Summer Term 2024
- Introduction to Astronomy and Astrophysics II (WPAstro.2)
Vorlesung Dehnen W, Wylezalek D
Homepage heiCO-Info Link to Registration
Anmeldung abgelaufen
more information1300111201
Anmeldung abgelaufen
Link to RegistrationContent
• Galaxien: Aufbau und Eigenschaften normaler Galaxien und der Milchstraße; Skalierungsrelationen; Spektren; Leuchtkraftfunktion; kosmologische Entwicklung der Sternentstehung; schwarze Löcher in Galaxien, aktive Galaxien und ihre Eigenschaften; vereinheitlichte Modelle • Galaxienhaufen: optische Eigenschaften und Haufengas; hydrostatisches Modell; Skalierungsrelationen; Häufigkeit und Entwicklung • Gravitationslinsen: Grundlagen, Massenverteilung in Galaxien und Galaxienhaufen; kosmologischer Linseneffekt • Großräumige Verteilung von Galaxien und Gas: Strukturen in der räumlichen Galaxienverteilung; Rotverschiebungseffekte; Biasing; Lyman-α- Wald; Gunn-Peterson-Effekt und kosmische Reionisation • Kosmologische Rahmenbedingungen: Friedmann-Lemaître-Modelle, kosmologisches Standardmodell; Ursprung und Entwicklung von Strukturen; Halos aus dunkler Materie; Entstehung von Galaxien
- Astronomical Techniques (MKEP5)
Vorlesung Pasquali A
Homepage heiCO-Info Link to Registration
Anmeldung abgelaufen
more information1300112105
Anmeldung abgelaufen
Link to RegistrationContent
* Optical telescopes: optics and characteristic parameters, telescope types, diffraction, resolution, aberrations and corrections, applications * Optical detectors: detector types, semiconductors and CCDs, quantum efficiency, readout, noise sources, multi-chip cameras, applications * Imaging: techniques, photometry, data reduction and characterisation, signal-to-noise * Atmospheric effects and corrections: extinction, turbulence, seeing, active and adaptive optics, laser guide stars, applications * Spectroscopy: types of spectrographs and spectrometers, dispersive elements, integral field units, data reduction and characterisation, applications * Infrared astronomy: detectors and techniques, sources, applications * Radio astronomy: detectors and instrumentation, synthesis techniques, types of radiation and sources, applications * Astronomical interferometry: wavelength regimes, instrumentation, applications * X-ray and gamma-ray astronomy: detectors and instrumentation, types of radiation and sources, applications * Astroparticle physics: neutrino and Cherenkov detectors, sources and acceleration mechanisms of neutrinos and cosmic rays, applications * Gravitational-wave astronomy: detection, sources, applications. * In-situ exploration and remote sensing.
Goal
After completing this course, the students have firm insight into the concepts, technologies, and the underlying physical principles and limitations of modern observational techniques along with scientific applications. They have knowledge of basic detector designs for different types of radiation and particles. They understand the environmental influence on astronomical observations. They are able to select and judge the adequate observational technique for studying an astronomical object of interest.
- Introduction to Astronomy and Astrophysics (MVAstro0, MVSpec)
Vorlesung Mapelli M, Pössel M
heiCO-Info Link to Registration
Anmeldung abgelaufen
more information1300112200
Anmeldung abgelaufen
Link to RegistrationContent
- Astronomical basics: astronomical observations, methods and instruments; orientation at the celestial sphere; fundamental terms of electromagnetic radiation; distance determination, Earth-Moon system; terrestrial and gas planets, small bodies; extra-solar-planets - Inner structure of stars: state variables, stellar atmospheres and line spectra; Hertzsprung-Russell diagram; fundamental equations, energy transfer and opacity; nuclear reaction rates and tunnelling; nuclear fusion reactions - Stellar evolution: Main sequence, giants and late phases; white dwarfs, Chandrasekhar limit; supernovae, neutron stars, Pulsars and supernova remnants; binaries and multiple systems; star clusters - Interstellar medium: cold, warm, hot gas phases dust, cosmic rays, magnetic fields; ionization and recombination, Stroemgren spheres; heating and cooling; star formation, matter cycle, chemical enrichment - Galaxies: Structure and properties of normal galaxies and the Milky Way; scaling relations; integrated spectra, luminosity function; cosmological evolution of star formation; Black Holes in galaxies, active galaxies and their properties, unified models - Galaxy clusters: optical properties and cluster gas; hydrostatic model; scaling relations; number densities and evolution - Gravitational lensing: Concepts, mass distribution in galaxies and galaxy clusters; cosmological lensing effect - Large scale distribution of galaxies and gas: Structure in the spatial galaxy distribution; redshift effects; biasing; Lyman-α-forest; Gunn-Peterson effect and cosmic reionization - Cosmology: Friedmann-Lemaître models, cosmological standard model; origin and evolution of structures; halos of Dark Matter; Formation of galaxies
Goal
The students have gained basic knowledge and understanding of astronomical objects, measuring units and methods, and the relevant astrophysical processes. They have a firm grasp of the fundamental interrelations of objects and processes on different scales. They are able to reproduce the basic features of the modern world view including the physical reasoning, and connect astronomical and astrophysical phenomena to previously acquired knowledge in physics.
- Stellar Astrophysics (MVAstro2, MVSpec)
Vorlesung Jordan S, Klessen R
Homepage heiCO-Info Link to Registration
Anmeldung abgelaufen
more information1300112202
Anmeldung abgelaufen
Link to RegistrationCourse Information
Lecture: Thursdays, 14:15-15:45
Tutorial Group 1: Thursday, 15:45-17:15
Tutorial Group 2: Thursday, 17:15-18:45 (possible second group)
To excel in the module MVAstro2 "Stellar Astrophysics," it is essential to complete an adequate number of exercises and attend the tutorials. Merely submitting exercises through the Übungsgruppensystem is insufficient; you must also be prepared to present your solutions during the tutorial sessions.Credit points cannot be awarded solely based on participation in the written exam; attendance at the tutorials is also required to receive credit.Preliminary Schedule:
18.4.24: Introduction (Stefan Jordan)
25.4.24: Stellar structure 1 (Ralf Klessen)
02.5.24: Stellar structure 2 (Ralf Klessen)
09.5.24: Himmelfahrt
16.5.24: Stellar structure 3 (Ralf Klessen)
23.5.24: Energy transport (Stefan Jordan)
30.5.24: Fronleichnam
06.6.24: Energy production (Stefan Jordan)
13.6.24: Main sequence (Stefan Jordan)
20.6.24: Stellar evolution to the AGB (Stefan Jordan)
27.6.24: Late stages of stellar evolution (Stefan Jordan)
04.7.24: Stellar atmospheres, stellar spectra (Stefan Jordan)
11.7.24: Stellar rotation, magnetic fields (Ralf Klessen)
18.7.23: Stellar pulsation, spectra, neutron stars, black holes (Ralf Klessenn)
25.7.23: Written exam (Ralf Klessen, Stefan Jordan): 9:00-12:00 CEST, "Neuer Hörsaal", Philosophenweg 12
Seminar:
3 full days between July 29 and Jul 31, 2024, starting at 9:15 CEST, "Kleiner Hörsaal", Philosophenweg 12.
The length of your talk will be 35 minutes. Following your talk, there will be an opportunity for questions and feedback.You have to be present on all three days of the seminar!Seminar Schedule:Yared Reinarz Cabrera: The birth environment of the solar systemUtkarsh Basu: Solar DynamoEvgenii Govorov: Carrington EventsElisa Haas: The Properties of the Solar Corona and its Connection to the Solar WindNiclas Riffert: Solar Neutrinos: Status and ProspectsSurabhi Badrinath: The Fifth Catalogue of Nearby Stars (CNS5)Arkaprabha Roy: A closer look at the transition between fully convective and partly radiative low-mass starMoritz Strauß: On the cool side: modeling the atmospheres of brown dwarfs and giant planetsAdamo Sabbadin: New Insights into Classical NovaJakob Möhrle: What are the spectroscopic binaries with high-mass functions near the Gaia DR3 main sequence?Jan-Erik Schneider: High-Mass Star and Massive Cluster Formation in the Milky WayMax Utermöhlen: Mass Loss: Its Effect on the Evolution and Fate of High-Mass StarsPranavandhan Upendranath: New Insights into the Evolution of Massive Stars and Their Effects on Our Understanding of Early GalaxiesCristina Viviente Orea: Multiple Stellar Populations in Globular ClusterTobias van Lier: Gaia Data Release 3: Pulsations in main sequence OBAF-type starsMaximilian Gabriel Klein: Betelgeuse: a reviewLasse Seyberlich: The evolutionary stage of Betelgeuse inferred from its pulsation periodsVincent Benz: Origin of Pulsar Radio EmissionGregory Jung: Core cristallisation and pile-up in the cooling sequence of evolving white dwarfsSaitej Amonkar: The Most Luminous SupernovaeJonathan Paulsen.: The s process: Nuclear physics, stellar models, and observationsJhananii Yuvaraj: MagnetarsYu-Ruei Wang: Discovery of a dormant 33 solar-mass black hole in pre-release Gaia astrometryTim Ebbinghaus: Large Magellanic Cloud Cepheid Standards Provide a 1% Foundation for the Determination of the Hubble Constant and Stronger Evidence for Physics beyond ΛCDMTo obtain the credit points for this module you have to attend regularly and succesfully in the tutorial, the written exam and the seminar.Content
Lecture: Thursdays, 14:15-15:45 Tutorial Group 1: Thursday, 15:45-17:15 Tutorial Group 2: Thursday, 15:45-17:15 (possible second group) Location: Philosophenweg 12, Kleiner Hörsaal Preliminary Schedule: 18.4.24: Introduction (Stefan Jordan) 25.4.24: Stellar structure 1 (Ralf Klessen) 02.5.24: Stellar structure 2 (Ralf Klessen) 09.5.24: Himmelfahrt 16.5.24: Stellar structure 3 (Ralf Klessen) 23.5.24: Energy transport (Stefan Jordan) 30.5.24: Fronleichnam 06.6.24: Energy production (Stefan Jordan) 13.6.24: Main sequence (Stefan Jordan) 20.6.24: Stellar evolution to the AGB (Stefan Jordan) 27.6.24: Late stages of stellar evolution (Stefan Jordan) 04.7.24: Stellar atmospheres, stellar spectra (Stefan Jordan) 11.7.24: Stellar pulsations, rotation, magnetic fields (Ralf Klessen) 18.7.23: Stellar spectra (Ralf Klessen) 25.7.23: Written exam (Ralf Klessen, Stefan Jordan) Seminar: 2-3 full days between July 29 and Aug 2, 2023
- Galactic and Extragalactic Astronomy (MVAstro3, MVSpec)
Vorlesung Grebel E
Homepage heiCO-Info Link to Registration
Anmeldung abgelaufen
more information1300112203
Anmeldung abgelaufen
Link to RegistrationCourse Information
MVAstro3 consists of lectures (Tuesdays from 14:15 - 16:00), exercises (Tuesdays from 16:15 - 17:00), a seminar (nominally on Thursdays, but the students usually decide to have block seminars instead), and a written exam. For students seeking to acquire credit points (usually B.Sc. and M.Sc. students), participation in all these is mandatory. For students who don't need credit points (usually PhD students), the exercises, seminar ans exam are irrelevant. Depending on the number of participants in the exercises, we will either have one or else two exercise groups.
Content
Module Part 1: Lecture “Galactic and Extragalactic Astronomy” (4 CP) - Galaxy types and classification, correlations with physical properties, stellar populations, population synthesis, chemical evolution concepts and models (2); - Milky Way (3): halo, bulge / pseudo bulge, central black hole, thin and thick disk, spiral structure, star clusters, star formation history and chemical enrichment, formation scenarios (e.g., Eggen-Lynden-Bell-Sandage), multi- phase interstellar medium, dust, Galactic fountain, satellites, substructure problem, Local Group; - Spiral and elliptical galaxies (4): Surface photometry, profiles, origin of spiral structure, mass measurement methods, rotation / velocity dispersion, Tully-Fisher / Faber-Jackson relation, fundamental plane, super massive black holes, active galaxies; - Groups and clusters (3): morphology-density relation etc., mass measurements, gravitational lensing, luminosity functions, interactions; intergalactic gas; dark matter; - Growth of structure (3): Origin of matter and elements, large-scale- structure formation, large-scale matter distribution, redshift surveys, weak lensing, galaxy formation and evolution, red / blue sequence, downsizing, scaling relations, Butcher-Oemler effect, cosmic star formation history, Lyman alpha forest, high-redshift universe, reionization, problems in galaxy formation. Module Part 2: Seminar (2 CP) - Presentations and discussions on selected topics in Galactic and extragalactic astronomy
Goal
When successfully completing this course, the students are able to report on the properties of the wide range of galaxy types, understand their origin and evolution, and can elucidate the physical factors governing their evolution. They understand the main physical processes that shape the appearance of galaxies and galaxy clusters. They know about the connection between cosmological structure formation and the populations of visible objects. They have gained experience in applying dimensional and scaling arguments to estimate the relative importance of different physical processes.
- Cosmology Compact (MVAstro4)
Vorlesung Pillepich A
heiCO-Info Link to Registration
Anmeldung abgelaufen
more information1300112204
Anmeldung abgelaufen
Link to RegistrationContent
- Friedmann-Lemaître-cosmologies: cosmological redshift, parameter set, effects of curvature and of the cosmological constant, Hubble expansion and Cepheid-measurements - Age of the Universe: age from the cosmological model, radiometric dating and nuclear cosmochronology, age of the oldest cosmic objects - Distance-redshift relation of standard candles: distance-redshift relations, calibration of supernovae, acceleration and dimming, determination of densities and equations of state, evidence for dark energy - Abundance of chemical elements: thermal evolution, big bang nucleosynthesis, other modes of nucleosynthesis (stellar, spallation, explosive), reaction chains, element abundances - Cosmic microwave background: formation of atoms, simplified description of temperature anisotropies, measurement results and conclusions from them (in particular spatial flatness), secondary anisotropies - Cosmic structures: linear growth, need for (nonbaryonic) dark matter, large-scale distribution of galaxies, cosmic web - Formation of galaxies: gravitational collapse, flat rotation curves and virial equilibria, need for dark matter, abundance of haloes - Gravitational lensing: gravitational light deflection, lens equation, weak and strong lensing, measurements of lensing effects and their inversion
Goal
In this course, students gain fundamental understanding of the cosmological standard model and the cosmological evolution, including the impact of the basic observations and the connection to the physical framework. They gain a solid overview of the empirical basis of modern cosmology.
- Einführung in das Virtuelle Observatorium (VO): Konzepte, Sprachen, Anwendungen (MVSpec)
Vorlesung Demleitner M, Wambsganß J
heiCO-Info Link to Registration
Anmeldung abgelaufen
more information1300112301
Anmeldung abgelaufen
Link to RegistrationContent
The course introduces data access and processing with the Virtual Observatory (VO), focusing in particular on the VO's query language ADQL and means to exploit the VO's capabilities from python. For organisatorial matters, please refer to the course's page: https://moodle.uni-heidelberg.de/course/view.php?id=22352 In case you already had contact with the Virtual Observatory, you are also welcome to only attend selected lectures; for the semester plan, see our lecture notes at https://docs.g-vo.org/vo2024.pdf. No registration or appointment necessary.
- Numerical Techniques for modeling Relativistic Hydrodynamics (MVSpec)
Vorlesung Hujeirat A
heiCO-Info Link to Registration
Anmeldung abgelaufen
more information - Physik der interstellaren Raumfahrt (MVSpec)
Vorlesung Bailer-Jones C
Homepage heiCO-Info Link to Registration
Anmeldung abgelaufen
more information - Small Stellar Systems (MVSpec)
Vorlesung Koch-Hansen A
heiCO-Info Link to Registration
Anmeldung abgelaufen
more information - Star Clusters (MVSpec)
Vorlesung Parmentier G
heiCO-Info Link to Registration
Anmeldung abgelaufen
more information1300112305
Anmeldung abgelaufen
Link to RegistrationContent
Systems of star clusters (APOD40616): -->> cluster age and mass distributions, formation/evolution/observational-biases interplay Cluster age and mass estimates from their integrated photometry --> introduction to stellar population synthesis models Cluster dynamical evolution - Gas-free evolution (SDSS web site): -->> clusters lose stars and eventually dissolve From gas-embedded clusters to gas-free ones (APOD120715, APOD120903 ): -->> expulsion of residual star-forming gas and consequences Formation of star clusters (MNRAS web site): -->> Modelling of star cluster formation, concept of star formation efficiency per freefall time, gas density-probability distribution functions Colour-magnitude diagrams (HST web site): -->> cluster age estimates for the resolved stellar-population case, kinematic-based "cleansing" of cluster CMDs
- Hochenergieastrophysik (MVSpec)
Vorlesung Wagner S
Homepage heiCO-Info Link to Registration
Anmeldung abgelaufen
more information1300112306
Anmeldung abgelaufen
Link to RegistrationCourse Information
The lecture room is "Phil 12 -- SR 059".
The lecture time is Thursday, 14h30 -- 16h00.
- Schwarze Löcher und die Fragen der modernen Astrophysik - Teil 8 (MVSpec)
Vorlesung Britzen S
heiCO-Info Link to Registration
Anmeldung abgelaufen
more information1300112307
Anmeldung abgelaufen
Link to RegistrationContent
Vorgestellt werden aktuelle Fragestellungen der Forschung und zur Zeit laufende oder in Planung befindliche Forschungsprojekte. Themen sind: Schwarze Löcher (stellar, intermediär, supermassiv), Gravitationslinsen, Gravitationswellen, Dunkle Materie, etc. Termine und Themen sind auf folgender Webseite zu finden: https://blog.mpifr-bonn.mpg.de/silkebritzen/vorlesung-universitat-heidelberg/ Die Veranstaltung findet online statt und beginnt am 19.04. um 14 Uhr. Der zoom-link lautet: https://eu02web.zoom-x.de/j/9084381833?pwd=YU1UdWJRa1BzajF4Tyt4YVlSdU1BUT09 Meeting ID: 908 438 1833
Goal
Mein Ziel ist es, Interesse an aktuellen Fragen der Forschung zu wecken und über spannende Forschungsprojekte zu informieren. Des Weiteren möchte ich den Studenten Informationen über den Alltag in der Forschung liefern und Möglichkeiten für Master- und Doktorarbeiten aufzeigen.
- Physics and chemistry of the ISM (MVSpec)
Vorlesung Glover S
heiCO-Info Link to Registration
Anmeldung abgelaufen
more information - Computational Astrophysics (MVSpec)
Vorlesung Röpke F
Homepage heiCO-Info Link to Registration
Anmeldung abgelaufen
more information - Stars Squared: Evolution of Binary Stars (MVSpec)
Vorlesung Schneider F
Homepage heiCO-Info Link to Registration
Anmeldung abgelaufen
more information1300112310
Anmeldung abgelaufen
Link to RegistrationCourse Information
The first lecture will take place on Friday, April 19 at 9:15am at Philos.-weg 12 / R 106A.
Lectures are mostly blackboard-style accompanied by slides, interactive elements, figures and animations. All materials will be made available.
Covered topics range from basics of binary star evolution such as the classical two-body problem, tides and mass exchange to more complex processes such as stellar mergers, common-envelope evolution and compact-object binaries including gravitational-wave merger events.
Background knowledge on stellar evolution is helpful but a recap of the most important aspects will be given.
- Sternwinde und Massenverlust (MVSpec)
Vorlesung Sander A
heiCO-Info Link to Registration
Anmeldung abgelaufen
more information1300112341
Anmeldung abgelaufen
Link to RegistrationContent
Why do stars lose mass and what are the mechanisms behind it? This lecture will provide on overview of the different types of winds we find in stars and their physical origin. After exploring the different wind regimes (solar wind, hot stars, cool stars), the lecture will also cover the consequences of strong mass outflow on the evolution and environment of stars.
- Molecular astrophysics (MVSpec)
Vorlesung(Semenov, Dmitry), 130000.100
heiCO-Info Link to Registration
Anmeldung abgelaufen
more information1300112352
Anmeldung abgelaufen
Link to RegistrationContent
This lecture is an introduction to molecular astrophysics and astrochemistry.
Goal
The spectroscopic and continuum observations of simple inorganic and complex organic molecules in space are at the forefront of observational astronomy. Powerful new facilities such as the Atacama Large Millimeter/submillimeter Array and the James Webb Space Telescope have enabled us to probe the molecular composition of the Universe from the Big Bang to local interstellar space, and from the distant past to the present. The wealth of diagnostic data is driving extensive laboratory and theoretical studies aimed at extracting key information about the physics and chemistry of space from these data. Our understanding of the life cycle of matter in the Universe is also intertwined with such a fundamental question as the origin of life. In this course, you will learn how molecules can be detected in a variety of interstellar environments, from the interstellar medium to planetary atmospheres, and how they are formed and destroyed there. You will learn about the basic spectroscopic properties of molecules and solids, how molecular lines and solid-state bands are used to study the underlying physical and chemical properties of the matter. The major processes of molecule formation and destruction in space, and the interplay between the gas-phase and surface reactions will be discussed from both experimental and theoretical perspectives. You will learn about the formation of the first elements after the Big Bang and the main chemical processes in the early Universe. You will also learn about the formation of other elements in stars, and what happens to these elements after they are ejected into the interstellar space at the end of the star's life. Finally, you will learn about exoplanets, atmospheres, habitability, and the origin of life.
- Einführung in die Computerphysik (UKWR2)
Vorlesung Klessen R, Nelson D, Reißl S
Homepage heiCO-Info Link to Registration
Anmeldung abgelaufen
more information1300112411
Anmeldung abgelaufen
Link to RegistrationCourse Information
General Information
The course "Introduction to Computational Physics" can be part of both Bachelor and Master studies in physics. Its description can be found in the Bachelor Handbook under THIS link.
Lecturers
Ralf Klessen
Dylan Nelson
Stefan Reissl
Schedule
17./19.4.24 Introduction
24./26.4.24 Ordinary Differential Equations 1: two-body, Euler method
01./03.5.24 Ordinary Differential Equations 2: Runge-Kutta, higher order schemes
08./10.5.24 Ordinary Differential Equations 3: population dynamics
15./17.5.24 Ordinary Differential Equations 4: population dynamics, Lorenz attractor
22./24.5.24 Ordinary Differential Equations 5: Lorenz attractor, nonlinear dynamics
29./31.5.24 Linear Algebra 1: matrices, eigenvalues, basics
05./07.6.24 Linear Algebra 2: Householder, QR methods
12./14.6.24 Linear Algebra 3: quantum mechanical oscillator, Schrödinger equation
19./21.6.24 Linear Algebra 4: continued
26./28.6.24 Random number, Monte Carlo methods 1: integration
03./05.7.24 Monte Carlo methods 2: Ising model
10./12.7.24 Partial Differential Equations: first steps towards hydrodynamics
17./19.7.23 Repetition and discussions
24./26.7.23 no lecturesGrades
This course is not graded, there is only "pass" or "not pass". Please note the following conditions to pass the course: Every individual person needs to present homework or presence work to the tutorial group. We keep track of this. It is advisable to use this opportunity soon, because exercise tasks will get more complex with time and also slots for presentation may become harder to get. This presentation is a necessary condition for passing the course. In addition, getting 60% of the homework points is required.
Tutorials and Homework
The exercise sheets typically have an introductory part to be discussed during the tutorials in preparation of the homework assignments. When handing in their homework, students should summarize their answers (graphs, values, text answers, etc) and provide them to the tutors by sending or uploading one single file (PDF, python notebook, or similar).
The preferred programming language is python. In principle, we allow students to use any software and programming language to write and create your files and codes as long as at the end there is one file (most preferable: PDF) with the required content (including source files if applicable). But note that for the use of other very exotic or unusual programming languages, there may be less or no support available from the tutors.
We encourage to work in groups of two and submit the homework as group. One document per group is sufficient, but the names of all group members need to be included. Homework submitted by groups of three or more is not permitted.
Tutorial Schedule and Location
We have four tutorial groups starting on Friday, April 26):
Group 1: Friday, 13h - 16h, KIP CIP Pool (INF 227, room 1.401)
Group 2: Friday, 13h - 16h, PI CIP Pool (INF 226, seminar room on first floor)
Group 3: Monday, 13h - 16h, KIP CIP Pool (INF 227, room 1.401)
Group 4: Monday, 13h - 16h, Phil12 CIP Pool (Philosophenweg 12, seminar room in side building)
TutorsJoris Josiek
Florian Schulze
Nicholas Strom
Jia Wei Teh
Content
The course "Introduction to Computational Physics" can be part of both Bachelor and Master studies in physics. Its description can be found in the Bachelor Handbook under THIS link. Regarding physical knowledge, basic knowledge is again useful for a deeper understanding (we will work on topics from mechanics, statistical physics and quantum mechanics, for example), but the technical/numerical tasks can be solved by only following the explanations in the lecture and tutorials.
- Einführung in die Astronomiedidaktik (ADIDA)
Vorlesung Liefke C, Pössel M
heiCO-Info Link to Registration
Anmeldung abgelaufen
more information - Astronomie für Neugierige
Vorlesung Fendt C, Wambsganß J
heiCO-Info Link to Registration
Anmeldung abgelaufen
more information1300116004
Anmeldung abgelaufen
Link to RegistrationContent
Diese Vorlesung wendet sich an Hörer aller Fakultäten, die einen Einblick in die moderne Astronomie und Astrophysik bekommen wollen. Es werden keine besonderen physikalischen oder mathematischen Vorkenntnisse benötigt. Folgende Themen werden abgedeckt (die Termine sind vorläufig): 15.4.24 Astronomie heute (Wambsganβ, Fendt) 22.4.24 Geschichte der Astronomie (Wambsganβ) 29.4.24 Licht, Teleskope, Instrumente (Fendt) 6.5.24 Sterne – Klassifikation (Fendt) 13.5.24 Sonne, Erde, Mond (Wambsganβ) 20.5.24 (keine Vorlesung, Feiertag) 27.5.24 Das Planetensystem (Wambsganβ) 3.6.24 Sterne – Aufbau & Entwicklung (Fendt) 10.6.24 Interstellares Medium & Sternentstehung (Fendt) 17.6.24 Die Milchstrasse (Fendt) 24.6.24 Exoplaneten & Leben (Wambsganβ) 1.7.24 Galaxien (Wambsganβ) 8.7.24 Aktive Galaxien, Quasare, Schwarze Löcher (Fendt) 15.7.24 (Eventuell Besuch auf dem Königstuhl mit Besichtigung der astronomischen Institute) .
- Physik B
Vorlesung von Krosigk B
Homepage heiCO-Info Link to Registration
Anmeldung abgelaufen
more information - Advanced python course for scientists (UK)
Vorlesung Mapelli M
heiCO-Info Link to Registration
Anmeldung abgelaufen
more information - Experimental Methods in Atomic & Molecular Physics (MVAMO3, MVSpec)
Vorlesung Jochim S
heiCO-Info Link to Registration
Anmeldung abgelaufen
more information1300122203
Anmeldung abgelaufen
Link to RegistrationContent
We will treat the following topics: • Spectroscopy and metrology • Atom-light interactions • Cavity Quantum Electrodynamics • Matter waves • Cooling and trapping • Mass measurements • Quantum gases • (Ultracold) Collisions • Single atoms and molecules • Quantum information • Femto- and attosecond processes
Goal
After completing this course the students will be able to ż describe modern aspects of experimental research in atomic, molecular and optical physics, ż analyse standard experimental approaches of atomic, molecular and optical physics, ż design simple experimental set-ups in atomic, molecular and optical physics, ż apply the methods to simple practical examples.
- Attosecond Physics (MVSpec)
Vorlesung Moshammer R, Ott C, Pfeifer T
Homepage heiCO-Info Link to Registration
Anmeldung abgelaufen
more information1300122219
Anmeldung abgelaufen
Link to RegistrationCourse Information
This lecture will provide an introduction to the fundamentals and current work in the research area of Attosecond Physics. The pioneers of this field were awarded the Physics Nobel Prize in 2023 for providing the ultrashort flashes of light (attosecond pulses), and current opportunities to employ their techniques for the understanding and steering of electron motion in matter are quickly expanding.
The lecture will be accompanied by a tutorial (right after the lecture) for praticing our understanding of key concepts and physics pictures, also including (computational) experiments.
Important Dates:
- 16 July 2024, 14:15 @MPIK Lab Tour, meet at MPIK main gate (close to Bus 39 busstop)
- 23 July 2024, 14:15 Exam/Klausur at Philosophenweg 12, Großer Hörsaal (gHS), 2. OG/second upper floor (801002008X)
- Quantum electrodynamics: theory and key experiments (MVSpec)
Vorlesung Oreshkina N, Quint W
heiCO-Info Link to Registration
Anmeldung abgelaufen
more information - Nano- and Quantum Photonics (MVSpec)
Vorlesung Pernice W
heiCO-Info Link to Registration
Anmeldung abgelaufen
more information - Quantum Simulation (MVSpec)
Vorlesung Weidemüller M
Homepage heiCO-Info Link to Registration
Anmeldung abgelaufen
more information - Volumenvisualisierung (MVSpec)
Vorlesung Hesser J
heiCO-Info Link to Registration
Anmeldung abgelaufen
more information - Inverse Probleme (MVSpec)
Vorlesung Hesser J
heiCO-Info Link to Registration
Anmeldung abgelaufen
more information - Computerspiele / Med. Simulatoren (MVSpec)
Vorlesung Hesser J
heiCO-Info Link to Registration
Anmeldung abgelaufen
more information - Medical Physics 2 (MVMP2, MVSpec)
Vorlesung Kuder T, Schröder L
heiCO-Info Link to Registration
Anmeldung abgelaufen
more information1300132222
Anmeldung abgelaufen
Link to RegistrationContent
Subject: Magnetic Resonance Imaging (MRI) and Nuclear Medicine See website: https://medphysrad-teaching.dkfz.de/medphys2.html
- Cell Biophysics (MVSpec)
Vorlesung
heiCO-Info Link to Registration
Anmeldung abgelaufen
more information1300132231
Anmeldung abgelaufen
Link to RegistrationContent
**** WICHTIGE MITTEILUNG **** Diese Lehrveranstaltung wurde abgesagt.
- Biophysics (MVSpec)
Vorlesung Hesser J
heiCO-Info Link to Registration
Anmeldung abgelaufen
more information - The physics of charged particle therapy (MVSpec)
Vorlesung Seco J
heiCO-Info Link to Registration
Anmeldung abgelaufen
more information - Biophotonics I (MVSpec)
Vorlesung Petrich W
Homepage heiCO-Info Link to Registration
Anmeldung abgelaufen
more information - Radiation Biophysics 1 (MVSpec)
Vorlesung Falk M
Homepage heiCO-Info Link to Registration
Anmeldung abgelaufen
more information1300132240
Anmeldung abgelaufen
Link to RegistrationContent
Strahlenarten und biophysikalische Wirkung; Dosis und LET; Strahlenschäden bei Zellen und Reparaturmechanismen; Dosis-Wirkung.Modelle; Dosimetrie; Grundlagen der Strahlendiagnostik und -therapie
- Radiation Biophysics 2 (MVSpec)
Vorlesung Falk M
Homepage heiCO-Info Link to Registration
Anmeldung abgelaufen
more information1300132241
Anmeldung abgelaufen
Link to RegistrationContent
Die Vorlesung setzt die die Einführungsvorlesung "Introduction to Radiation Biophysics" aus dem SS 2023 fort.
- Advanced Condensed Matter Physics (MKEP2)
Vorlesung Klingeler R
Homepage heiCO-Info Link to Registration
Anmeldung abgelaufen
more information1300142101
Anmeldung abgelaufen
Link to RegistrationContent
* Structure of solids in real and reciprocal space * Lattice dynamics and phonon band structure * Thermal properties of insulators * Electronic properties of metals and semiconductors: band structure and transport * Optical properties from microwaves to UV * Magnetism * Superconductivity * Defects, surfaces, disorder (each chapter includes experimental basics)
Goal
After completing the course the students - have gained a thorough understanding of the fundamentals of condensed matter physics and can apply concepts of many-particle quantum mechanics to pose and solve relevant problems. - will be able to describe the priciples of formation of solids and can propose appropriate experimental methods to study structural properties. They are familiar with and can apply the concept of reciprocal space. - they can apply fundamental electronic models to explain and predict properties of crystalline materials as metals, semiconductors, and insulators. - they can ascribe optical, magnetic properties of matter to electronic and structure degrees of freedom. - they can describe and theoretically explain fundamental properties of superconductivity. - they are able to choose appropriate experimental methods for probing structural, optical, magnetic, and electronic properties of condensed matter and can analyse the experimental results.
- Low Temperature Physics (MVCMP1, MVSpec)
Vorlesung Enss C, Fleischmann A
Homepage heiCO-Info Link to Registration
Anmeldung abgelaufen
more information1300142209
Anmeldung abgelaufen
Link to RegistrationContent
The course is a general introduction to the physics of matter at low temperatures and will provide a discussion of phenomena that uniquely occur near absolute zero. For example, when the thermal energy becomes small new macroscopic quantum states like superfluidity and superconductivity are formed. The course is divided into three sections: Quantum fluids, Properties of Solids and Refrigeration Techniques.
- Physik des Alltags (PDA)
Vorlesung Dullemond C
heiCO-Info Link to Registration
Anmeldung abgelaufen
more information1300152101
Anmeldung abgelaufen
Link to RegistrationContent
Die folgende Liste der Themen ist als Anhalt gedacht: • Modell eines Tornados: Drehimpulserhaltung, Unterdruck, herleiten wie groß die Windgeschwindigkeit und Unterdruck sind. • Magnetfeld Erde: Ausrechnen welche Sonnenteilchen/Kosmische Strahlen abgelenkt werden. Wie gefährlich wäre der Sonnenwind (vor allem coronal mass ejections) für Astronauten? • Autounfall: Ausrechnen bei welcher Geschwindigkeit ein Airbag noch Sinn macht bei einem Frontal-Zusammenstoß. • Alternative Energie: Ausrechnen wie viel Windmühlen und wie viel m^2 Sonnenzellen man braucht, damit Deutschland 100 Prozent auf neuerbare Energiequellen umgeschaltet ist. • Raketengleichung: Herleitung und Anwendung. Warum war die Saturn V Rakete so riesig, obwohl man mit einem Mini-Lunar Module von der Mond wegkommen konnte? • Flugzeugflügel: wieso können Flugzeuge fliegen? • Tsunamis: Shallow water equation für die Analyse von Tsunamis. Warum (und unter welchen Umständen) sind Tsunamis so gewaltig? • Blitze (Gewitter): Wie funktionieren sie ungefähr, und wie kann man die Lautstärke berechnen. Vielleicht eine Abschätzung davon, wie viel Hagelkörner man braucht um genügend Ladungs-Separation zu machen um überhaupt Blitze zu erzeugen. • GPS-Navigation: Spezielle und allgemein-Relativistische Effekte.
Goal
Die Studierenden sind in der Lage durch einfache mathematische bzw. physikalische Modelle selbstständig alltägliche physikalische Phänomene zu verstehen. Sie kennen Herangehensweisen bei der Bildung von Abschätzungen, durch die komplexe physikalische Phänomene durch geschickte Vereinfachungen und Annäherungen auf den Kernaspekt reduziert werden können. Sie sind in der Lage die weniger wichtigen Aspekte zu benennen, die vernachlässigt werden können, um so zu einem Verständnis zu kommen.
- Physikdidaktische Grundlagen (PDG)
Vorlesung(Prof. Manuela Welzel-Breuer), 130000.100
heiCO-Info more information1300152102
Zu dieser LV existiert kein AnmeldeverfahrenContent
Vorgaben des Bildungsplans Physik Gymnasium Einführung in fachdidaktische Denk- und Arbeitsweisen Grundlagen der Planung und Analyse von Physikunterricht zu ausgewählten Teilgebieten der Physik unter Einbeziehung heterogener Lerngruppen Experimente, Medieneinsatz und Aufgabenkultur im Physikunterricht Leistungsbewertung im Physikunterricht Fachdidaktische Reflexion von Physikunterricht
Goal
Die Studierenden ż kennen die Vorgaben des aktuellen Bildungsplans und grundlegende Methoden im Physikunterricht ż kennen Konzepte fachbezogener Bildung und können diese kritisch analysieren, bewerten und anwenden. ż können fachdidaktische Lerninhalte vernetzen und situationsgerecht anwenden ż verfügen über erste reflektierte Erfahrungen im Planen, Gestalten und Durchführen von kompetenzorientiertem Unterricht
- Environmental Physics (MKEP4)
Vorlesung Frank N
Homepage heiCO-Info Link to Registration
Anmeldung abgelaufen
more information1300152104
Anmeldung abgelaufen
Link to RegistrationContent
This lecture introduces all physical concepts of the fundamentals of Environmental Physics and it is accompanied by exercises and tutorials every week. The content spans: • The fundamentals about the Earth climate system and its compartments, flow, transport, and the global radiation balance. • Geophysical fluid dynamics, i.e. the fundamental laws of free and forced fluid movement and vorticity, and a practical guide to the first principles of turbulence. • Global circulation of atmosphere and ocean, boundary layer physics, and slow flow through porous media and of ice. • Gas and heat exchange between ocean and atmosphere. Global fluxes and cycles (energy, water, carbon). • Isotope fractionation and isotope methods to study the Earth environments, focus on water and carbon isotopes. • Introduction to models of environmental systems, basic principles of numerical climate modelling. • Basic principles of radiative transfer. Climate system radiative forcing and sensitivity. Global climate change past, present and future.
Goal
Students achieve a fundamental understanding of the key physical processes and interactions in the Earth surface system and its compartments, as well as of the human impact on these systems and the related societal implications. They are able to solve basic problems of environmental physics and interpret the results in the context of fundamental questions regarding the physics of the earth surface environments and the methodologies to observe and study those.
- Physics of Aquatic Systems (MVEnv3, MVSpec)
Vorlesung Aeschbach W
Homepage heiCO-Info Link to Registration
Anmeldung abgelaufen
more information1300152203
Anmeldung abgelaufen
Link to RegistrationCourse Information
PHYSICS OF AQUATIC SYSTEMS (MVEnv3)
Summer 2024
Prof. Dr. Werner Aeschbach
Institut für Umweltphysik, Universität Heidelberg
Moodle page of the lecture:
https://moodle.uni-heidelberg.de/course/view.php?id=21016
Code for registration will follow per e-mail to students registered here
General information
This platform – the physics department's exercise management system – serves for registration and for the electronic handling of the exercises (i.e., you can upload your solutions here).
The central platform for this lecture is the moodle page given above. There you will find the material for the lectures (lecture notes and slides, additional information and links) well in advance of the scheduled lecture times. You will also find exercise sheets with problems to solve for download there (but the upload of solutions is via this site here).
Videos for asynchronous study from the Covid years will also be made available via the moodle site. These videos will not be updated and are only meant as a backup for students who may not be able to attend in person at some dates.
Remarks on the contents
„Aquatic Physics“ or „Physics of Aquatic Systems“ is a part of environmental physics that deals with physical processes in natural waters such as oceans, lakes, rivers, and groundwater. The importance of studying the hydrosphere follows on the one hand from the sheer size of the oceans and their pivotal role in the climate system, on the other hand from the limited fresh water reserves and the related societal problems. The focus of this lecture lies on the most important continental water reservoirs, lakes and groundwaters. However, fundamentals of physical oceanography are also treated.
In the first part of the lecture, the physical properties of water and the aquatic systems, as well as the physical processes in these systems are treated. The laws of fluid dynamics (e.g., Navier-Stokes), as well as the theory of transport processes (e.g., advection, (turbulent) diffusion, heat and gas exchange), which are known from the general lecture on environmental physics (MKEP4) are applied to these special systems.
The second part of the lecture deals with the application of environmental tracer methods to study aquatic systems, the so-called isotope hydrology. In this part, various tracers (e.g., stable isotopes, 3H, noble and transient gases, 14C) and the basics of the respective methods are introduced and it is shown how these methods can be applied to determine physical parameters of aquatic systems.
The lecture "Physics of Aquatic Systems" is part of the Master programme in physics. However, it can also be heard by Bachelor students. Knowledge from the general lecture on environmental physics (MKEP4) is useful, but it is possible to hear this lecture in parallel to MKEP4.
Online textbooks for this lecture:
Stewart, R. H., 2008. Introduction to Physical Oceanography. On-line textbook, available athttps://open.umn.edu/opentextbooks/textbooks/introduction-to-physical-oceanography.
Mook, W.G. (ed.), 2001: UNESCO/IAEA Series on Environmental Isotopes in the Hydrological Cycle - Principles and Applications. Available online at http://www-naweb.iaea.org/napc/ih/IHS_resources_publication_hydroCycle_en.html.
W. Aeschbach
March 2024
Content
• Fundamentals of physical oceanography, limnology, and hydrogeology • Heat and mass transfer between water and atmosphere • Flow and transport in surface and ground water • Tracer methods in the hydrological cycle
Goal
Students achieve an advanced understanding of the physical processes in aquatic systems, the methods to study them, and their role in the climate system. They are able to solve advanced problems and interpret the results in the context of current questions in research and application. They can assess and use current scientific literature to further develop their knowledge base, enabling them to conduct independent master research projects in physics of aquatic systems.
- Inverse methods in the atmospheric sciences (MVSpec)
Vorlesung Butz A, Landgraf J
Homepage heiCO-Info Link to Registration
Anmeldung abgelaufen
more information1300152212
Anmeldung abgelaufen
Link to RegistrationContent
1 week block lecture, language: English, Sep. 23-27, 2024, 9-18h, INF229, R108 (first floor), lecturer: Dr. Jochen Landgraf.
- Radiative transfer in the Earth's atmosphere (MVSpec)
Vorlesung Butz A, Landgraf J
Homepage heiCO-Info Link to Registration
Anmeldung abgelaufen
more information1300152214
Anmeldung abgelaufen
Link to RegistrationCourse Information
The lecture will discuss transport of radiation in the Earth's atmosphere covering the basics of absorption, emission and scattering. The focus is on remote sensing for Earth observation applications.
Registration will be possible via the heico system (https://heico.uni-heidelberg.de, course ID: 1300152214).
This is a 1-week full-day block course starting on Apr. 8, ending on Apr. 12 (INF229, room 110, 1st floor).
Content
1-week block lecture, language: English, Apr. 8 - 12, 2024, IUP - INF229, first floor (R108), lecturer: Dr. Jochen Landgraf The lecture will cover the principles of radiative transfer with a focus on the Earth's atmosphere including a discussion of electromagnetic waves, radiometric quantities and polarization, absorption and emission by molecules, scattering by molecules and particles, radiative transfer equation and solution methods for the Earth's atmosphere, remote sensing applications.
- Moderne Physik II für Lehramt
Vorlesung Bartelmann M
Homepage heiCO-Info Link to Registration
Anmeldung abgelaufen
more information1300153001
Anmeldung abgelaufen
Link to RegistrationCourse Information
Die Vorlesung Moderne Physik II (PMPL2) ist ein Pflichtmodul für die Lehramtsoption im Bachelorstudium mit Physik als erstem oder zweitem Fach.
- Studying the carbon cycle and anthropogenic disturbances (HGSFP Summer School)
Vorlesung Vardag S
heiCO-Info more information1300155001
Zu dieser LV ist keine Anmeldung möglich - Experimentalphysik II - Transportprozesse, Elektrodynamik, Relativität (PEP2)
Vorlesung Schultz-Coulon H
Homepage heiCO-Info Link to Registration
Anmeldung abgelaufen
more information1300161107
Anmeldung abgelaufen
Link to RegistrationContent
Elektrodynamik (45 %) • Elektrostatik • Elektrische Ströme • Magnetostatik • Zeitlich veränderliche Felder (Maxwell Gleichungen) Wellen (15 %) • Grundbegriffe, Wellengleichung • Akustik • Elektromagnetische Wellen Optik (20 %) • Wellenoptik, Fouriertransformationen • Geometrische Optik • Optische Instrumente Spezielle Relativitätstheorie (20 %) • Maxwell Gleichungen und Lorentztransformationen • Relativistische Kinematik • Relativistische Dynamik, Energien
Goal
Die Studierenden können die grundlegenden physikalischen Eigenschaften auf dem Gebiet der Elektrodynamik, der Wellenmechanik, der Optik erläutern sowie den Aufbau der wichtigsten Experimente beschreiben. Sie erkennen die Zusammenhänge zwischen den physikalischen Experimenten und den entsprechenden mathematischen Formulierungen und sind in der Lage, die zugrundeliegenden physikalischen Probleme mathematisch zu formulieren und mindestens näherungsweise zu lösen. Sie können die Grundkonzepte der Speziellen Relativitätstheorie beschreiben und zugehörige Probleme mathematisch formulieren. Sie sind in der Lage, ihr erworbenes Wissen anzuwenden, indem sie selbstständig physikalische Probleme bearbeiten.
- Experimentalphysik IV - Kern- und Teilchenphysik (PEP4)
Vorlesung Hansmann-Menzemer S
Homepage heiCO-Info Link to Registration
Anmeldung abgelaufen
more information1300161143
Anmeldung abgelaufen
Link to RegistrationContent
• Mehrelektronensysteme (15 %) • Wechselwirkung von Teilchen mit Materie (10 %) • Teilchen (20 %) • Symmetrien und Erhaltungssätze (20 %) • Fundamentale Wechselwirkung (15 %) • Kernmodelle (10 %) • Kernreaktionen (10 %)
Goal
Die Studierenden können die grundlegenden physikalischen Phänomene der Kern- und Teilchenphysik erläutern sowie den Aufbau der wichtigsten Experimente beschreiben. Sie erkennen die Zusammenhänge zwischen den physikalischen Experimenten und den entsprechenden mathematischen Formulierungen und sind in der Lage, die zugrundeliegenden physikalischen Probleme mathematisch zu formulieren und mindestens näherungsweise zu lösen. Sie sind in der Lage, ihr erworbenes Wissen anzuwenden, indem sie selbstständig physikalische Probleme bearbeiten.
- The Physics of Particle Detectors (MVHE2, MVSpec)
Vorlesung Masciocchi S
Homepage heiCO-Info Link to Registration
Anmeldung abgelaufen
more information1300162201
Anmeldung abgelaufen
Link to RegistrationContent
Focus of the lecture is the physics and the layout of detector components used in modern particle physics experiments. Topics are - Interaction of particles with matter - Scintillators and ToF detectors - Gas detectors - Silicon detectors - Calorimeters - Detector for particle identification - Large detector systems
Goal
After completion of the course the student has gained basic knowledge about interactions of particles with matter, the physics of particle detectors, their working principles, and their applications in experiments. - Introductory lecture into the physics and the technical realization of particle detectors (2 hours/week) - Journal Club where on the basis of recent publications details of a particular research area are discussed (1 hour/week)
- Modern Aspects of Nuclear Physics (MVSpec)
Vorlesung Stachel J, Wimmer K
Homepage heiCO-Info Link to Registration
Anmeldung abgelaufen
more information - Experimentelle Methoden in der Astroteilchenphysik II (MVSpec)
Vorlesung Gastaldo L, Marrodán Undagoitia T
Homepage heiCO-Info Link to Registration
Anmeldung abgelaufen
more information1300162292
Anmeldung abgelaufen
Link to RegistrationCourse Information
Lecturers:
Loredana Gastaldo Loredana.Gastaldo@kip.uni-heidelberg.de
Teresa Marrodan Undagoitia teresa.marrodan@mpi-hd.mpg.de
The lecture "Experimental Methods in Astroparticle Physics - II" is focused on two major topics:
- the existence of Dark Matter and methods used to detect and characterize its properties
- neutrinos and their properties
To properly follow the topics discussed in the lecture it is required to have attended the PEP IV Lecture (or equivalent lecture providing basic knowledge of Particle and Nuclear Physics as well as interactions of particles with matter).
The lecture will start on Monday the 15th of April and end on the 22nd of July. Tutorials will start the week later.
The number of credit points related to this lecture is 4 and will be obtained on the basis of the submitted solutions to the exercises.
60% of corrected exercises are required to obtain the 4 credit points
Suggested literature:
1. D. H. Perkins, Particle Astrophysics, Oxford Master Series in Physics, Oxford University Press (2009)
2. C. Grupen, Astroparticle Physics, Second Edition, Springer (2020)
3. H. V. Klapdor-KleingrothausandK. Zuber, Particle Astrophysics, IoP(2000)
4. E.W. Kolb and M. S. Turner, The Early Universe, Front. Phys. 69 (1990)
For specific topics dedicated literature will be suggested during the lecture.
During the first lecture we will also discuss possible time conflict with the proposed tutorial time.
Content
The lecture "Experimental Methods in Astroparticle Physics - II" is focused on two major topics: - the existence of Dark Matter and methods used to detect and characterize its properties - neutrinos and their properties The lecture will start on Monday the 15th of April and end on the 22nd of July. Tutorials will start the week later. The number of credit points related to this lecture is 4 and will be obtained on the basis of the submitted solutions to the exercises: 60% of corrected exercises are required to obtain the 4 credit points Suggested literature: 1. D. H. Perkins, Particle Astrophysics, Oxford Master Series in Physics, Oxford University Press (2009) 2. C. Grupen, Astroparticle Physics, Second Edition, Springer (2020) 3. H. V. Klapdor-KleingrothausandK. Zuber, Particle Astrophysics, IoP(2000) 4. E.W. Kolb and M. S. Turner, The Early Universe, Front. Phys. 69 (1990) For specific topics dedicated literature will be suggested during the lecture. During the first lecture we will also discuss possible time conflict with the proposed tutorial time.
- Theoretische Physik II - Analytische Mechanik und Thermodynamik (PTP2)
Vorlesung Plehn T
Homepage heiCO-Info Link to Registration
Anmeldung abgelaufen
more information1300171102
Anmeldung abgelaufen
Link to RegistrationCourse Information
Obertutor: Henning Bahl (bahl@thphys.uni-heidelberg.de)
Content
Teilmodul 1: Analytische Mechanik • Zwangsbedingungen • Lagrange’sche Gleichungen 1. und 2. Art, Wirkungsprinzip • Variationsrechnung (†) • Symmetrien und Erhaltungssätze • Noether-Theorem (†) • Starrer Körper, Trägheitstensor, Kreisel • Differentialformen (†)(*) • Hamilton-Formalismus, Poisson-Klammer, Phasenraum, Liouville-Theorem • Integrable und nichtintegrable Probleme, Chaos • Partielle Differentialgleichungen (†) • Physik der Kontinua und Felder, ideale Hydrodynamik • Potenzialströmung, Navier-Stokes-Gleichung (*) • Weiche Materie (*) Teilmodul 2: Thermodynamik und statistische Physik • Ensembles, Fluktuationen, statistische Grundkonzepte am Beispiel des idealen Gases • Diffusion • Boltzmann-Verteilung • Legendre-Transformation (†) • Temperatur, mikroskopische Definition der Entropie • 1. Hauptsatz, Carnot-Prozess, makroskopische Definition der Entropie, 2. Hauptsatz • Thermodynamische Potenziale und Phasenübergänge Die mit (†) gekennzeichneten Teile markieren die Mathematikinhalte, die einen wesentlichen Teil der Vorlesung ausmachen; die mit (*) gekennzeichneten Inhalte repräsentieren moderne Aspekte und können je nach Dozent variieren.
Goal
Nach erfolgreicher Teilnahme am Modul ż kennen und verstehen die Studierenden die Grundlagen, Methoden und Konzepte der Theoretischen Physik im Bereich der analytischen Mechanik der Punktmassen, des starren Körpers und der Kontinua, der theoretischen Thermodynamik sowie der elementaren Statistik, ż haben die Studierenden die notwendigen mathematischen Kenntnisse und Fähigkeiten die zum Verständnis der genannten Themenbereiche notwendig sind, ż besitzen die Studierenden die Fertigkeiten, Problemstellungen aus den genannten Bereichen der Theoretischen Physik eigenständig zu strukturieren, differenziert zu analysieren und mit den vermittelten Konzepten und Methoden Lösungsansätze und Modelle zu erarbeiten, diese aus physikalischer Sicht zu bewerten und zu kommunizieren, ż sind die Studierenden in der Lage, sich weitere, verwandte Themen und Methoden der theoretischen Physik durch Literaturarbeit selbst zu erschließen.
- Theoretische Physik IV - Quantenmechanik (PTP4)
Vorlesung Gasenzer T
Homepage heiCO-Info Link to Registration
Anmeldung abgelaufen
more information1300171104
Anmeldung abgelaufen
Link to RegistrationCourse Information
For further up-to-date information see the Webpage of the Lecture
Content
• Widersprüche zwischen Erfahrung und klassischer Physik • Postulate der Quantenmechanik • Hilbertraum, Zustände, Operatoren • Unschärferelation • Schrödingergleichung • Harmonischer Oszillator • Bewegung im Zentralpotenzial, Drehimpuls, Spin • Spin • Wasserstoffatom • Potenzialstreuung • Mehrteilchenprobleme • Schrödinger- vs. Heisenbergbild • Zeitabhängige und zeitunabhängige Störungsrechnung mit Beispielen • Variationsverfahren • Symmetrien und Invarianzen • Supersymmetrie (*) • Dichtematrix, Messprozess • Pfadintegral Die mit (*) gekennzeichneten Inhalte repräsentieren moderne Aspekte und können variieren.
Goal
Nach erfolgreicher Teilnahme am Modul ż kennen und verstehen die Studierenden die Grundlagen, Methoden und Konzepte der Theoretischen Physik im Bereich der Quantenmechanik mit deren wichtigsten Anwndungen, ż haben die Studierenden die notwendigen mathematischen Kenntnisse und Fähigkeiten die zum Verständnis der genannten Themenbereiche notwendig sind, ż besitzen die Studierenden die Fertigkeiten, Problemstellungen aus den genannten Bereichen der Theoretischen Physik eigenständig zu strukturieren, differenziert zu analysieren und mit den vermittelten Konzepten und Methoden Lösungsansätze und Modelle zu erarbeiten, diese aus physikalischer Sicht zu bewerten und zu kommunizieren, ż sind die Studierenden in der Lage, sich weitere, verwandte Themen und Methoden der theoretischen Physik durch Literaturarbeit selbst zu erschließen.
- Methoden der mathematischen Physik 1 (MMP1)
Vorlesung Salmhofer M
Homepage heiCO-Info Link to Registration
Anmeldung abgelaufen
more information1300171201
Anmeldung abgelaufen
Link to RegistrationContent
Die Vorlesung MMP 1 richtet sich an Viertsemestrige im Bachelorstudiengang Physik. Sie ergänzt die Mathematik-Pflichtvorlesungen fuer Physiker durch weiterführende, für die Physik relevante mathematische Inhalte. In diesem Semester sind folgende Themen vorgesehen: Elemente der komplexen Analysis Hilbert- und Banachräume, Theorie linearer Operatoren Anwendungen in der Quantenmechanik Die Lehrveranstaltung findet größtenteils in Präsenz, an wenigen Terminen online statt. Einzelheiten werden den registrierten Teilnehmer(inn)en direkt mitgeteilt.
- General Relativity (MKTP3)
Vorlesung Amendola L
Homepage heiCO-Info Link to Registration
Anmeldung abgelaufen
more information1300172103
Anmeldung abgelaufen
Link to RegistrationContent
* Manifolds * Geodetics, curvature, Einstein-Hilbert action * Einstein equations * Cosmology * Differential forms in General Relativity * The Schwarzschild solution * Schwarzschild black holes * More on black holes (Penrose diagrams, charged and rotating black holes) * Unruh effect and hawking radiation
Goal
After completing the course the students * have a thorough knowledge and understanding of Einstein's theory of General Relativity including the necessary tools from differential geometry and applications such as black holes, gravitational radiation and cosmology, * have acquired the necessary mathematical tools from differential geometry, are trained in their application to physical situations with strong gravity and are familiar with their interpretation, * have advanced competence in the fields of theoretical physics covered by this course, i.e. the ability to analyze physical phenomena using the acquired concepts and techniques, to formulate models and find solutions to specific problems, and to interpret the solutions physically and communicate them efficiently, * are able to broaden their knowledge and competence in this field of theoretical physics on their own by a systematical study of the literature.
- Advanced Quantum Field Theory (QFTII, MVSpec)
Vorlesung Ziegler R
Homepage heiCO-Info Link to Registration
Anmeldung abgelaufen
more information1300172201
Anmeldung abgelaufen
Link to RegistrationContent
• Effective action • Symmetries and conservation laws • Gauge theories: QED, QCD, QFT, quantized • Feynman rules in Lorentz covariant gauges • Renormalization in Gauge theories • One-loop QED • Spontaneous symmetry breaking and Higgs mechanism • Renormalization groups, Wilson renormalization, lattice gauge theory
Goal
After completing the course the students ż have a thorough knowledge and understanding of the regularisation and renormalisation programme in ż4-theory, of renormalisation in QED and non-abelian gauge theories (1-loop order), of the effective action and the modern renormalisation group approach, ż have acquired the necessary mathematical knowledge and competence for an in-depth understanding of this research field, ż have advanced competence in the fields of theoretical physics covered by this course, i.e. the ability to analyze physical phenomena using the acquired concepts and techniques, to formulate models and find solutions to specific problems, and to interpret the solutions physically and communicate them efficiently, ż are able to broaden their knowledge and competence in this field of theoretical physics on their own by a systematical study of the literature.
- Standard Model of Particle Physics (MVHE3, MVSpec)
Vorlesung Degenkolb S, Ewerz C, Uwer U
Homepage heiCO-Info Link to Registration
Anmeldung abgelaufen
more information1300172203
Anmeldung abgelaufen
Link to RegistrationContent
Theoretical and experimental foundations of the Standard Model (SM) of particle physics on an advanced level. The lecture includes the main building blocks of the Standard Model: QED, weak interactions, gauge symmetries, electroweak symmetry breaking and Higgs mechanism, Flavor Physics, QCD. The lectures are given by a theoretician and experimentalist. For details see the web page of the lecture: https://uebungen.physik.uni-heidelberg.de/vorlesung/20241/1848
Goal
Upon completion of this course the student has gained advanced knowledge about the Standard Model of Particle Physics including its mathematical framework based on relativistic quantum field theory, with emphasis on the interplay of experimental results and theoretical developments. The student can formulate the Standard Model and is capable to calculate particle processes using perturbation theory.
- Condensed Matter Theory 2 (MVCMT2, MVSpec)
Vorlesung Haverkort M
Homepage heiCO-Info Link to Registration
Anmeldung abgelaufen
more information1300172204
Anmeldung abgelaufen
Link to RegistrationContent
- Introductory materials: bosons, fermions and second quantisation - Green's functions approach - Exactly solvable problems: potential scattering, Luttinger liquids etc. - Theory of quantum fluids, BCS theory of superconductivity - Quantum impurity problems: Kondo effect, Anderson model, renormalisation group approach Depending on the lecturer more weight will be given to solid state theories or to soft matter.
Goal
After completing the course the students - have a thorough knowledge and understanding, of the nowadays 'traditional' diagrammatic technique and the problems solved by this technique, including Landau's theory of quantum liquids and BCS theory of superconductivity, - of advanced non-perturbative approaches such as renormalization group transformations, bosonisation and Bethe Ansatz and there application to examples of quantum impurity problems such as potential scattering in Luttinger liquids, inter-edge tunneling in fractional quantum Hall probes and Kondo effect in metals and mesoscopic quantum dots, - have acquired the necessary mathematical knowledge and competence for an in-depth understanding of this research field, - have advanced competence in the fields of theoretical physics covered by this course, i.e. the ability to analyze physical phenomena using the acquired concepts and techniques, to formulate models and find solutions to specific problems, and to interpret the solutions physically and communicate them efficiently, - are able to broaden their knowledge and competence in this field of theoretical physics on their own by a systematical study of the literature.
- Advanced Quantum Theory (MVAMO2, MVSpec)
Vorlesung Enss T
Homepage heiCO-Info Link to Registration
Anmeldung abgelaufen
more information1300172205
Anmeldung abgelaufen
Link to RegistrationCourse Information
Contents
-
Introduction
- A brief reminder of some basics of quantum mechanics
-
Quantum theory of matter
- Identical particles
- Bosons and fermions
- Fock space
-
Interactions
- Scattering theory
- Potential scattering
- Lippmann-Schwinger equation and Born approximation
- Partial-wave expansion
- Scattering cross section and optical theorem
- Resonance scattering and bound states
- Coulomb scattering
-
Theory of quantum states
- Density matrix
- Pure states and mixed ensembles
- Environment and partial trace
- Entanglement (EPR, Bell's inequalities)
- Time evolution and thermalization
-
Open quantum systems
- Markovian approximation and Lindblad Master equation
- Jaynes-Cummings model
- Collapse and revival
- Adiabatic processes
Literature
There are many good textbooks on Quantum Mechanics, here are a few:
- Jean-Louis Basdevant, Jean Dalibard, Quantum Mechanics. Springer 2002.
- Claude Cohen-Tannoudji, Bernard Diu, Franck Laloë, Quantum Mechanics. Wiley, New York, 2005 (reprint). [ Google books | HEIDI ]
- L.D. Landau and E. M. Lifshitz, Quantum Mechanics. Non-relativistic theory. Pergamon Press, Oxford, 1977. [ HEIDI | Online Full Text ]
- F. Schwabl, Quantenmechanik I, II [in German]. Springer 2007. [ Ebook I | Ebook II ]
- N. Straumann, Quantenmechanik [in German]. Springer 2013. [ Ebook ]
- Steven Weinberg, Lectures on Quantum Mechanics. Cambridge University Press, 2nd ed., 2015. [ Google books | HEIDI ]
Fock space/Second quantization
- A. Altland, B. Simons, Condensed Matter Field Theory, 3rd ed., Cambridge 2023. In particular section 2.1. [ HEIDI ]
Scattering theory
- C.J. Joachain, Quantum Collision Theory. North-Holland, Amsterdam, 1983. [ HEIDI | Scribd Full Text ]
- Landau and Lifshitz (see above), see Chapters XVII & XVIII.
- J. Dalibard, Collisional dynamics of ultra-cold atomic gases. Varenna lecture notes 1998. [ Full Text ]
Open quantum systems
- M.D. Lukin, Modern Atomic and Molecular Physics II. Harvard lecture notes 2016. [ Full Text ]
Prerequisites
contents of PEP1-4, PTP1-4, in particular Quantum Mechanics (PTP4)
Content
Contents: 0. Introduction - A brief reminder of some basics of quantum mechanics 1. Quantum theory of matter - Harmonic oscillator - Identical particles - Bosons and fermions - Fock space 2. Interactions - Scattering theory - Potential scattering - Lippmann-Schwinger equation and Born approximation - Partial-wave expansion - Scattering cross section and optical theorem - Resonance scattering and bound states - Coulomb scattering 3. Theory of quantum states - Density matrix - Pure states and mixed ensembles - Environment and partial trace - Entanglement (EPR, Bell's inequalities) - Time evolution and thermalization 4. Open quantum systems - Markovian approximation and Lindblad Master equation - The Jaynes-Cummings model - Collapse and revival - Adiabatic processes
-
Introduction
- Advanced Cosmology (MVSpec)
Vorlesung Maturi M
Homepage heiCO-Info Link to Registration
Anmeldung abgelaufen
more information1300172206
Anmeldung abgelaufen
Link to RegistrationContent
The course will cover advanced topics in Cosmology concerning booth theoretical and observational aspects. Further information on "Uebungen": https://uebungen.physik.uni-heidelberg.de/vorlesung/20241/1836
- Theoretical Biophysics (MVBP2, MVSpec)
Vorlesung Schwarz U
Homepage heiCO-Info Link to Registration
Anmeldung abgelaufen
more information1300172207
Anmeldung abgelaufen
Link to RegistrationContent
This course is MVBP2 in the modul handbook and is addressed to physics master students with an interest in biophysics. Motivated bachelor or PhD-students are also most welcome, as are students from neighboring disciplines. There are two lectures each week, each for 90 minutes, plus weekly homework and exercises. Together you can earn 6 credit points from this course. This lecture can be used for the oral master examination if combined with e.g. the lecture on statistical physics or the lecture on simulation methods, or with two short specialized lectures (like non-linear or stochastic dynamics). The details for the tutorial will be discussed in the first lecture, which is on Thu April 18.
- Nonequilibrium Quantum Fields: From Cold Atoms to Cosmology (MVSpec)
Vorlesung Berges J
Homepage heiCO-Info Link to Registration
Anmeldung abgelaufen
more information1300172208
Anmeldung abgelaufen
Link to RegistrationContent
Basics and applications of nonequilibrium quantum field theory to particle physics/early universe cosmology and experiments with ultracold quantum gases: path integral formulation, resummation techniques, renormalization, classical aspects of nonequilibrium quantum fields, nonequilibrium instabilities, far-from-equilibrium scaling phenomena, thermalization.
- Nonlinear Dynamics and Pattern Formation (MVSpec)
Vorlesung Ziebert F
Homepage heiCO-Info Link to Registration
Anmeldung abgelaufen
more information1300172209
Anmeldung abgelaufen
Link to RegistrationCourse Information
The lectures are Mondays and Wednesdays at 2:00pm at großer Hörsaal, Philosophenweg 12
Motivation:
Nonlinear dynamics is an interdisciplinary part of mathematical physics, with applications in such diverse fields as mechanics, optics, chemistry, biology, ecology, to name but a few. Equations with nonlinearities show a much more diverse behavior than their linear counterparts, for instance self-sustained oscillations, nonlinear competition (as linear superposition does not hold anymore), chaotic dynamics and pattern formation. Pattern formation, in turn, is one of the most fascinating and intriguing phenomena in nature: it takes place in a wide variety of physical, chemical and biological systems and on very different spatial and temporal scales: examples are convection phenomena in geosciences and meteorology, but also patterns occurring in chemical reactions and bacterial colonies. In some circumstances, pattern formation is undesired, for instance the formation of spiral waves leading to cardiac arrhythmias in the heart muscle. In other contexts, pattern formation is even essential for the functioning of a system as in cell division and embryo development.
Contents:
The lecture will start with an introduction to nonlinear dynamics on the level of ordinary differential equations (ODEs), introducing concepts like phase space analysis, attractors, (in)stability of solutions and bifurcations, as well as nonlinear oscillations.
We will then proceed to study spatio-temporal behavior, i.e. partial differential equations (PDEs) and discuss the main questions in pattern formation: when will a homogeneous state become structured, i.e. unstable towards a pattern? What are the generic scenarios/types of patterns? When are patterns stable and are they unique? What determines the wavelength / period in time / amplitude of a pattern? Importantly, a universal description of pattern dynamics exists, that is independent of the system-specific pattern formation mechanism. The method to obtain this description is called multiple-scale reduction, resulting in an amplitude equation (also called center manifold), which is nothing but the famous Ginzburg-Landau equation (Nobel Prize in Physics 2003, originally derived for superconductivity).
Finally, nonlinear waves and solitons (localized waves) will be discussed. They again occur in many systems, from coupled nonlinear springs to hydrodynamic surface waves and nonlinear optics. In addition, solitons have intriguing mathematical properties that will also be discussed.
Prerequisites:
The course is designed for physics students in advanced bachelor and beginning master semesters (students from other disciplines are also welcome). It will be given in English. A basic understanding of physics and differential equations is sufficient to attend. Exercises will be discussed in the tutorials (please register).
Literature:
- SH Strogatz, Nonlinear dynamics and chaos, Westview 1994
- Cross M C and Hohenberg P C, Rev. Mod. Phys. 1993.
- Cross M C and Greenside H, Pattern formation and dynamics in nonequilibrium systems (Cambridge, Cambridge Univ. Press, 2009).Content
The lectures are Mondays and Wednesdays at 2:00pm at großer Hörsaal, Philosophenweg 12 Motivation: Nonlinear dynamics is an interdisciplinary part of mathematical physics, with applications in such diverse fields as mechanics, optics, chemistry, biology, ecology, to name but a few. Equations with nonlinearities show a much more diverse behavior than their linear counterparts, for instance self-sustained oscillations, nonlinear competition (as linear superposition does not hold anymore), chaotic dynamics and pattern formation. Pattern formation, in turn, is one of the most fascinating and intriguing phenomena in nature: it takes place in a wide variety of physical, chemical and biological systems and on very different spatial and temporal scales: examples are convection phenomena in geosciences and meteorology, but also patterns occurring in chemical reactions and bacterial colonies. In some circumstances, pattern formation is undesired, for instance the formation of spiral waves leading to cardiac arrhythmias in the heart muscle. In other contexts, pattern formation is even essential for the functioning of a system as in cell division and embryo development.
Goal
Contents: The lecture will start with an introduction to nonlinear dynamics on the level of ordinary differential equations (ODEs), introducing concepts like phase space analysis, attractors, (in)stability of solutions and bifurcations, as well as nonlinear oscillations. We will then proceed to study spatio-temporal behavior, i.e. partial differential equations (PDEs) and discuss the main questions in pattern formation: when will a homogeneous state become structured, i.e. unstable towards a pattern? What are the generic scenarios/types of patterns? When are patterns stable and are they unique? What determines the wavelength / period in time / amplitude of a pattern? Importantly, a universal description of pattern dynamics exists, that is independent of the system-specific pattern formation mechanism. The method to obtain this description is called multiple-scale reduction, resulting in an amplitude equation (also called center manifold), which is nothing but the famous Ginzburg-Landau equation (Nobel Prize in Physics 2003, originally derived for superconductivity). Finally, nonlinear waves and solitons (localized waves) will be discussed. They again occur in many systems, from coupled nonlinear springs to hydrodynamic surface waves and nonlinear optics. In addition, solitons have intriguing mathematical properties that will also be discussed.
- Introduction to Mathematica with applications to physics and statistics (MVSpec)
Vorlesung Amendola L
Homepage heiCO-Info Link to Registration
Anmeldung abgelaufen
more information1300172210
Anmeldung abgelaufen
Link to RegistrationContent
The course is ONLINE only. It will provide an introduction to Mathematica with applications to physics and statistics. You need to have Mathematica installed on your computer. The course will start on April 30, and continues for 8 lectures, every Tuesday at 11:15-13:00. More info https://www.thphys.uni-heidelberg.de/%7Eamendola/intromath-ss2024.html - Basics of Mathematica: functions, graphics, input/output, modules - Solving common mathematical, physical, and statistical problems
- Quantum Computing (MVSpec)
Vorlesung Dosch H, Marquard U
Homepage heiCO-Info Link to Registration
Anmeldung abgelaufen
more information1300172211
Anmeldung abgelaufen
Link to RegistrationCourse Information
Quantum Computing
Vorlesung H.G. Dosch und U. Marquard, Mi. 11.15-13 Uhr
Bauteile gegenwärtiger Computer erreichen die Größenordnung von Atomen. Da für atomare und subatomare Physik die Quantenmechanik die akzeptierte und bestens bestätigte Theorie ist, wurde der Vorschlag von Feynman aus dem Jahr 1982 immer aktueller: nämlich Computer zu bauen und Algorithmen zu implementieren, die nach den Prinzipien der Quantenmechanik funktionieren.Beim Bau universell programmierbarer Quantencomputer und ihrer Nutzung wurden große Fortschritte erzielt und es gibt Hinweise dafür, dass sie in Zukunft gewisse Aufgabenstellungen wesentlich effizienter lösen können als klassische Computer. Ein viel diskutiertes und beachtetes Beispiel ist die Entschlüsselung aktuell verwendeter, bisher als sicher geltender Verschlüsselungsverfahren.Es ist nicht überraschend, dass gerade die der Anschauung am stärksten widersprechenden und daher im Anfangsstadium der Theorie am heftigsten kritisierten Konzepte der Quantenmechanik, wie Superposition und Verschränkung von Zuständen in verschiedenen Anwendungen einen Quantencomputer einem klassischen Computer überlegen machen.In der Vorlesung wollen wir insbesondere auf die Verknüpfung von Physik und Informatik in der Quanteninformationstheorieeingehen.- Wir beginnen mit einer Vorstellung aktueller Herausforderungen der Digitalisierung und bekannter Grenzen (klassischer) Computer und geben eine kurze Einführung in Berechenbarkeitstheorie, Rechenmodelle, Algorithmen und reversibles Rechnen. Danach werden das Quantenbit und Rechenschritte darauf definiert, Quantenregister und Quantenschaltkreise eingeführt, wichtige Algorithmen untersucht und gezeigt, wie diese implementiert werden können.
- Im Zusammenhang mit der Quanteninformatik wird der formale Aufbau der Quantenmechanik noch einmal vorgestellt. Dabei werden die Aspekte, die für die Funktionsweise eines Quantencomputers wesentlich sind, besonders hervorgehoben, z.B. Messprozess, E. Schmidt´scher Formalismus, Quantenkanäle, Superoperatoren und die Quanten-Fouriertransformation.
- In einem dritten Teil wird die klassische Komplexitätstheorie kurz vorgestellt, um mögliche entscheidende Vorteile eines Quantencomputers aufzeigen zu können.
- Der nächste Teil der Vorlesung besteht in einer Beschreibung und Diskussion des Shore´schen Algorithmus. Er beruht auf Ergebnissen der Zahlentheorie und der Quanten-Fouriertransformation. Er ist nicht nur der Algorithmus, der aktuell für die größte Aufmerksamkeit sorgt, sondern an ihm lassen sich auch die wesentlichen Vorteile des Quantencomputers und Elemente der Quantenkomplexität sehr gut darstellen.
- Ein weiterer essentieller Punkt für die Entwicklung der Quantencomputer war die Entdeckung von Verfahren zur Fehlerkorrektur, die wir in diesem Teil der Vorlesung betrachten werden.
- Die Eigenschaften der Quantenmechanik erlauben die Implementierung abhörsicherer, verschlüsselter Kommunikation. Diese wurde bereits über viele 100 km erfolgreich getestet (Nobelpreis für Physik 2022) und ist wesentliche Voraussetzung für ein Quanteninternet.
- Abschließend sollen verschiedene Ansätze zum Bau von Quantencomputern und zur Realisierung von Gates vorgestellt werden.
Zielgruppe: Studierende, die sich für Theoretische Quantenmechanik und Informatik interessieren.Voraussetzung: Kenntnis der Quantenmechanik, z.B. Vorlesung Quantenmechanik (Theoretische Physik IV)Content
Bauteile gegenwärtiger Computer erreichen die Größenordnung von Atomen. Da für atomare und subatomare Physik die Quantenmechanik die akzeptierte und bestens bestätigte Theorie ist, wurde der Vorschlag von Feynman aus dem Jahr 1982 immer aktueller: nämlich Computer zu bauen und Algorithmen zu implementieren, die nach den Prinzipien der Quantenmechanik funktionieren. Beim Bau universell programmierbarer Quantencomputer und ihrer Nutzung wurden große Fortschritte erzielt und es gibt Hinweise dafür, dass sie in Zukunft gewisse Aufgabenstellungen wesentlich effizienter lösen können als klassische Computer. Ein viel diskutiertes und beachtetes Beispiel ist die Entschlüsselung aktuell verwendeter, bisher als sicher geltender Verschlüsselungsverfahren. Es ist nicht überraschend, dass gerade die der Anschauung am stärksten widersprechenden und daher im Anfangsstadium der Theorie am heftigsten kritisierten Konzepte der Quantenmechanik, wie Superposition und Verschränkung von Zuständen in verschiedenen Anwendungen einen Quantencomputer einem klassischen Computer überlegen machen. In der Vorlesung wollen wir insbesondere auf die Verknüpfung von Physik und Informatik in der Quanteninformationstheorie eingehen. - Wir beginnen mit einer Vorstellung aktueller Herausforderungen der Digitalisierung und bekannter Grenzen (klassischer) Computer und geben eine kurze Einführung in Berechenbarkeitstheorie, Rechenmodelle, Algorithmen und reversibles Rechnen. Danach werden das Quantenbit und Rechenschritte darauf definiert, Quantenregister und Quantenschaltkreise eingeführt, wichtige Algorithmen untersucht und gezeigt, wie diese implementiert werden können. - Im Zusammenhang mit der Quanteninformatik wird der formale Aufbau der Quantenmechanik noch einmal vorgestellt. Dabei werden die Aspekte, die für die Funktionsweise eines Quantencomputers wesentlich sind, besonders hervorgehoben, z.B. Messprozess, E. Schmidt´scher Formalismus, Quantenkanäle, Superoperatoren und die Quanten-Fouriertransformation. - In einem dritten Teil wird die klassische Komplexitätstheorie kurz vorgestellt, um mögliche entscheidende Vorteile eines Quantencomputers aufzeigen zu können. - Der nächste Teil der Vorlesung besteht in einer Beschreibung und Diskussion des Shore´schen Algorithmus. Er beruht auf Ergebnissen der Zahlentheorie und der Quanten-Fouriertransformation. Er ist nicht nur der Algorithmus, der aktuell für die größte Aufmerksamkeit sorgt, sondern an ihm lassen sich auch die wesentlichen Vorteile des Quantencomputers und Elemente der Quantenkomplexität sehr gut darstellen. - Ein weiterer essentieller Punkt für die Entwicklung der Quantencomputer war die Entdeckung von Verfahren zur Fehlerkorrektur, die wir in diesem Teil der Vorlesung betrachten werden. - Die Eigenschaften der Quantenmechanik erlauben die Implementierung abhörsicherer, verschlüsselter Kommunikation. Diese wurde bereits über viele 100 km erfolgreich getestet (Nobelpreis für Physik 2022) und ist wesentliche Voraussetzung für ein Quanteninternet. - Abschließend sollen verschiedene Ansätze zum Bau von Quantencomputern und zur Realisierung von Gates vorgestellt werden.
- From Black Holes to Gravitational Waves: Theory meets Observations (MVSpec)
Vorlesung Heisenberg L
heiCO-Info Link to Registration
Anmeldung abgelaufen
more information - Yang-Mills thermodynamics and applications in particle physics / cosmology (MVSpec)
Vorlesung Hofmann R
heiCO-Info Link to Registration
Anmeldung abgelaufen
more information - Non-perturbative aspects of gauge theories (MVSpec)
Vorlesung Pawlowski J
Homepage heiCO-Info Link to Registration
Anmeldung abgelaufen
more information1300172215
Anmeldung abgelaufen
Link to RegistrationCourse Information
The lecture course provides an introduction to the strongly-correlated physics of QCD and Quantum Gravity. The related physics problems are treated within the Functional Renormalisation Group (fRG), and a survey of alternative approaches is provided.
Outline
I The Functional RG
Euclidean QFT
Functional Renormalisation Group
Critical Phenomena & Fixed Points
II QCD
Introduction
Non-Abelian gauge theories & confinement
Chiral symmetry breaking in QCD
QCD at finite T
A glimpse at the QCD phase diagram
III Quantum Gravity
Introduction
RG approach to quantum gravity
Gravity and matter
Cosmological applications*Content
The lecture course provides an introduction to the strongly-correlated physics of QCD and Quantum Gravity. The related physics problems are treated within the Functional Renormalisation Group (fRG), and a survey of alternative approaches is provided. Outline I The Functional RG Euclidean QFT Functional Renormalisation Group Critical Phenomena & Fixed Points II QCD Introduction Non-Abelian gauge theories & confinement Chiral symmetry breaking in QCD QCD at finite T A glimpse at the QCD phase diagram III Quantum Gravity Introduction RG approach to quantum gravity Gravity and matter Cosmological applications*
- Advanced Dark Matter (MVSpec)
Vorlesung Arcadi G
Homepage heiCO-Info Link to Registration
Anmeldung abgelaufen
more information1300172217
Anmeldung abgelaufen
Link to RegistrationContent
The main purpose of the course is to cover advanced topics on Particle Dark Matter, mostly connected with production mechanism in the Early Universe. You can find below a tentative program of the course. I am nevertheless open to feedback and proposals from the students. Program Thermal freeze-out: a critical reappraisal. Dark Matter Production in non-Standard Cosmological histories. Dark Matter Production via freeze-in;
- Theoretical Quantum Optics (MVSpec)
Vorlesung Evers J
Homepage heiCO-Info Link to Registration
Anmeldung abgelaufen
more information1300172218
Anmeldung abgelaufen
Link to RegistrationCourse Information
This course comprises lectures (2h/week) and exercises (2h/week). The exercise classes will on Fridays, 9:15-10:45, in PhilWeg 12 nHs.
There is a moodle course with more information and lecture materials: https://moodle.uni-heidelberg.de/course/view.php?id=22191
The enrollment password is goquantum
- Geometric Machine Learning in Quantum Chemistry (MVSpec)
Vorlesung Hamprecht F
Homepage heiCO-Info Link to Registration
Anmeldung abgelaufen
more information1300182201
Anmeldung abgelaufen
Link to RegistrationContent
https://sciai-lab.org/teaching/24s/gmlqc/
Goal
see https://sciai-lab.org/teaching/24s/gmlqc/
- Computational Statistics and Data Analysis (MVComp2, MVSpec)
Vorlesung Bereau T, Durstewitz D
Homepage heiCO-Info Link to Registration
Anmeldung abgelaufen
more information1300182202
Anmeldung abgelaufen
Link to RegistrationContent
- Axioms of Probability Theory; random variables, important distributions - Bayesian inference - Linear regression, non-linear regression - Regularized regression to fit high-dimensional data - Hypothesis testing: fundamental concepts - Parametric and non-parametric tests - Classification - Cluster analysis - Model selection
Goal
After completion of this module, the students understand fundamental concepts of stochastics, and are able to relate them to concrete problems. They understand and are alert of possible pitfalls such as overfitting, multiple comparisons, or susceptibility to outliers. They know and are able to apply basic countermeasures and they have access to more advanced literature on the subject. Students are familiar with relevant high-level languages and statistical programming libraries, and know how to apply them to real-world data provided in the exercises.
- Machine Learning Essentials (MVSpec)
Vorlesung Köthe U
heiCO-Info Link to Registration
Anmeldung abgelaufen
more information - Computer Vision (MVSpec)
Vorlesung Rother C
heiCO-Info Link to Registration
Anmeldung abgelaufen
more information1300182219
Anmeldung abgelaufen
Link to RegistrationContent
All Information can be found here: https://hci.iwr.uni-heidelberg.de/content/computer-vision You have to register for the course in Moodle: https://moodle.uni-heidelberg.de/course/view.php?id=21825 Moodle enrollment key: ComVis24 Course Capacity: 40 (First Come First Served)
Winter Term 2017/2018
Summer Term 2018
Winter term 2018/2019
Summer Term 2019
Winter Term 2019/2020
Summer Term 2020
Winter Term 2020/2021
Summer Term 2021
Winter Term 2021/2022
Summer Term 2022
Winter Term 2022/2023
Summer Term 2023
Winter term 2023/2024
Summer Term 2024
Winter Term 2024/2025
vv