Heidelberg University Winter term 2022/23 Lecturer: Prof. Dr. Matthias Bartelmann Head tutor: Selin Üstündağ

Problem Sheet 10

Discussion in the tutorial group on Jan. 25th, 2023

- 1. **Diagrams for perturbation theory**. In the lecture, we have introduced diagrams for terms contributing to perturbation theory, and described the rules for constructing these. This exercise should give an example for doing so.
 - (a) Construct two possible diagrams for perturbative terms of second order, contributing to a power spectrum.
 - (b) Identify the shift vectors \vec{L}_{q_i} and \vec{L}_{p_i} with the wave vectors occuring in these diagrams.
 - (c) Define all wave vectors needed to set up the factorized generating functional.
 - (d) Write down the response-field factors for these diagrams.
- 2. Asymptotic behaviour of integrals. With the methods described in the lecture and the lecture notes, derive the asymptotic behaviour for $\lambda \to \infty$ for the following integrals.
 - (a)

$$\int_0^\infty \mathrm{d}x \,\mathrm{e}^{-\lambda\left(a+bx^2\right)}\cos x$$

with
$$a, b \in \mathbb{R}$$
 and $b > 0$ and

(b)

$$\int_0^\infty \mathrm{d}x \,\mathrm{e}^{-\lambda b(x-x_0)^2} x^m$$

with $b \in \mathbb{R}$, b > 0, and $m \in \mathbb{N}$.

(c) Specialize the last result for m = 2.