Heidelberg University Winter Term 2023/24 Lecturer: Prof. Dr. Matthias Bartelmann Head tutor: Dr. Michael Zacharias

Problem Sheet 9

Discussion in the tutorial groups in the week of December 18, 2023

1. Comprehension Question.

- (i) Summarise the derivation of the dielectric response function, and explain why it acquires an imaginary part.
- (ii) Explain the relation between dissipation and an imaginary part of a response function.
- (iii) How are dispersion relations for longitudinal and transverse electromagnetic waves determined?
- 2. Landau damping. Assume that a longitudinal electromagnetic wave with amplitude \hat{E} , wave number k, and frequency ω propagates through a thermal plasma. Assuming that the wave travels in x-direction, the *mean energy dissipation rate* due to Landau damping is given by

$$\langle Q \rangle = -|\hat{E}|^2 \frac{\pi m_{\rm e} e^2 \omega}{k^2} \left. \frac{\mathrm{d}\bar{f}}{\mathrm{d}p_x} \right|_{p_x = m_{\rm e} \omega/k},$$

where \bar{f} is the one-particle phase-space distribution that is already integrated over the momentum components p_u and p_z .

- (a) Determine $\bar{f}(p_x)$ for a spatially homogeneous thermal plasma with mean electron density n_e .
- (b) Assume that the wave's frequency is approximately equal to the *plasma frequency* $\omega_p = \sqrt{4\pi n_e e^2/m_e}$. Determine $\langle Q \rangle$ as a function of the amplitude \hat{E} and the wave number $k(\omega_p)$, which has to fulfill the dispersion relation for longitudinal waves. *Hint:* You do not have to calculate $k(\omega_p)$ explicitly.
- (c) Determine the characteristic damping time scale τ for waves with wave number k using that the energy density per Fourier mode is given by $|\hat{E}|^2/(4\pi)$.
- 3. Time delays in a thermal plasma. Electromagnetic waves of frequency ω that propagate through a thermal plasma in a deep gravitational well experience two kinds of time delay. The first is the delay

$$\Delta t_{\omega} = \frac{2\pi e^2}{m_{\rm e} c \omega^2} \int \mathrm{d}l \, n_{\rm e}$$

due to the electromagnetic dispersion, and the second is the so-called *Shapiro delay* due to relativistic time dilatation,

$$\Delta t_{\rm Shap} = -\frac{2}{c^3} \int \mathrm{d}l \,\Phi,$$

where Φ is the Newtonian gravitational potential. Both integrals have to be evaluated along the wave's trajectory. Assume that the electromagnetic wave travels through a spherical cloud of fully ionised hydrogen of radius *R* and that both the total mass density ρ and the electron number density n_e are constant throughout the sphere, hence

$$\rho(r) = \begin{cases} \bar{\rho} & \text{for } r \le R \\ 0 & \text{for } r > R \end{cases}$$

and

$$n_{\rm e}(r) = \begin{cases} \bar{n}_{\rm e} & \text{for } r \le R \\ 0 & \text{for } r > R. \end{cases}$$

(a) Determine both time delays Δt_{ω} and Δt_{Shap} that the wave experiences between entering and leaving the plasma. Assume that the wave's frequency is equal to the plasma frequency ω_{p} and that it travels through the sphere's centre. The gravitational potential inside a homogeneous sphere of density ρ and radius *R* is given by

$$\Phi(r) = -2\pi G \rho \left(R^2 - \frac{r^2}{3} \right)$$

if the potential $\Phi(r)$ is chosen to vanish for $r \to \infty$.

- (b) What is the relative magnitude of both time delays? *Hint:* The Schwarzschild radius for an object of mass *M* is given by $R_S = 2GM/c^2$.
- 4. Induction equation. Assume that a plasma with conductivity $\sigma = \text{const.}$ and a velocity profile \vec{v} is embedded into a magnetic field whose field lines are parallel at t = 0. Does the magnetic field change its direction for t > 0 if at t = 0
 - (a) $\vec{v} \parallel \vec{B}$,
 - (b) $\vec{v} \perp \vec{B}$?
- 5. Faddeeva function (classroom assignment). The Faddeeva function is given by

$$w(z) = \frac{\mathrm{i}}{\pi} \int_{-\infty}^{+\infty} \mathrm{d}t \, \frac{\mathrm{e}^{-t^2}}{z-t}.$$

For z = 0, it follows that w(z = 0) = w(0) = 1.

(a) Show that

$$w'(z) = \frac{2\mathrm{i}}{\sqrt{\pi}} - 2zw(z).$$

Hint: $\int_{-\infty}^{+\infty} e^{-x^2} dx = \sqrt{\pi}$.

(b) Use this relation to Taylor approximate the function $yZ(y) = y i \sqrt{\pi}w(y)$ for small y.