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1. Comprehension Question.

(i) Summarise the essential properties of synchrotron radiation and thermal bremsstrahlung.

(ii) Explain the main difference between Thomson and Compton scattering.

(iii) What is Born’s approximation?

2. Klein-Nishina scattering. The differential cross section for photons with energy ~ω that are
scattered off free electrons is given by the Klein-Nishina formula
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(a) What is the ratio ~ω/mec2 for visible light? How does the Klein-Nishina formula simplify in
this case? Is the solution familiar to you?

(b) Assume that an electron is hit by a photon with energy ~ω = mec2. Calculate the total cross
section
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and compare it to the classical Thomson cross section σT = 8πr2
e/3.

3. Lorentz boost for photons. Consider a photon with frequency ω scattered by a resting electron
under the angle θ. By the scattering process, its frequency changes to ω′ < ω. One can transform
into the barycenter system, defined by ~ptot = ~0 before and after the scattering, by applying a proper
Lorentz boost
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to the four-momentum (pµ) = (E/c, ~p)T , assuming that the incoming photon moves along the
negative z-direction.



(a) Calculate the energies and momenta of both the electron and the photon in the barycenter
system as a function of β.

(b) Determine the velocity β as a function of ω and the electron mass me.

(c) Express the scattering angle θ∗ in the barycenter system as a function of the scattering angle θ
in the rest frame of the electron, ω and me.

4. Fourier transformation of the acceleration employing Born’s approximation. Relate the acce-
leration of a particle with mass m in Born’s approximation to the Fourier transform of the accelerating
potential. In order to so, follow these steps:

(a) Write the acceleration ~a as a function of the potential energy and Fourier transform V(~x)→
Ṽ(k) to find
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(b) Introduce the particle orbit in Born’s approximation.

(c) Now, perform the Fourier transformation from time to frequency space to arrive at
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where δD(u) is Dirac’s delta-distribution.

(d) Finally, assume ~x0 = bêy and ~v = vêx and solve one of the three integrals.

5. Energy loss time scale of electrons (classroom assignment). Relativistic electrons passing
through a (thermal) photon field with energy density U lose energy through inverse-Compton
scattering on the characteristic time scale

τ =
3mec
4UσT

.

Derive the cooling time scale for an electron passing through the cosmic microwave background
(CMB) today and when the CMB was emitted.
Hints: The energy density of a thermal photon field of temperature T is

U =
π2(kBT )4

15(~c)3

with kB = 8.617×10−5 eV K−1, ~ = 6.582×10−16 eV s, c = 3×1010 cm s−1, and σT = 6.65×10−25 cm2.
Furthermore, the temperature of the CMB scales as T (z) = (1+ z)Tnow with the cosmological redshift
z and the present-day (z = 0) temperature Tnow = 2.72 K. The Universe was opaque at temperatures
above 3000 K. Which redshift does this correspond to?


