Quantum Field Theory 1 - Problem set 3

Lectures: Jörg Jäckel
Tutorials: Friederike Ihssen
Institut für Theoretische Physik, Uni Heidelberg
J.Jaeckel@thphys.uni-heidelberg.de
F.Ihssen@thphys.uni-heidelberg.de

Tutorial date: week of 13.11.2023

Suggested reading before solving these problems: Chapter 3 in the script and/or Chapter 4.2 of Peskin © Schroeder.

Problem 1: Unitary evolution and T-product

Consider the decomposition of a Hamiltonian operator H in free and interaction parts, $H=H_{0}+H_{\text {int }}$. In the interaction picture, operators evolve in time with the free Hamiltonian H_{0}, while states $|f\rangle$ evolve with the interaction Hamiltonian,

$$
i \partial_{t}|f\rangle=H_{\text {int }}(t)|f\rangle
$$

Show that this implies that we can write $|f(t)\rangle=U\left(t, t_{0}\right)\left|f\left(t_{0}\right)\right\rangle$, where the unitary operator $U\left(t, t_{0}\right)$ satisfies the differential equation (Schrödinger equation)

$$
\begin{equation*}
i \partial_{t} U\left(t, t_{0}\right)=H_{\mathrm{int}}(t) U\left(t, t_{0}\right) \tag{1}
\end{equation*}
$$

Show that the solution of equation (1) can be expressed as a power series, in which each term is an operator,

$$
\begin{equation*}
U\left(t, t_{0}\right)=\mathbf{1}-i \int_{t_{0}}^{t} d t_{1} H_{\mathrm{int}}\left(t_{1}\right)+(-i)^{2} \int_{t_{0}}^{t} \int_{t_{0}}^{t_{1}} d t_{1} d t_{2} H_{\mathrm{int}}\left(t_{1}\right) H_{\mathrm{int}}\left(t_{2}\right)+\ldots \tag{2}
\end{equation*}
$$

Convince yourself that this series can be re-expressed as

$$
U\left(t, t_{0}\right)=T\left\{\exp \left[-i \int_{t_{0}}^{t} d t^{\prime} H_{\mathrm{int}}\left(t^{\prime}\right)\right]\right\}
$$

where the T-product acts as $T A(t) B\left(t^{\prime}\right)=A(t) B\left(t^{\prime}\right) \Theta\left(t-t^{\prime}\right)+B\left(t^{\prime}\right) A(t) \Theta\left(t^{\prime}-t\right)$. In particular, show that the expansion of the exponential up to second term provides Eq. (2), and try to generalise your argument for the higher order terms.

Problem 2: 2-to-2 scattering

In the lecture course you have learned how to describe the scattering of two particles in the interaction picture. Assume that the particles are characterised by momenta \boldsymbol{p}_{1} and \boldsymbol{p}_{2} in the initial state, and by momenta $\boldsymbol{p}_{1}^{\prime}$ and $\boldsymbol{p}_{2}^{\prime}$ in the final state. The interaction Hamiltonian is $H_{I}=\frac{\lambda}{4!} \phi^{4}$, where $\phi(t, \boldsymbol{x})$ is the time dependent operator associated with a real scalar field.

In particular, you have learned that the amplitude controlling the process can be obtained from the following quantity

$$
\begin{equation*}
i T_{f i} \simeq-i\left\langle\boldsymbol{p}_{1}^{\prime} \boldsymbol{p}_{2}^{\prime}\right|\left[\frac{\lambda}{4!} \int d^{4} x \phi^{4}(x)\right]\left|\boldsymbol{p}_{1} \boldsymbol{p}_{2}\right\rangle \tag{3}
\end{equation*}
$$

by isolating the contributions proportional to $\delta^{4}\left(p_{1}+p_{2}-p_{1}^{\prime}-p_{2}^{\prime}\right)$, and defining the scattering amplitude $\mathcal{M}_{f i}$ as

$$
i T_{f i} \equiv i \mathcal{M}_{f i}(2 \pi)^{4} \delta^{4}\left(p_{1}+p_{2}-p_{1}^{\prime}-p_{2}^{\prime}\right)
$$

The amplitude can be extracted by expanding the scalar field $\phi(t, \boldsymbol{x})$ in terms of ladder operators $a(\boldsymbol{p})$ and $a^{\dagger}(\boldsymbol{p})$, and by plugging this expansion in eq. (3). Then, using the commutation relations of a and a^{\dagger}, one extracts the terms that are proportional to $\delta^{(4)}\left(p_{1}+p_{2}-p_{1}^{\prime}-p_{2}^{\prime}\right)$.

- Identify the relevant terms in the expansion! How many are there? Do they all give the same contribution?
- Show that the final result is $\mathcal{M}_{f i}=-4!\frac{\lambda}{4!}=-\lambda$. Is there a connection between the coefficient in this result, and the number of terms in the expansion of eq. (3) that contribute to the scattering amplitude?
- Try to generalise the previous results to the $n-n$ scattering of a theory with interaction Hamiltonian $H_{I}=\frac{\lambda}{(2 n)!} \phi^{2 n}$, with n being a natural number.
- By inserting the scalar field expansion into eq. (3), do you also find terms that are not proportional to $\delta^{(4)}\left(p_{1}+p_{2}-p_{1}^{\prime}-p_{2}^{\prime}\right)$? If so, what is their physical interpretation?

Problem 3: Charge of a complex scalar field

Consider the Lagrangian density for a free complex scalar field

$$
\mathcal{L}=\partial_{\mu} \phi^{*} \partial^{\mu} \phi-m^{2} \phi^{*} \phi
$$

and define the associated conjugate momenta π and π^{*}. The Noether theorem leads to a conserved charge, given in terms of 0 -component of the Noether current,

$$
Q \equiv \int d^{3} x j^{0}
$$

For a complex scalar field, the four-vector associated with the current j reads

$$
j^{\mu}=i\left[\left(\partial^{\mu} \phi\right)^{*} \phi-\phi^{*}\left(\partial^{\mu} \phi\right)\right],
$$

from which an expression for the corresponding charge Q can be easily obtained.

The theory is quantised by promoting ϕ, ϕ^{*} and their conjugate momenta to operators. To that end it is convenient to introduce the creation and annihilation operators

$$
\begin{align*}
& \phi(\boldsymbol{x})=\int \frac{d^{3} p}{(2 \pi)^{3}} \frac{1}{\sqrt{2 \omega_{\boldsymbol{p}}}}\left\{a(\boldsymbol{p}) e^{i \boldsymbol{p} \boldsymbol{x}}+b^{\dagger}(\boldsymbol{p}) e^{-i \boldsymbol{p} \boldsymbol{x}}\right\}, \tag{4}\\
& \pi(\boldsymbol{x})=-i \int \frac{d^{3} p}{(2 \pi)^{3}} \sqrt{\frac{\omega_{\boldsymbol{p}}}{2}}\left\{b(\boldsymbol{p}) e^{i \boldsymbol{p} \boldsymbol{x}}-a^{\dagger}(\boldsymbol{p}) e^{-i \boldsymbol{p} \boldsymbol{x}}\right\} . \tag{5}
\end{align*}
$$

with commutation relations

$$
\begin{aligned}
{\left[a(\boldsymbol{p}), a^{\dagger}(\boldsymbol{q})\right] } & =\left[b(\boldsymbol{p}), b^{\dagger}(\boldsymbol{q})\right]=(2 \pi)^{3} \delta^{(3)}(\boldsymbol{p}-\boldsymbol{q}), \\
{[a(\boldsymbol{p}), a(\boldsymbol{q})] } & =[b(\boldsymbol{p}), b(\boldsymbol{q})]=0, \\
{[a(\boldsymbol{p}), b(\boldsymbol{q})] } & =\left[a(\boldsymbol{p}), b^{\dagger}(\boldsymbol{q})\right]=0 .
\end{aligned}
$$

Express the charge Q in terms of the operators a, a^{\dagger} and b, b^{\dagger}, carrying out all the details of the calculation.

