• Galaxien: Aufbau und Eigenschaften normaler Galaxien und der
Milchstraße; Skalierungsrelationen; Spektren; Leuchtkraftfunktion;
kosmologische Entwicklung der Sternentstehung; schwarze Löcher in
Galaxien, aktive Galaxien und ihre Eigenschaften; vereinheitlichte Modelle
• Galaxienhaufen: optische Eigenschaften und Haufengas;
hydrostatisches Modell; Skalierungsrelationen; Häufigkeit und Entwicklung
• Gravitationslinsen: Grundlagen, Massenverteilung in Galaxien und
Galaxienhaufen; kosmologischer Linseneffekt
• Großräumige Verteilung von Galaxien und Gas: Strukturen in der
räumlichen Galaxienverteilung; Rotverschiebungseffekte; Biasing; Lyman-α-
Wald; Gunn-Peterson-Effekt und kosmische Reionisation
• Kosmologische Rahmenbedingungen: Friedmann-Lemaître-Modelle,
kosmologisches Standardmodell; Ursprung und Entwicklung von Strukturen;
Halos aus dunkler Materie; Entstehung von Galaxien
* Optical telescopes: optics and characteristic parameters, telescope types, diffraction, resolution, aberrations and corrections, applications
* Optical detectors: detector types, semiconductors and CCDs, quantum efficiency, readout, noise sources, multi-chip cameras, applications
* Imaging: techniques, photometry, data reduction and characterisation, signal-to-noise
* Atmospheric effects and corrections: extinction, turbulence, seeing, active and adaptive optics, laser guide stars, applications
* Spectroscopy: types of spectrographs and spectrometers, dispersive elements, integral field units, data reduction and characterisation, applications
* Infrared astronomy: detectors and techniques, sources, applications
* Radio astronomy: detectors and instrumentation, synthesis techniques, types of radiation and sources, applications
* Astronomical interferometry: wavelength regimes, instrumentation, applications
* X-ray and gamma-ray astronomy: detectors and instrumentation, types of radiation and sources, applications
* Astroparticle physics: neutrino and Cherenkov detectors, sources and acceleration mechanisms of neutrinos and cosmic rays, applications
* Gravitational-wave astronomy: detection, sources, applications.
* In-situ exploration and remote sensing.
Lehrziel
After completing this course, the students have firm insight into the concepts, technologies, and the underlying physical principles and limitations of modern observational techniques along with scientific applications. They have knowledge of basic detector designs for different types of radiation and particles. They understand the environmental influence on astronomical observations. They are able to select and judge the adequate observational technique for studying an astronomical object of interest.
- Astronomical basics: astronomical observations, methods and instruments;
orientation at the celestial sphere; fundamental terms of electromagnetic
radiation; distance determination, Earth-Moon system; terrestrial and gas
planets, small bodies; extra-solar-planets
- Inner structure of stars: state variables, stellar atmospheres and line
spectra; Hertzsprung-Russell diagram; fundamental equations, energy
transfer and opacity; nuclear reaction rates and tunnelling; nuclear fusion
reactions
- Stellar evolution: Main sequence, giants and late phases; white dwarfs,
Chandrasekhar limit; supernovae, neutron stars, Pulsars and supernova
remnants; binaries and multiple systems; star clusters
- Interstellar medium: cold, warm, hot gas phases dust, cosmic rays,
magnetic fields; ionization and recombination, Stroemgren spheres; heating
and cooling; star formation, matter cycle, chemical enrichment
- Galaxies: Structure and properties of normal galaxies and the Milky Way;
scaling relations; integrated spectra, luminosity function; cosmological
evolution of star formation; Black Holes in galaxies, active galaxies and their
properties, unified models
- Galaxy clusters: optical properties and cluster gas; hydrostatic model;
scaling relations; number densities and evolution
- Gravitational lensing: Concepts, mass distribution in galaxies and galaxy
clusters; cosmological lensing effect
- Large scale distribution of galaxies and gas: Structure in the spatial galaxy
distribution; redshift effects; biasing; Lyman-α-forest; Gunn-Peterson effect
and cosmic reionization
- Cosmology: Friedmann-Lemaître models, cosmological standard model;
origin and evolution of structures; halos of Dark Matter; Formation of
galaxies
Lehrziel
The students have gained basic knowledge and understanding of astronomical objects, measuring units and methods, and the relevant astrophysical processes. They have a firm grasp of the fundamental interrelations of objects and processes on different scales. They are able to reproduce the basic features of the modern world view including the physical reasoning, and connect astronomical and astrophysical phenomena to previously acquired knowledge in physics.
To excel in the module MVAstro2 "Stellar Astrophysics," it is essential to complete an adequate number of exercises and attend the tutorials. Merely submitting exercises through the Übungsgruppensystem is insufficient; you must also be prepared to present your solutions during the tutorial sessions.
Credit points cannot be awarded solely based on participation in the written exam; attendance at the tutorials is also required to receive credit.
Preliminary Schedule:
17.4.25: Introduction (Stefan Jordan)
24.4.25: Stellar structure 1 (Stefan Jordan)
01.5.25: May 1, holiday
08.5.25: Stellar structure 2 (Stefan Jordan)
15.5.25: Stellar structure 3 (Stefan Jordan)
22.5.25: Energy transport (Stefan Jordan)
29.5.25: Himmelfahrt, holiday
05.6.25: Energy production (Stefan Jordan)
12.6.25: Main sequence (Stefan Jordan)
19.6.25: Fronleichnam, holiday
26.6.25: Stellar evolution to the AGB (Stefan Jordan)
03.7.25: Late stages of stellar evolution (Stefan Jordan)
10.7.25: Stellar pulsations, rotation, magnetic fields (Stefan Jordan)
17.7.25: Stellar spectra (Stefan Jordan)
23.7.25: (Wednesday!) Written exam, 10-12 CEST, Neuer Hörsaal (Stefan Jordan)
Seminar:
3 full days: July 29, July 30, and July 31, 2025, Kleiner Hörsaal
All participants are required to attend the seminar on all three days! The sequence of the talks will be chosen later!
Each talk will have a length of 15 minutes followed by questions and feedback for about 10 minutes.
Preliminary list of Seminar topics
Delvin Ahmeti: 22, Asteroseismology Across the Hertzsprung-Russell Diagram
Jan Andrés Alcover Lötsch: 38, Binary Neutron Star Merger GW170817
Muhammad Sohrab Ali: 11, The First Stars
Semine Bahrioglu: 20, PARSEC V2.0 Isochrones
Melanie Anna Bayer: 25, Carrington Events
Kunal Bhatia: 18, Population of Merging Compact Binaries Inferred Using Gravitational Waves through GWTC-3
Noah Bomblies: 9, Origin of the elements
Seraphin Bücklers: 22, Asteroseismology Across the Hertzsprung-Russell Diagram
Leon Comanescu: 17, The Fifth Catalogue of Nearby Stars (CNS5)
Franca De Domenico--Langer: 56, Mass Loss in High-Mass Stars
Lea Flach: 8: The evolutionary stage of Betelgeuse inferred from its pulsation periods
Emmanouela Gerakaki: 40, A closer look at the transition between fully convective and partly radiative low-mass stars
Damian Raphael Gleis: 46, Magnetars
Clara Griesmeyer: 9, Origin of the elements
Sevin Ilgaz Hakioglu: 55, Brown Dwarf Atmospheres
Laura Samantha Hegeler: 35, The Properties of the Solar Corona and Its Connection to the Solar Wind
Mika Holzem: 1, Type Ia SN Progenitors
Utkarsh Jain: 43, High-Mass Star and Massive Cluster Formation in the Milky Way
Silas Moritz Janke: 45, Origin of the heavy elements in binary neutron-star mergers from a gravitational-wave event
Conor Kennedy: 24, Magnetic fields of M dwarfs
Noah Lukas Kuhn: 41, The White Dwarf Initial-Final Mass Relation for Progenitor Stars from 0.85 to 7.5 M
Javier Latorre: 7, Buoyant crystals halt the cooling of white dwarf stars
Virginia Lenk: 5, Dormant 33 M$_\odot$ BH in Gaia Astrometry
Moritz Lerch: 29, Gaia+HST Cepheid Distances
Dini Li: 4, The Star-Planet Composition Connection
Qingxuan Li: 54, High-mass X-ray binaries in the Milky Way. A closer look with INTEGRAL
Jeanne Marschall: 26, New Insights into Classical Novae
Malin Moll: 39, WD Core Crystallization
Valentin Münz: 64, The s process, Nuclear physics, stellar models and observations
Dev Patel: 43, High-Mass Star and Massive Cluster Formation in the Milky Way (pair)
Frederick Platz: 13, Gaia Data Release 3: Chemical cartography of the Milky Way
Anesti Prifti: 42, High-precision stellar abundances of the elements: methods and applications
Shreya Saha: 63, Multiple populations in globular clusters Lessons learned from the Milky Way globular clusters
Raheela Sahar: 23, Weighing stars from birth to death: mass determination methods across the HRD
Felix Schröer: 42, High-precision stellar abundances of the elements: methods and applications
Marco Souza de Joode: 49, Protostellar Outflows
Leonard Stahl: 2, Galactic Archaeology with Gaia
Justin Yves Steinmetz: 31, Origin of Pulsar Radio Emission
Yi Tan: 21, New Insights into the Evolution of Massive Stars and Their Effects on Our Understanding of Early Galaxies
Dev Patel and Utkarsh Jain: 43, High-Mass Star and Massive Cluster Formation in the Milky Way
Muhammad Sohrab Ali: 11, The First Stars
Sevin Ilgaz Hakioglu: 55, Brown Dwarf Atmospheres
Yi Tan: 21, New Insights into the Evolution of Massive Stars and Their Effects on Our Understanding of Early Galaxies
Laura Samantha Hegeler: 35, The Properties of the Solar Corona and Its Connection to the Solar Wind
Melanie Anna Bayer: 25, Carrington Events
Conor Kennedy: 24, Magnetic fields of M dwarfs
Dini Li: 4, The Star-Planet Composition Connection
Emmanouela Gerakaki: 40, A closer look at the transition between fully convective and partly radiative low-mass stars
Raheela Sahar: 23, Weighing stars from birth to death: mass determination methods across the HRD
Franca De Domenico–Langer: 56, Mass Loss in High-Mass Stars
Mika Holzem: 1, Type Ia SN Progenitors
Lea Flach: 8, The evolutionary stage of Betelgeuse inferred from its pulsation periods
Delvin Ahmeti and Seraphin Bücklers: 22, Asteroseismology Across the Hertzsprung-Russell Diagram
Moritz Lerch: 29, Gaia+HST Cepheid Distances
Leon Comanescu: 17, The Fifth Catalogue of Nearby Stars (CNS5)
Semine Bahrioglu: 20, PARSEC V2.0 Isochrones
Noah Lukas Kuhn: 41, The White Dwarf Initial-Final Mass Relation for Progenitor Stars from 0.85 to 7.5 M
Malin Moll: 39, WD Core Crystallization
Javier Latorre: 7, Buoyant crystals halt the cooling of white dwarf stars
Jeanne Marschall: 26, New Insights into Classical Novae
Qingxuan Li: 54, High-mass X-ray binaries in the Milky Way. A closer look with INTEGRAL
Kunal Bhatia: 18, Population of Merging Compact Binaries Inferred Using Gravitational Waves through GWTC-3
Justin Yves Steinmetz: 31, Origin of Pulsar Radio Emission
Jan Andrés Alcover Lötsch: 38, Binary Neutron Star Merger GW170817
Damian Raphael Gleis: 46, Magnetars
Noah Bomblies and Clara Griesmeyer: 9, Origin of the elements
Valentin Münz: 64, The s process, Nuclear physics, stellar models and observations
Silas Moritz Janke: 45, Origin of the heavy elements in binary neutron-star mergers from a gravitational-wave event
Felix Schröer and Anesti Prifti: 42, High-precision stellar abundances of the elements: methods and applications
Leonard Stahl: 2, Galactic Archaeology with Gaia
Frederick Platz: 13, Gaia Data Release 3: Chemical cartography of the Milky Way
Shreya Saha: 63, Multiple populations in globular clusters Lessons learned from the Milky Way globular clusters
Virginia Lenk: 5, Dormant 33 solar mass BH in Gaia Astrometry
The sequence may change. Please check whether all students and talks are in the new sequence!
Lehrinhalt
If there are any problems registering for this module, please sent an Email to jordan@ari.uni-heidelberg.de.
Lecture: Thursdays, 14:15-15:45
Location:
Philosophenweg 12, Kleiner Hörsaal
Tutorial Group 1: Thursday, 15:45-17:15 (Kleiner Hörsaal)
Tutorial Group 2: Thursday, 15:45-17:15 (Übungsraum 61, Erdgeschoss, Philosophenweg 12)
Do not mind to which exercise group you register. We will ensure that both exercise groups are approximately equally large. At the beginning of the semester, we can make adjustments if you want to collaborate with a specific person in a different group.
This module consists of the lecture, the tutorials and the seminar.
Exercises will be submitted via the "Übungsgruppensystem" in groups of two or three.
To excel in the module MVAstro2 "Stellar Astrophysics," it is essential to complete an adequate number of exercises and attend the tutorials. Merely submitting exercises through the Übungsgruppensystem is insufficient; you must also be prepared to present your solutions during the tutorial sessions.
Credit points cannot be awarded solely based on participation in the written exam; attendance at the tutorials is also required to receive credit.
Preliminary Schedule:
17.4.25: Introduction (Stefan Jordan)
24.4.25: Stellar structure 1 (Stefan Jordan)
01.5.25: May 1, holiday
02.5.25: Stellar structure 2 (Stefan Jordan)
08.5.25: Stellar structure 2 (Stefan Jordan)
15.5.25: Stellar structure 3 (Stefan Jordan)
22.5.25: Energy transport (Stefan Jordan)
29.5.25: Himmelfahrt, holiday
05.6.25: Energy production (Stefan Jordan)
12.6.25: Main sequence (Stefan Jordan)
19.6.25: Fronleichnam, holiday
26.6.25: Stellar evolution to the AGB (Stefan Jordan)
03.7.25: Late stages of stellar evolution (Stefan Jordan)
10.7.25: Stellar pulsations, rotation, magnetic fields (Stefan Jordan)
17.7.25: Stellar spectra (Stefan Jordan)
24.7.25: Written exam (Stefan Jordan)
Seminar:
2-3 full days between July 28 and Aug 1, 2025
The communication will be performed via the Übungsgruppensystem.
https://uebungen.physik.uni-heidelberg.de/v/1992
Module Part 1: Lecture “Galactic and Extragalactic Astronomy” (4 CP)
- Galaxy types and classification, correlations with physical properties,
stellar populations, population synthesis, chemical evolution concepts and
models (2);
- Milky Way (3): halo, bulge / pseudo bulge, central black hole, thin and
thick disk, spiral structure, star clusters, star formation history and chemical
enrichment, formation scenarios (e.g., Eggen-Lynden-Bell-Sandage), multi-
phase interstellar medium, dust, Galactic fountain, satellites, substructure
problem, Local Group;
- Spiral and elliptical galaxies (4): Surface photometry, profiles, origin of
spiral structure, mass measurement methods, rotation / velocity dispersion,
Tully-Fisher / Faber-Jackson relation, fundamental plane, super massive
black holes, active galaxies;
- Groups and clusters (3): morphology-density relation etc., mass
measurements, gravitational lensing, luminosity functions, interactions;
intergalactic gas; dark matter;
- Growth of structure (3): Origin of matter and elements, large-scale-
structure formation, large-scale matter distribution, redshift surveys, weak
lensing, galaxy formation and evolution, red / blue sequence, downsizing,
scaling relations, Butcher-Oemler effect, cosmic star formation history,
Lyman alpha forest, high-redshift universe, reionization, problems in galaxy
formation.
Module Part 2: Seminar (2 CP)
- Presentations and discussions on selected topics in Galactic and
extragalactic astronomy
Lehrziel
When successfully completing this course, the students are able to report on the properties of the wide range of galaxy types, understand their origin and evolution, and can elucidate the physical factors governing their evolution. They understand the main physical processes that shape the appearance of galaxies and galaxy clusters. They know about the connection between cosmological structure formation and the populations of visible objects. They have gained experience in applying dimensional and scaling arguments to estimate the relative importance of different physical processes.
- Friedmann-Lemaître-cosmologies: cosmological redshift, parameter
set, effects of curvature and of the cosmological constant, Hubble
expansion and Cepheid-measurements
- Age of the Universe: age from the cosmological model, radiometric
dating and nuclear cosmochronology, age of the oldest cosmic
objects
- Distance-redshift relation of standard candles: distance-redshift
relations, calibration of supernovae, acceleration and dimming,
determination of densities and equations of state, evidence for dark
energy
- Abundance of chemical elements: thermal evolution, big bang
nucleosynthesis, other modes of nucleosynthesis (stellar, spallation,
explosive), reaction chains, element abundances
- Cosmic microwave background: formation of atoms, simplified
description of temperature anisotropies, measurement results and
conclusions from them (in particular spatial flatness), secondary
anisotropies
- Cosmic structures: linear growth, need for (nonbaryonic) dark
matter, large-scale distribution of galaxies, cosmic web
- Formation of galaxies: gravitational collapse, flat rotation curves
and virial equilibria, need for dark matter, abundance of haloes
- Gravitational lensing: gravitational light deflection, lens equation,
weak and strong lensing, measurements of lensing effects and their
inversion
Lehrziel
In this course, students gain fundamental understanding of the cosmological standard model and the cosmological evolution, including the impact of the basic observations and the connection to the physical framework. They gain a solid overview of the empirical basis of modern cosmology.
1. Systems of star clusters
(e.g around the giant elliptical galaxy M87, https://apod.nasa.gov/apod/ap040616.html )
--cluster age and mass distributions, formation/evolution/observational-biases interplay
2. Cluster age and mass estimates from their integrated photometry
--introduction to stellar population synthesis models
3. Cluster dynamical evolution
Gas-free evolution: clusters lose stars and eventually dissolve. How fast?
4. From gas-embedded clusters to gas-free ones: expulsion of the residual star-forming gas and consequences
(e.g. from the gas-embedded Orion Nebula Cluster to the Pleiades open cluster
https://apod.nasa.gov/apod/ap120715.html
https://apod.nasa.gov/apod/ap120903.html )
5. Formation of star clusters (https://academic.oup.com/mnras/article/413/4/2741/964588):
--Modelling of star cluster formation, concept of star formation efficiency per freefall time, gas density-probability distribution functions
6. Colour-magnitude diagrams (https://esahubble.org/videos/heic1017b/):
-- cluster age estimates for the resolved stellar-population case, kinematic-based "cleansing" of cluster CMDs
Vorgestellt werden aktuelle Fragestellungen der Forschung und zur Zeit laufende
oder in Planung befindliche Forschungsprojekte.
Themen sind: Schwarze Löcher (stellar, intermediär, supermassiv), Gravitationslinsen, Gravitationswellen, Dunkle Materie, etc.
Termine und Themen sind auf folgender Webseite zu finden:
https://blog.mpifr-bonn.mpg.de/silkebritzen/vorlesung-universitat-heidelberg/
Die Veranstaltung findet online statt und beginnt am 25.04. um 14 Uhr.
Der zoom-link lautet:
https://eu02web.zoom-x.de/j/9084381833?pwd=YU1UdWJRa1BzajF4Tyt4YVlSdU1BUT09
Meeting ID: 908 438 1833
Lehrziel
Mein Ziel ist es, Interesse an aktuellen Fragen der Forschung zu wecken und über spannende Forschungsprojekte zu informieren. Des Weiteren möchte ich den Studenten Informationen über den Alltag in der Forschung liefern und Möglichkeiten für Master- und Doktorarbeiten aufzeigen.
The first lecture will take place on Friday, April 25 at 9:15am at Philos.-weg 12 / R 106A.
Lectures are mostly blackboard-style accompanied by slides, interactive elements, figures and animations. All materials will be made available.
Covered topics range from basics of binary star evolution such as the classical two-body problem, tides and mass exchange to more complex processes such as stellar mergers, common-envelope evolution and compact-object binaries including gravitational-wave merger events.
Background knowledge on stellar evolution is helpful but a recap of the most important aspects will be given.
Why do stars lose mass and what are the mechanisms behind it? This lecture will provide on overview of the different types of winds we find in stars and their physical origin. After exploring the different wind regimes (solar wind, hot stars, cool stars), the lecture will also cover the consequences of strong mass outflow on the evolution and environment of stars.
This lecture is an introduction to molecular astrophysics and astrochemistry.
Lehrziel
The spectroscopic and continuum observations of simple inorganic and complex organic molecules in space are at the forefront of observational astronomy. Powerful new facilities such as the Atacama Large Millimeter/submillimeter Array and the James Webb Space Telescope have enabled us to probe the molecular composition of the Universe from the Big Bang to local interstellar space, and from the distant past to the present. The wealth of diagnostic data is driving extensive laboratory and theoretical studies aimed at extracting key information about the physics and chemistry of space from these data. Our understanding of the life cycle of matter in the Universe is also intertwined with such a fundamental question as the origin of life. In this course, you will learn how molecules can be detected in a variety of interstellar environments, from the interstellar medium to planetary atmospheres, and how they are formed and destroyed there. You will learn about the basic spectroscopic properties of molecules and solids, how molecular lines and solid-state bands are used to study the underlying physical and chemical properties of the matter. The major processes of molecule formation and destruction in space, and the interplay between the gas-phase and surface reactions will be discussed from both experimental and theoretical perspectives. You will learn about the formation of the first elements after the Big Bang and the main chemical processes in the early Universe. You will also learn about the formation of other elements in stars, and what happens to these elements after they are ejected into the interstellar space at the end of the star's life. Finally, you will learn about exoplanets, atmospheres, habitability, and the origin of life.
In this lecture, we will discuss the principles of radio and millimeter astronomy. This field is progressing rapidly, thanks to new facilities that reach unprecedented sensitivities and resolutions, such as ALMA and MeerKat, and soon the ngVLA, DSA-2000 and the SKA.
We will discuss the physical processes that give rise to radio and millimeter wave emission, from star forming regions in the Milky Way to galaxies in the very young universe. A focus will also be the technology by which to capture radio and millimeter emission, including the concepts of radio and millimeter interferometry.
Das Modul zur Einführung in die Astronomiedidaktik (ADIDA) im Rahmen des Erweiterungsfachs Astronomie für Lehramtstudierende an Gymnasien an der Universität Heidelberg wird am Haus der Astronomie durchgeführt (zu erreichen mit den Buslinien 30 und 39 oder mit der Bergbahn). Es findet immer im Sommersemester statt und beginnt vor Beginn der Vorlesungszeit im April mit einem einwöchigen Blockkurs zur Einführung jeweils von 9:30-12:30 Uhr. Der praktische Anteil findet semesterbegleitend in der Vorlesungszeit statt.
Die Veranstaltung führt in die astronomische Fachdidaktik ein und behandelt unter anderem Elementarisierung und Modelle, Versuche und Messungen, Medien und Hilfsmittel, Methodik sowie die Ausarbeitung von Unterrichtseinheiten im Fach Astronomie.
Diese Vorlesung wendet sich an Hörer aller Fakultäten, die einen Einblick in die moderne Astronomie und Astrophysik bekommen wollen. Es werden keine besonderen physikalischen oder mathematischen Vorkenntnisse benötigt.
Folgende Themen werden abgedeckt (die Termine sind vorläufig):
14.4.25 Astronomie heute (Wambsganβ, Fendt)
21.4.25 (keine Vorlesung, Ostermontag)
28.4.25 Geschichte der Astronomie (Wambsganβ)
5.5.25 Licht, Teleskope, Instrumente (Fendt)
12.5.25 Sterne – Klassifikation (Fendt)
19.5.25 Sonne, Erde, Mond (Wambsganβ)
26.5.25 Das Planetensystem (Wambsganβ)
2.6.25 Sterne – Aufbau & Entwicklung (Fendt)
9.6.25 (keine Vorlesung, Pfingstmontag)
16.6.25 Interstellares Medium & Sternentstehung (Fendt)
23.6.25 Die Milchstrasse (Fendt)
30.6.25 Exoplaneten & Leben (Wambsganβ)
7.7.25 Galaxien (Wambsganβ)
14.7.25 Aktive Galaxien, Quasare, Schwarze Löcher (Fendt)
21.7.25 Eventuell Besuch auf dem Königstuhl mit Besichtigung der astronomischen Institute
DAY 1: short summary of python basics
DAY 2: classes and object oriented programming
DAY 3: accuracy & speed (general, not python only), parallelization & regular expressions
DAY 4: pandas, scipy for ordinary differential equations
DAY 5: some examples of machine learning (ML)
* Manifolds
* Geodetics, curvature, Einstein-Hilbert action
* Einstein equations
* Cosmology
* Differential forms in General Relativity
* The Schwarzschild solution
* Schwarzschild black holes
* More on black holes (Penrose diagrams, charged and rotating black holes)
* Unruh effect and hawking radiation
Lehrziel
After completing the course the students * have a thorough knowledge and understanding of Einstein's theory of General Relativity including the necessary tools from differential geometry and applications such as black holes, gravitational radiation and cosmology, * have acquired the necessary mathematical tools from differential geometry, are trained in their application to physical situations with strong gravity and are familiar with their interpretation, * have advanced competence in the fields of theoretical physics covered by this course, i.e. the ability to analyze physical phenomena using the acquired concepts and techniques, to formulate models and find solutions to specific problems, and to interpret the solutions physically and communicate them efficiently, * are able to broaden their knowledge and competence in this field of theoretical physics on their own by a systematical study of the literature.
SU(2) Yang-Mills thermodynamics, blackbody anomaly (theory and experimental status), and ultralight axions in cosmology (MVSpec) Vorlesung Hofmann R heiCO-InfoLink zur Anmeldung LV-Anmeldung möglich mehr Informationen
We derive the thermal ground state for the deconfining phase of SU(2) Yang-Mills Thermodynamics, discuss its thermal quasiparticle excitations, and compute the polarization tensor of the effective massless gauge mode. Next, we use these results under the postulate that thermal photon gases of sufficiently large spatial volumes are described by an SU(2) rather than a U(1) gauge principle. For the CMB this gives rise to a modified temperture-redshift relation with an interesting link to 3D Ising criticality. Moreover, we argue that the CMB large-angle anomalies may be traced to SU(2) screening effects and that an axial anomaly with chiral symmetry breaking at the Planck scale yields an ultralight axion particle whose temperature dependent mass essentially is determined by the SU(2) thermal ground state. The super-horizon sized condensate of these particles is a candidate for dark energy. To test the above postulate
recents results of a terrestial blackbody-cavity experiment are discussed and interpreted in the context of SU(2) Yang-Mills thermodynamics.
Objectives: instanton, Matsubara sum, caloron, thermal ground state, thermal quasiparticle dispersion law, critical exponent, cosmological model, Veneziano-Witten, emissivity, Dicke switch, difference of dBm of noise power
WE-Heraeus-Sommerschule für Lehrer*innen und Lehramtskandidat*innen: Strukturbildung im Universum Sonstige Lehrveranstaltung Pössel M heiCO-Infomehr Informationen
1300114301 Zu dieser LV ist keine Anmeldung möglich
Preparation and presentation of an advanced topic in stellar dynamics. During each lecture, at least one talk on a specific research field is given and actively discussed by
all course participants.
Selected topics in stellar dynamics of galaxies and stellar clusters. The list of topics for this year is the following.
- Dynamics of black holes in star clusters
- Hierarchical mergers of black holes in star clusters
- Dynamical formation of blue straggler stars
- Globular cluster dynamics
- The vertical phase-spiral observed by Gaia in the Milky Way
- Orbital resonances 1: radial migration
- Orbital resonances 2: perturbation theory and orbital structure near resonances
- Using the Jeans equations in the Milky Way
- Supermassive black-hole binaries and mergers
Previous Knowledge required: Knowledge equivalent to lectures 'Introduction to Astronomy and Astrophysics I and II'
After completion of this module, the student can describe the intentions and
difficulties of modern research in astrophysics (with particular focus on stellar dynamics).
The student can handle modern literature and can extract information from present-day (astro)physics publications.
Lehrinhalt
Preparation and presentation of an advanced topic in stellar dynamics. During each lecture, at least one talk on a specific research field is given and actively discussed by
all course participants.
Selected topics in stellar dynamics of galaxies and stellar clusters. The list of topics for this year is the following.
- Dynamics of black holes in star clusters
- Hierarchical mergers of black holes in star clusters
- Dynamical formation of blue straggler stars
- Globular cluster dynamics
- The vertical phase-spiral observed by Gaia in the Milky Way
- Orbital resonances 1: radial migration
- Orbital resonances 2: perturbation theory and orbital structure near resonances
- Using the Jeans equations in the Milky Way
- Supermassive black-hole binaries and mergers
Hier handelt es sich um ein Bachelor-Pflichtseminar.
*Anmeldung ist möglich ab dem 01.03.2024*
Das Seminar wird wie folgt verlaufen:
Zu Beginn des Semesters verteilen wir die Themen.
- Am ersten Termin nach der Themenvergabe gebe ich eine Einführung in das Thema "Vorträge halten"
- Vier Wochen vor Ihrem Vortrag versorge ich Sie mit Material
- Eine Woche vor dem Vortrag gibt es eine Vorbesprechung (per Email oder Videokonferenz)
- Der Vortrag wird dann in Präsenz gehalten
- Zu Ihrem Vortrag gehört ein zweiseitiges Handout, dass an die Zuhörer verteilt wird
- Bewertet werden der Vortrag, die Fragerunde und das Handout
- Es wird erwartet, dass Sie sich auch als Zuhörer mit Fragen zum Vortrag beteiligen - werden keine Fragen gestellt, stelle ich Fragen an die Zuhörer
Bitte registrieren Sie sich bei Moodle und der Übungsgruppenverwaltung
Themen des Seminars:
Methoden: Bodengebundene CR-Beobachtung
Methoden: Satelliten CR-Beobachtung
Methoden: Das IceCUBE-Teleskop
Quellen: Die Sonne
Quellen: Supernova Überreste
Quellen: Pulsare
Quellen: Aktive Galaxienkerne
Beobachtung: Spektrum der kosmischen Strahlung
Beobachtung: Cosmic ray clocks
Beobachtung: Greisen-Zatsepin-Kuzmin Cutoff
Beobachtung: Solare Modulation
Beobachtung: Neutrinospektrum
Beobachtung: Kosmische Strahlung und Magnetfeld
Theorie: Fokker-Planck-Gleichung
Theorie: Fermi-Beschleunigung
Theorie: Rekonnektion
Exotik: Dunkle Materie Annihilation
Exotik: Positron-Anomalie
This seminar is part of the master module MVAstro3 (Galactic and Extragalactic Astronomy). It supplements the lecture contents. It is usually being held as a block event on three or four afternoons chosen in the course; typically on Saturdays.
Astronomical and cosmological observations require the existence of dark matter in our universe. Today, Dark Matter is generally thought to have particle nature, where the dark matter particles have relatively long lifetimes, interact gravitationally and, possibly, also via the weak interaction.
In the Standard Model of particle physics, only neutrinos have the correct properties, but, due to their small mass, neutrinos can only account for a small fraction of the observed Dark Matter in our universe. In extended versions of the standard model sterile neutrinos, in particular keV-sterile neutrinos can contribute as warm dark matter candidates.
Light supersymmetric particles are an example for weakly interacting massive particles (WIMPs) which are candidates for cold darm matter. Other viable dark matter candidates are axions, which have been introduced to solve the strong CP-problem of QCD, or axion-like particles.
The seminar will address the astrophysical and cosmological evidences which led to the postulation of dark matter. It will discuss the most prominent dark matter candidates and the different direct and indirect methods to search for their existence. Particular emphasis is put on the determination of neutrino masses, the search for sterile neutrinos, WIMPS and axions.
1300110210 Zu dieser LV ist keine Anmeldung möglich
Lehrinhalt
Übungen am 70cm Teleskop der Landessternwarte Heidelberg.
Lehrziel
Selbstständige Vorbereitung und Planung von astronomischen Beobachtungen. Eigenständige Durchführung von astronomischen Beobachtungen mit dem Teleskop.
1300111291 Zu dieser LV ist keine Anmeldung möglich
Lehrinhalt
Durchführung von mehreren astrophysikalischen Versuchen je nach Kenntnisstand innerhalb einer Woche. Diese decken grosse Gebiete in der Astronomie ab. Dauer pro Versuch 1-1.5 Tage. Kein separates Protokoll oder Hausarbeit notwendig.
Lehrziel
Selbstständige Bearbeitung experimenteller Fragestellungen. Kennenlernen und Vertiefung diverser astronomischer moderner Tools wie zB Datenreduktion, virtuelles Observatorium, Interpretation diagnostischer Diagramme.
1300112351 Zu dieser LV existiert kein Anmeldeverfahren
Lehrinhalt
Durchführung von mehreren astrophysikalischen Versuchen je nach Kenntnisstand innerhalb einer Woche. Diese decken grosse Gebiete in der Astronomie ab. Dauer pro Versuch 1-1.5 Tage. Kein separates Protokoll oder Hausarbeit notwendig.
Lehrziel
Selbstständige Bearbeitung experimenteller Fragestellungen. Kennenlernen und Vertiefung diverser astronomischer moderner Tools wie zB Datenreduktion, virtuelles Observatorium, Interpretation diagnostischer Diagramme.
This is an introductory statistics course for students in physics. It is a computer-based course, in which you will learn not only the principles and methods of statistical analysis, but will also put these into practice using a range of real-world data
Dieser Kurs wurde von Dr. Thomas P. Robitaille entwickelt, der diesen Kurs viele Jahre lang an der Universität Heidelberg gehalten hat. Aufgrund der Beliebtheit dieses Kurses bieten wir nun mehrere Blockkurse parallel an. Dr. Robitaille hat eine andere Stelle angetreten, so dass dieser Kurs nun von anderen Lehrkräften gehalten wird.
Lehrziel
Ziel dieses Kurses ist es, zu lernen, wie man die Python-Programmierung zur Lösung wissenschaftlicher Probleme einsetzt. Es handelt sich um einen interaktiven Learning-by-Doing-Kurs, der auf einer Reihe von Python-Notebooks basiert und zahlreiche Übungen enthält. Er richtet sich primär an Bachelor-Studenten.
Dieser Kurs wurde von Dr. Thomas P. Robitaille entwickelt, der diesen Kurs viele Jahre lang an der Universität Heidelberg gehalten hat. Aufgrund der Beliebtheit dieses Kurses bieten wir nun mehrere Blockkurse parallel an. Dr. Robitaille hat eine andere Stelle angetreten, so dass dieser Kurs nun von anderen Lehrkräften gehalten wird.
Lehrziel
Ziel dieses Kurses ist es, zu lernen, wie man die Python-Programmierung zur Lösung wissenschaftlicher Probleme einsetzt. Es handelt sich um einen interaktiven Learning-by-Doing-Kurs, der auf einer Reihe von Python-Notebooks basiert und zahlreiche Übungen enthält. Er richtet sich primär an Bachelor-Studenten.
Die Beispiele im Kurs benutzen Physik der
ersten paar Semester.
There are some examples in the course that
are based on physics of the first few semesters.
Lehrinhalt
Dieser Kurs wurde von Dr. Thomas P. Robitaille entwickelt, der diesen Kurs viele Jahre lang an der Universität Heidelberg gehalten hat. Aufgrund der Beliebtheit dieses Kurses bieten wir nun mehrere Blockkurse parallel an. Dr. Robitaille hat eine andere Stelle angetreten, so dass dieser Kurs nun von anderen Lehrkräften gehalten wird.
Lehrziel
Ziel dieses Kurses ist es, zu lernen, wie man die Python-Programmierung zur Lösung wissenschaftlicher Probleme einsetzt. Es handelt sich um einen interaktiven Learning-by-Doing-Kurs, der auf einer Reihe von Python-Notebooks basiert und zahlreiche Übungen enthält. Er richtet sich primär an Bachelor-Studenten.
The course takes 1 week: August 11-15 2025. One of three homework sets is supposed to be submitted in the following week of the course while two homework sets are to be submitted and finalized during the course.
One passes the course (without grade) after obtaining 60% of the total points of each problem set.
The schedule comprises lectures with exercises and a tutorial per day (9 am to 5 pm).
For those who sponteneously decide that they want to join:
please check if participants deregister 1-2 weeks before the course starts.
Lehrinhalt
Dieser Kurs wurde von Dr. Thomas P. Robitaille entwickelt, der diesen Kurs viele Jahre lang an der Universität Heidelberg gehalten hat. Aufgrund der Beliebtheit dieses Kurses bieten wir nun mehrere Blockkurse parallel an. Dr. Robitaille hat eine andere Stelle angetreten, so dass dieser Kurs nun von anderen Lehrkräften gehalten wird.
Lehrziel
Ziel dieses Kurses ist es, zu lernen, wie man die Python-Programmierung zur Lösung wissenschaftlicher Probleme einsetzt. Es handelt sich um einen interaktiven Learning-by-Doing-Kurs, der auf einer Reihe von Python-Notebooks basiert und zahlreiche Übungen enthält. Er richtet sich primär an Bachelor-Studenten.