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1. Order of an ODE integration scheme [4 pt.]

Consider the differential equation

dy
dt

= f (y)

for the function y(t) and a general right hand side f (y). This may be integrated dis-
cretely with an explicit midpoint method:

yn+1 = yn + ∆t f
{

yn +
∆t
2

f (yn, tn), tn +
∆t
2

}
.

Show analytically this scheme is second-order accurate in the time step ∆t by calculating
the local and global truncation errors.

Hint: Use Taylor expansion.

2. Integration of a stiff equation [8 pt]

Consider an ionized plasma of hydrogen gas that radiatively cools. Its temperature evo-
lution is governed by the equation

dT
dt

= − 2
3 kB

nH Λ(T) (1)

where Λ(T) describes the cooling rate as a function of temperature, kB = 1.38× 10−23 J/K
is Boltzmann’s constant, and nH is the number density of hydrogen atoms. The cooling
rate is a strong function of temperature T, which we here approximate by
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with Λ0 = 10−35 J m3 s−1, T0 = 20000 K, α = 10.0, and β = −0.5. We consider isochoric
cooling of gas at density nH = 106 m−3, with an initial temperature of Tinit = 107 K.

(a) Determine the temperature evolution T(t) by integrating equation (1) with a second-
order explicit Runge-Kutta predictor-corrector scheme and a fixed timestep, until
the temperature has dropped below 6000 K. Use a timestep size of ∆t = 1010 s.
Make a plot of the time evolution of the temperature, with a logarithmic scale for
temperature and a linear scale for the time.

(b) How many steps do you roughly need in (a) to reach the final temperature? Try
to play with the timestep size and see whether you can significantly enlarge the
timestep without becoming unstable.

(c) Now implement the second-order integration from (a) with an adaptive step size
control, based on estimating the local truncation error by carrying out two half-
steps for every step. Use an absolute local error limit ∆Tmax

err = 50 K for every step.
Overplot your result for the temperature evolution, on the plot for (a), using sym-
bols or a different color. How many steps do you now need? Confirm that your
scheme is robust to large changes of the timestep size given as input for the first
step.

3. Double pendulum [8 pt.]

We consider a friction-less
double pendulum that is
constrained to move in one
plane. The two masses m1
and m2 are connected via
massless rods of length l1
and l2, respectively, as de-
picted in the sketch.

φ1
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l2 

m2 

m1 
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The Lagrangian of this system is given by the expression

L =
m1

2
(l1φ̇1)

2 +
m2

2

[
(l1φ̇1)

2 + (l2φ̇2)
2 + 2l1l2φ̇1φ̇2 cos(φ1 − φ2)

]
−m1g l1(1− cos φ1)−m2g [l1(1− cos φ1) + l2(1− cos φ2)] (3)

(a) Derive the Lagrangian equations of motion,

d
dt

∂L
∂φ̇
− ∂L

∂φ
= 0, (4)

for the angles φ1 and φ2. Hint: Declare conjugate momenta q ≡ ∂L
∂φ̇

and do not ex-

plicitly carry out the absolute time derivative; it is sufficient if you give dq1
dt and

dq2
dt .



(b) Cast the system of equations into 1st-order form, such that the dynamics is descri-
bed by the ODE

d~y
dt

= ~f (~y), (5)

where ~y is a four-component vector. Hint: Use the conjugate momenta to eliminate
the second derivatives, i.e. adopt ~y = (φ1, φ2, q1, q2) as state vector. Hint 2: When
you define f3, f4, you can save time/effort if you “re-use” the values of f1, f2, no
need to plug in their expressions again. You should do so when you are writing the
program as well.

(c) Write a computer program that integrates the system with a second-order predictor-
corrector Runge-Kutta scheme. Consider the initial conditions φ1 = 50◦, φ2 =
−120◦, φ̇1 = φ̇2 = 0, and adopt m1 = 0.5, m2 = 1.0, l1 = 2.0, and l2 = 1.0. For
simplicity, we shall use units where g = 1. Use a fixed timestep of size ∆t = 0.05,
and integrate for the period T = 100.0 time units (equivalent to 2000 steps). Plot the
relative energy error, (Etot(t)− Etot(t0))/Etot(t0), as a function of time.

(d) Produce a second version of your code that uses a fourth-order Runge-Kutta scheme
instead. Repeat the simulation from (c) with the same timestep size, and again plot
the energy error. How does the size of the error at the end compare, and is this
consistent with your expectations?

(e) Let’s make a visualization of our double pendulum in order to get a feel for its
interesting and quite complex behavior. In fact, this pendulum is one of the simplest
systems that shows non-linear chaotic behaviour. To see this, choose two different
initial conditions that are very close to each other (e.g. fix one angle and change the
other angle just by a bit). Plot how they diverge in phase space: In the angles φ1 vs.
φ2 and in the velocities φ̇1 vs. φ̇2. Explain what you see.
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