Cosmic Structure Formation

Heidelberg University Winter term 2022/23 Lecturer: Prof. Dr. Matthias Bartelmann Head tutor: Selin Üstündağ

Problem Sheet 11

Discussion in the tutorial group on Feb. 1st, 2023

- 1. Conditional probability in a Gaussian random field. Consider a statistically homogeneous and isotropic Gaussian random density field. We wish to derive the probability distribution $P(\vec{q}_1, \vec{q}_2)$ for find a particle at position \vec{q}_1 and another at position \vec{q}_2 .
 - (a) Set up the characteristic function for this problem, including the components of the covariance matrix.
 - (b) Write down an equation for the distribution $P(\vec{q}_1, \vec{q}_2)$ by introducing suitable conditional probabilities.
 - (c) Carry out the remaining operations.
- 2. **Mean force difference in a Gaussian random field**. Consider once more a statistically homogeneous and isotropic Gaussian random density field characterized by a power spectrum $P_{\delta}(k)$.
 - (a) Derive a probability distribution $P(\vec{q}_1, \vec{q}_2, \delta_3)$ for finding a pair of particles at positions \vec{q}_1 and \vec{q}_2 and a density contrast δ_3 at a third position.
 - (b) Average the force difference $\vec{f_1} \vec{f_2}$ over δ_3 first, and integrate over all positions \vec{y} of δ_3 .
 - (c) Using the previous result, find an expression for the mean force difference $\langle \vec{f_1} \vec{f_2} \rangle$.