Theoretical Astrophysics

Heidelberg University
Winter Term 2023/24

Lecturer: Prof. Dr. Matthias Bartelmann

Head tutor: Dr. Michael Zacharias

Problem Sheet 4

Discussion in the tutorial groups in the week of November 13, 2023

1. Comprehension Question.

(i) Summarise in your own words the steps and approximations leading to the common cross section for radiative quantum transitions.
(ii) What is a "forbidden line", and how could it be allowed?
(iii) Describe broadening mechanisms of spectral lines and what shape of the line profile they produce.
2. Hydrogen ionisation cross section. Consider the bound-free transition between the hydrogen ground state $(n, l, m)=(1,0,0)$ and the free state of the electron. The momentum of the free electron follows the de-Broglie relation $\vec{p}=\hbar \vec{k}$.
(a) Calculate the dipole matrix element $\vec{d}_{n m}$ for this transition using the wave functions

$$
\begin{aligned}
& \langle x \mid m\rangle=\frac{1}{\sqrt{V}} \mathrm{e}^{i \vec{k} \cdot \vec{x}} \\
& \langle x \mid n\rangle=\frac{1}{\sqrt{\pi a_{B}}} \mathrm{e}^{-r / a_{B}}
\end{aligned}
$$

and the Fourier transform

$$
\mathcal{F}\left[\mathrm{e}^{-r / a_{B}}\right](k)=\frac{8 \pi a_{B}^{3}}{\left(1+a_{B}^{2} k^{2}\right)^{2}}
$$

of the exponential. We set the Bohr radius $a_{B}:=\hbar /\left(\alpha m_{e} c\right)$ with the finestructure constant $\alpha=e^{2} / \hbar c$.
(b) Explain why the cross section

$$
\sigma_{\omega}=4 \pi^{2} r_{e} c f_{n m} \delta_{D}\left(\omega_{n m}-\omega\right)
$$

needs to be multiplied by the number of free electron states

$$
\frac{m_{e} V}{2 \pi^{2} \hbar} k \mathrm{~d} \omega
$$

so that the frequency-integrated cross section becomes

$$
\sigma=\frac{2 r_{e} m_{e} c}{\hbar} V k f_{n m}
$$

(c) Calculate the oscillator strength $f_{n m}$ and express $\omega_{n m}$ by k, a_{B}, and the Rydberg energy Ry $=$ $\alpha^{2} m_{e} c^{2} / 2$. Plug it in to obtain the cross section σ.
3. Excited state. The cross section for a transition between an initial state $|n\rangle$ and a final state $|m\rangle$ was derived as

$$
\sigma_{m n}=\frac{4 \pi}{3 c \hbar} \omega_{m n}\left|\vec{d}_{m n}\right|^{2} \delta_{D}\left(\omega_{m n}-\omega\right),
$$

where $\vec{d}_{m n}=\langle m| e \hat{x}|n\rangle$ is the dipole matrix element and $\omega_{m n}=\left(E_{m}-E_{n}\right) / \hbar$ is the frequency corresponding to the energy difference between the states $|m\rangle$ and $|n\rangle$. The delta distribution $\delta_{D}(x)$ assures that only those photons contribute to the cross section that have the correct frequency.
(a) Consider the one-dimensional harmonic oscillator with energy levels $E_{n}=\hbar \omega(n+1 / 2)$ and corresponding wave functions

$$
\Psi_{n}(x)=\left(\frac{m \omega}{\pi \hbar}\right)^{1 / 4} \frac{1}{\sqrt{2^{n} n!}} H_{n}\left(\sqrt{\frac{m \omega}{\hbar}} x\right) \exp \left(-\frac{m \omega}{2 \hbar} x^{2}\right)
$$

with the Hermite polynomials

$$
H_{n}(x)=(-1)^{n} \mathrm{e}^{x^{2}} \frac{\mathrm{~d}^{n}}{\mathrm{~d} x^{n}} \mathrm{e}^{-x^{2}}
$$

Calculate the cross section σ_{10} for the transition from the ground state $(n=0)$ to the first excited state $(n=1)$. Hint: It may be helpful to use

$$
\int_{-\infty}^{\infty} \mathrm{d} x x^{2} \mathrm{e}^{-\alpha x^{2}}=-\int_{-\infty}^{\infty} \mathrm{d} x \frac{\partial}{\partial \alpha} \mathrm{e}^{-\alpha x^{2}}
$$

(b) Consider now an infinitely deep potential well of length L with energy levels

$$
E_{n}=\frac{n^{2} \pi^{2} \hbar^{2}}{2 m L^{2}}
$$

with $n \in \mathbb{N}$ and wave functions

$$
\Psi_{n}(x)=\left\{\begin{array}{ll}
\sqrt{\frac{2}{L}} \cos \left(\frac{n \pi}{L} x\right) & \text { if } n \text { is odd } \\
\sqrt{\frac{2}{L}} \sin \left(\frac{n \pi}{L} x\right) & \text { if } n \text { is even }
\end{array},\right.
$$

with $x \in[-L / 2, L / 2]$. What is the cross section σ_{21} for the transition from the ground state ($n=1$) to the first excited state $(n=2)$?
Compare the factor in front of the delta distribution with that for the harmonic oscillator.
4. Title (classroom assignment). Besides their natural line width, emission lines with transition frequency ω_{0} are broadened due to collisions of the emitting atoms and their thermal velocities. The collisional broadening leads to a line shape that is described by a Lorentz profile

$$
\Phi_{\Gamma_{c}}\left(\omega-\omega_{12}\right)=\frac{1}{\pi} \frac{\Gamma_{c} / 2}{\left(\omega-\omega_{12}\right)^{2}+\Gamma_{c}^{2} / 4}
$$

where $\Gamma_{c}=\sigma\langle n v\rangle$ is the collision rate, σ is the cross section for collisions, n is the number density of atoms, v their velocity and $\langle\cdot\rangle$ indicates the thermal average. The Doppler broadening leads to the Gaussian profile function

$$
\Phi_{D}=\frac{c}{\sqrt{2 \pi} \omega_{0} \sigma_{v}} \exp \left[-\frac{c^{2}}{2 \sigma_{v}^{2}}\left(\frac{\omega-\omega_{0}}{\omega_{0}}\right)^{2}\right]
$$

where σ_{v} is the velocity dispersion.
(a) Estimate the line width for Doppler broadening from the full width at half maximum (FWHM) $\Delta \omega_{D}$ from the Gaussian profile, defined by $\Phi_{D}\left(\omega_{0} \pm \Delta \omega_{D} / 2\right)=\Phi_{D}\left(\omega_{0}\right) / 2$, as a function of temperature T.
(b) Estimate the line width $\Delta \omega_{c}$ due to collisions from the FWHM of the Lorentz profile $\Phi_{\Gamma_{c}}(\omega)$ as a function of T. Assume that σ is set by the Bohr radius $a_{B}=\hbar /(\alpha m c)$ and that the density does not depend on temperature. Hint: What is the relation between the line width $\Delta \omega_{c}$ and the collision rate Γ_{c} ?
(c) How can the results from (a) and (b) be combined to determine the density of an emitting medium?
(d) Calculate the ratio $\Delta \omega_{c} / \Delta \omega_{D}$ for the $\mathrm{H} \alpha$ line ($6563 \AA$) emitted from a cloud of atomic hydrogen with $n=16 \mathrm{~cm}^{-3}$.

