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1. M stars, red giants and the pressure broadening of spectral lines [3 pt]
There are stars that have the same spectral type (hence the same temperature) but
very different absolute luminosity Lν . For example: an M dwarf and a red giant.
When we observe a star of spectral type M, we do not know whether this is a M
dwarf near to us or a red giant far from us.

We assume an M dwarf to be a star with Teff,∗ = 3000K, R∗ = 0.1R⊙, and M∗ =
0.1M⊙. We also assume a red giant to be a star with Teff,∗ = 3000K, R∗ = 30R⊙,
and M∗ = 1M⊙.

(a) How much farther away should the red giant be from us with respect to the M
dwarf in order to have the same flux as the M dwarf?

Unfortunately, it is difficult to measure the distance of most stars via their parallaxes,
and thus it will be difficult to distinguish between a M dwarf and a red giant.

Luckily enough, though, one can estimate the strength of the gravitational constant
g at the stellar surface from the spectrum of a star, and then assess the difference
between a M dwarf and a red giant.

(b) Determine g in cm/s2 for both the M dwarf and the red giant using their prop-
erties we assume above.

Now, how do we derive g from the spectrum? First, we assume that the gas pressure
in the stellar photosphere Pν is directly proportional to g (i.e. Pν increases with
increasing g). We then define Pν as the pressure at the height in the photosphere
where the optical depth τν (here ν is frequency, the unit of our spectrum) is 2/3. At
τν = 2/3 the Eddington-Barbier relation holds:

Iobsν ≃ Bν(T (z(τν = 2/3))) (1)

where z(τν = 2/3) is the value of z and τν(z) = 2/3. If we initially assume an opacity
κν that does not depend on ρ and T , we can express the continuum optical depth
from a height z in the atmosphere to the observer as:

τν(z) = κν

∫ ∞

z

ρ(z′)dz′ (2)

where the line of sight is considered to be perpendicular to the atmosphere. If we
also at first suppose that the temperature of the atmosphere is constant with z, the
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structure of atmosphere can be described with a simple exponential function, as we
have seen in the lecture.

(c) Demonstrate with this assumption that

Pν =
2

3

g

κν

(3)

We now waive the assumption that T = constant, since an atmosphere without a
temperature gradient will not give rise to spectral lines. We now use the proportion-
ality between the line width ∆ν/ν and the gas pressure:

∆ν

ν
∝ P√

T
(4)

(d) Argue that the lines in the spectrum of our M dwarf are wider than those in
the spectrum of the red giant.

2. Polytropic stars [6 pt]
We consider a star that is made of ideal gas and is perfectly polytropic. This means
that the pressure and density follow, everywhere in the star, the equation of state of
an ideal gas:

P (r) ≡ kB
µmp

ρ(r)T (r) = Kρ(r)γ (5)

where r is the radial coordinate, γ the adiabatic index, kB the Boltzmann constant,
µmp the mass of one gas molecule, ρ the density, P the pressure, T the temperature
and K a constant that depends on the type of gas. Often, γ is replaced by the
polytropic index n:

n =
1

γ − 1
(6)

We have seen in the lecture that the solution of the equation of hydrostatic equilib-
rium can be written in the following dimensionless form:

r = αx, ρ(r) = ρcΘ(x)n, α2 =
K(n+ 1)

4πG
ρ(1/n)−1
c (7)

where G is the gravitational constant, ρc the density at the centre of the star, x one
dimensionless coordinate, and Θ(x) one solution of the Lane-Emden equation. For a
given n there is only one Θ(x) solution to the Lane-Emden equation.

(a) Demonstrate that one can write K as:

K =
kBT

µmp

1

ρ1/n
=

kBTc

µmp

1

ρ
1/n
c

(8)

where Tc is the temperature at the centre of the star.

(b) Show that the radius of the star depends on Tc and ρc as follows:

R∗ = A

√
Tc

ρc
(9)

where A is a constant, which depends on universal constants as well as on n
and µ (but not on ρc or Tc).
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(c) Demonstrate that the mass of the star depends on Tc and ρc as follows:

M∗ = B
T

3/2
c

ρ
1/2
c

(10)

where B is a constant, which depends on universal constants as well as on n
und µ (but not on ρc or Tc). Important: unfortunately no general analytical
expression exists for B (except for very specific values of n) because B contains
an integral that cannot be solved analytically. Do not be put off by it.

(d) Demonstrate that the escape velocity at the stellar surface vesc =
√

2GM∗/R∗
depends on universal constants as well as on the central temperature Tc and not
on the stellar mass or the central density ρc.

(e) Show that

R∗ ∝
M∗

Tc

(11)

We now consider what happens when a star radiates away part of its energy. We
assume that no nuclear reaction is taking place in the stellar core. This means that
K changes with time (but n remains constant), and so do R∗, ρc, Tc and Etot =
Etherm+Epot also. We wish to find out how they vary (will they increase or decrease
with time?). One can demonstrate with this polytropic model that

Epot ≡ −4π

∫ R∗

0

r2
Gρ(r)

r
M(r)dr ∝ −M2

∗
R∗

(12)

which is also physically justified. From the virial theorem it follows that the total
energy scales in this way:

Etot ∝ −1

2

M2
∗

R∗
(13)

which one can also derive by directly integrating the polytropic model (but this is
not part of the exercise).

(f) Show that, when the star loses energy, the central temperature increases. In
other words: that the star has a negative heat capacity.

(g) The energy production of a star via nuclear fusion is a strongly increasing func-
tion of temperature, for example ϵ ∝ ρT 5 for the so-called “pp chain”. Discuss
why the negative heat capacity of the star keeps the star stable (main-sequence
star), or, on the contrary, if the star had a positive heat capacity (like every
“normal” system has), it would explosively convert all its fuel into heat like a
giant bomb.
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