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Problem Sheet 1

Discussion in the tutorial groups in the week of Oct. 23rd, 2023

1. Comprehension questions.
e Summarize how Maxwell’s equations lead to a wave equation for the electrodynamic potentials.
Which gauge is typically being used here?
e How can this wave equation generally be solved?

e What is the energy current density of an electromagnetic field?

2. Liénard-Wiechert Potentials. Maxwell’s equations can be brought into the form of the wave
equation
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which is solved by means of the retarded Green’s function
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(a) Find an expression for the current-density four-vector j* of a point charge ¢ moving along a
trajectory Xo ().
(b) Show that the potentials of a point charge ¢ moving along a trajectory X,(f) are given by
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where R = - %(7), R = |R|, & = R/R, and (') = 3t)]/c.

3. Derivatives of the retarded time and distance. With the definition of the retarded time,
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show that

(a) the derivative of the retarded time ¢ with respect to the time 7 is
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(b) and that its gradient with respect to X is
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4. Far-field electric field (classroom assignment). In terms of the potentials A¥, the electric field is
given by
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(a) Take the gradient of ® = A, sort the terms by how steeply they depend on R, and show that
the one term falling of like R~! is

Q

Vo = ——qé(A‘ﬁ) -
cR(l —é-ﬁ)

(b) Take the time derivative of A = (A', A%, A*)T and show that its contribution falling off like R™"
reads
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(¢c) Combine the two results and use the identity @ X (l; X C) = (a- E’)E —(a- I;)E’ twice to bring the
electric field far from its source into the form

E=—T—ex|(e-A)x4.



