Vorlesung Fiedler S
heiCO-Info Link to Registration
Anmeldung ab 01.04.2025 möglich
more information - Inverse methods in the atmospheric sciences (MVSpec)
Vorlesung Butz A, Landgraf J
heiCO-Info more information1300152212
Zu dieser LV existiert kein AnmeldeverfahrenContent
1 week block lecture, language: English, Sep. 22-26, 2025, 9-18h, INF229, R108 (first floor), lecturer: Dr. Jochen Landgraf.
- The Physics of Particle Detectors (MVSpec)
Vorlesung Schultz-Coulon H, Stamen R, Toschi F
Homepage heiCO-Info more information1300162201
Zu dieser LV existiert kein AnmeldeverfahrenContent
Focus of the lecture is the physics and the layout of detector components used in modern particle physics experiments. Topics are - Interaction of particles with matter - Scintillators and ToF detectors - Gas detectors - Silicon detectors - Calorimeters - Detector for particle identification - Large detector systems
Goal
After completion of the course the student has gained basic knowledge about interactions of particles with matter, the physics of particle detectors, their working principles, and their applications in experiments. - Introductory lecture into the physics and the technical realization of particle detectors (2 hours/week) - Journal Club where on the basis of recent publications details of a particular research area are discussed (1 hour/week)
- General Relativity (MKTP3)
Vorlesung Bartelmann M
heiCO-Info more information1300172103
Zu dieser LV existiert kein AnmeldeverfahrenContent
* Manifolds * Geodetics, curvature, Einstein-Hilbert action * Einstein equations * Cosmology * Differential forms in General Relativity * The Schwarzschild solution * Schwarzschild black holes * More on black holes (Penrose diagrams, charged and rotating black holes) * Unruh effect and hawking radiation
Goal
After completing the course the students * have a thorough knowledge and understanding of Einstein's theory of General Relativity including the necessary tools from differential geometry and applications such as black holes, gravitational radiation and cosmology, * have acquired the necessary mathematical tools from differential geometry, are trained in their application to physical situations with strong gravity and are familiar with their interpretation, * have advanced competence in the fields of theoretical physics covered by this course, i.e. the ability to analyze physical phenomena using the acquired concepts and techniques, to formulate models and find solutions to specific problems, and to interpret the solutions physically and communicate them efficiently, * are able to broaden their knowledge and competence in this field of theoretical physics on their own by a systematical study of the literature.
- Advanced Quantum Field Theory (MVTheo1, QFTII, MVSpec)
Vorlesung Berges J
heiCO-Info more information1300172201
Zu dieser LV existiert kein AnmeldeverfahrenContent
• Effective action • Symmetries and conservation laws • Gauge theories: QED, QCD, QFT, quantized • Feynman rules in Lorentz covariant gauges • Renormalization in Gauge theories • One-loop QED • Spontaneous symmetry breaking and Higgs mechanism • Renormalization groups, Wilson renormalization, lattice gauge theory
Goal
After completing the course the students ż have a thorough knowledge and understanding of the regularisation and renormalisation programme in ż4-theory, of renormalisation in QED and non-abelian gauge theories (1-loop order), of the effective action and the modern renormalisation group approach, ż have acquired the necessary mathematical knowledge and competence for an in-depth understanding of this research field, ż have advanced competence in the fields of theoretical physics covered by this course, i.e. the ability to analyze physical phenomena using the acquired concepts and techniques, to formulate models and find solutions to specific problems, and to interpret the solutions physically and communicate them efficiently, ż are able to broaden their knowledge and competence in this field of theoretical physics on their own by a systematical study of the literature.
- Condensed Matter Theory 2 (MVTheoCM2, MVSpec)
Vorlesung Haverkort M, Schmidt R
heiCO-Info more information1300172204
Zu dieser LV existiert kein AnmeldeverfahrenContent
- Introductory materials: bosons, fermions and second quantisation - Green's functions approach - Exactly solvable problems: potential scattering, Luttinger liquids etc. - Theory of quantum fluids, BCS theory of superconductivity - Quantum impurity problems: Kondo effect, Anderson model, renormalisation group approach Depending on the lecturer more weight will be given to solid state theories or to soft matter.
Goal
After completing the course the students - have a thorough knowledge and understanding, of the nowadays 'traditional' diagrammatic technique and the problems solved by this technique, including Landau's theory of quantum liquids and BCS theory of superconductivity, - of advanced non-perturbative approaches such as renormalization group transformations, bosonisation and Bethe Ansatz and there application to examples of quantum impurity problems such as potential scattering in Luttinger liquids, inter-edge tunneling in fractional quantum Hall probes and Kondo effect in metals and mesoscopic quantum dots, - have acquired the necessary mathematical knowledge and competence for an in-depth understanding of this research field, - have advanced competence in the fields of theoretical physics covered by this course, i.e. the ability to analyze physical phenomena using the acquired concepts and techniques, to formulate models and find solutions to specific problems, and to interpret the solutions physically and communicate them efficiently, - are able to broaden their knowledge and competence in this field of theoretical physics on their own by a systematical study of the literature.
- Advanced Quantum Theory (MVAMO2, MVSpec)
Vorlesung Haverkort M
heiCO-Info more information1300172205
Zu dieser LV existiert kein AnmeldeverfahrenContent
Contents: 1) Relativistic quantum theory (Dirac equation, relativistic light-matter interaction) 2) Quantum theory of light and matter (quantized fields, interaction with atoms) 3) Open quantum systems (matter and radiation, decoherence, Lamb-shift, natural line width) 4) Dynamics, time evolution and response theory 5) Many electron atoms and lattice models
- Advanced Cosmology (MVSpec)
Vorlesung Amendola L, Heneka C
heiCO-Info more information1300172206
Zu dieser LV existiert kein AnmeldeverfahrenContent
The course will cover advanced topics in Cosmology. More information on http://www.thphys.uni-heidelberg.de/%7Eamendola/advcosm-ss2025.html
- Theoretical Biophysics (MVBP2, MVSpec)
Vorlesung Bereau T
heiCO-Info more information1300172207
Zu dieser LV existiert kein AnmeldeverfahrenContent
This course is MVBP2 in the modul handbook and is addressed to physics master students with an interest in biophysics. Motivated bachelor or PhD-students are also most welcome, as are students from neighboring disciplines. There are two lectures each week, each for 90 minutes, plus weekly homework and exercises. Together you can earn 6 credit points from this course. This lecture can be used for the oral master examination if combined with e.g. the lecture on statistical physics or the lecture on simulation methods, or with two short specialized lectures (like non-linear or stochastic dynamics). The details for the tutorial will be discussed in the first lecture, which is on Thu April 18.
- Quantum field theory of many-body systems (MVSpec)
Vorlesung Gasenzer T
heiCO-Info more information1300172208
Zu dieser LV existiert kein AnmeldeverfahrenContent
Basics and applications of nonequilibrium quantum field theory to particle physics/early universe cosmology and experiments with ultracold quantum gases: path integral formulation, resummation techniques, renormalization, classical aspects of nonequilibrium quantum fields, nonequilibrium instabilities, far-from-equilibrium scaling phenomena, thermalization.
- Introduction to Mathematica with applications to physics and statistics (MVSpec)
Vorlesung Amendola L
heiCO-Info more information1300172210
Zu dieser LV existiert kein AnmeldeverfahrenContent
The course is ONLINE only. It will provide an introduction to Mathematica with applications to physics and statistics. You need to have Mathematica installed on your computer. The course will start on May 20, and continues for 8 lectures, every Tuesday at 11:15-13:00. More info https://www.thphys.uni-heidelberg.de/%7Eamendola/intromath-ss2025.html - Basics of Mathematica: functions, graphics, input/output, modules, algebraic manipulations, arrays, numerical methods - Solving common mathematical, physical, and statistical problems
- Quantum Field Theory on Curved Backgrounds (MVSpec)
Vorlesung Eichhorn A
heiCO-Info more information1300172211
Zu dieser LV existiert kein AnmeldeverfahrenContent
Bauteile gegenwärtiger Computer erreichen die Größenordnung von Atomen. Da für atomare und subatomare Physik die Quantenmechanik die akzeptierte und bestens bestätigte Theorie ist, wurde der Vorschlag von Feynman aus dem Jahr 1982 immer aktueller: nämlich Computer zu bauen und Algorithmen zu implementieren, die nach den Prinzipien der Quantenmechanik funktionieren. Beim Bau universell programmierbarer Quantencomputer und ihrer Nutzung wurden große Fortschritte erzielt und es gibt Hinweise dafür, dass sie in Zukunft gewisse Aufgabenstellungen wesentlich effizienter lösen können als klassische Computer. Ein viel diskutiertes und beachtetes Beispiel ist die Entschlüsselung aktuell verwendeter, bisher als sicher geltender Verschlüsselungsverfahren. Es ist nicht überraschend, dass gerade die der Anschauung am stärksten widersprechenden und daher im Anfangsstadium der Theorie am heftigsten kritisierten Konzepte der Quantenmechanik, wie Superposition und Verschränkung von Zuständen in verschiedenen Anwendungen einen Quantencomputer einem klassischen Computer überlegen machen. In der Vorlesung wollen wir insbesondere auf die Verknüpfung von Physik und Informatik in der Quanteninformationstheorie eingehen. - Wir beginnen mit einer Vorstellung aktueller Herausforderungen der Digitalisierung und bekannter Grenzen (klassischer) Computer und geben eine kurze Einführung in Berechenbarkeitstheorie, Rechenmodelle, Algorithmen und reversibles Rechnen. Danach werden das Quantenbit und Rechenschritte darauf definiert, Quantenregister und Quantenschaltkreise eingeführt, wichtige Algorithmen untersucht und gezeigt, wie diese implementiert werden können. - Im Zusammenhang mit der Quanteninformatik wird der formale Aufbau der Quantenmechanik noch einmal vorgestellt. Dabei werden die Aspekte, die für die Funktionsweise eines Quantencomputers wesentlich sind, besonders hervorgehoben, z.B. Messprozess, E. Schmidt´scher Formalismus, Quantenkanäle, Superoperatoren und die Quanten-Fouriertransformation. - In einem dritten Teil wird die klassische Komplexitätstheorie kurz vorgestellt, um mögliche entscheidende Vorteile eines Quantencomputers aufzeigen zu können. - Der nächste Teil der Vorlesung besteht in einer Beschreibung und Diskussion des Shore´schen Algorithmus. Er beruht auf Ergebnissen der Zahlentheorie und der Quanten-Fouriertransformation. Er ist nicht nur der Algorithmus, der aktuell für die größte Aufmerksamkeit sorgt, sondern an ihm lassen sich auch die wesentlichen Vorteile des Quantencomputers und Elemente der Quantenkomplexität sehr gut darstellen. - Ein weiterer essentieller Punkt für die Entwicklung der Quantencomputer war die Entdeckung von Verfahren zur Fehlerkorrektur, die wir in diesem Teil der Vorlesung betrachten werden. - Die Eigenschaften der Quantenmechanik erlauben die Implementierung abhörsicherer, verschlüsselter Kommunikation. Diese wurde bereits über viele 100 km erfolgreich getestet (Nobelpreis für Physik 2022) und ist wesentliche Voraussetzung für ein Quanteninternet. - Abschließend sollen verschiedene Ansätze zum Bau von Quantencomputern und zur Realisierung von Gates vorgestellt werden.
- SU(2) Yang-Mills thermodynamics, blackbody anomaly (theory and experimental status), and ultralight axions in cosmology (MVSpec)
Vorlesung Hofmann R
heiCO-Info more information1300172213
Zu dieser LV existiert kein AnmeldeverfahrenContent
We derive the thermal ground state for the deconfining phase of SU(2) Yang-Mills Thermodynamics, discuss its thermal quasiparticle excitations, and compute the polarization tensor of the effective massless gauge mode. Next, we use these results under the postulate that thermal photon gases of sufficiently large spatial volumes are described by an SU(2) rather than a U(1) gauge principle. For the CMB this gives rise to a modified temperture-redshift relation with an interesting link to 3D Ising criticality. Moreover, we argue that the CMB large-angle anomalies may be traced to SU(2) screening effects and that an axial anomaly with chiral symmetry breaking at the Planck scale yields an ultralight axion particle whose temperature dependent mass essentially is determined by the SU(2) thermal ground state. The super-horizon sized condensate of these particles is a candidate for dark energy. To test the above postulate recents results of a terrestial blackbody-cavity experiment are discussed and interpreted in the context of SU(2) Yang-Mills thermodynamics. Objectives: instanton, Matsubara sum, caloron, thermal ground state, thermal quasiparticle dispersion law, critical exponent, cosmological model, Veneziano-Witten, emissivity, Dicke switch, difference of dBm of noise power
- Neutrino Physics: Theory and Experiments (MVSpec)
Vorlesung Buck C, Rodejohann W
heiCO-Info more information1300172214
Zu dieser LV existiert kein AnmeldeverfahrenContent
History of the neutrino Flavor physics Neutrino Oscillations in Vacuum and Matter Neutrino Masses in the SM and beyond Dirac and Majorana neutrinos Neutrinoless double beta decay Neutrinos from the Sun and the atmosphere Reactor and accelerator neutrinos Neutrinos in cosmology High energy astrophysical neutrinos Coherent elastic neutrino-nucleus scattering
- Theoretical Quantum Optics (MVSpec)
Vorlesung Evers J
heiCO-Info more information1300172218
Zu dieser LV existiert kein Anmeldeverfahren - Flows, renormalization, and convergent expansions, in quantum field theory and statistical mechanics (MVSpec)
Vorlesung Salmhofer M
heiCO-Info more information1300172219
Zu dieser LV existiert kein Anmeldeverfahren - Dynamical Systems (MVSpec)
Vorlesung Ziebert F
heiCO-Info more information1300172220
Zu dieser LV existiert kein Anmeldeverfahren - Effective Field Theories: From Axions to SMEFT (MVSpec)
Vorlesung Goertz F
heiCO-Info more information1300172228
Zu dieser LV existiert kein Anmeldeverfahren - Computational Statistics and Data Analysis (MVComp2, MVSpec)
Vorlesung Amendola L
heiCO-Info more information1300182202
Zu dieser LV existiert kein AnmeldeverfahrenContent
- Axioms of Probability Theory; random variables, important distributions - Bayesian inference - Linear regression, non-linear regression - Regularized regression to fit high-dimensional data - Hypothesis testing: fundamental concepts - Parametric and non-parametric tests - Classification - Cluster analysis - Model selection
Goal
After completion of this module, the students understand fundamental concepts of stochastics, and are able to relate them to concrete problems. They understand and are alert of possible pitfalls such as overfitting, multiple comparisons, or susceptibility to outliers. They know and are able to apply basic countermeasures and they have access to more advanced literature on the subject. Students are familiar with relevant high-level languages and statistical programming libraries, and know how to apply them to real-world data provided in the exercises.
- Astronomisch-Astrophysikalisches Praktikum (P)
Praktikum Quirrenbach A, Rothmaier F, Seifert W, Stürmer J
heiCO-Info more information1300112350
Zu dieser LV existiert kein Anmeldeverfahren - Astronomisch-Astrophysikalisches Praktikum II (MVAstro1.2) (P)
Praktikum Heidt J
heiCO-Info more information1300112351
Zu dieser LV ist keine Anmeldung möglichContent
Durchführung von mehreren astrophysikalischen Versuchen je nach Kenntnisstand innerhalb einer Woche. Diese decken grosse Gebiete in der Astronomie ab. Dauer pro Versuch 1-1.5 Tage. Kein separates Protokoll oder Hausarbeit notwendig.
Goal
Selbstständige Bearbeitung experimenteller Fragestellungen. Kennenlernen und Vertiefung diverser astronomischer moderner Tools wie zB Datenreduktion, virtuelles Observatorium, Interpretation diagnostischer Diagramme.