Standard Model of Particle Physics

Lectures: Prof. Dr. André Schöning, Jun.-Prof. Dr. Susanne Westhoff Tutorials: Sebastian Bruggisser, Ting Cheng, Christoph Sauer, Nele Volmer

Problem Sheet 01

to be handed in on: Monday 26.04.2020 and discussed on: 27/28.04.2020

Problem 1. Natural Units

This exercise is to recall the use(fulness) of natural units. Recall that in particle physics we set $\hbar = 1$ and c = 1. Use this to solve the following questions:

- a) Find the connection of energy (MeV) with time (s), length (m), and mass (g). Express a cross-section of 1 millibarn in units of GeV⁻¹. Hint: $c = 299792458 \text{ m/s}, \ \hbar = 6.582119 \times 10^{-22} \text{ MeV} \cdot \text{s}, \ 1 \text{ eV} = 1.602176 \times 10^{-19} \text{ J}$ and $1 \text{ barn} = 10^{-24} \text{ cm}^2$
- b) One often also sets the Boltzmann constant to one: $k_B = 1$. In this case, find the connection between temperature (K) and energy (MeV) and between temperature (K) and time (s). Hint: $k_B = 1.380649 \cdot 10^{-23} \,\mathrm{J} \cdot \mathrm{K}^{-1}$.
- c) The Planck mass M_{Pl} is defined as $G = 1/M_{Pl}^2$ where G is Newton's constant. Starting from M_{Pl} construct one unit of time and one unit of length (these are called the Planck time and length respectively). Evaluate them in SI units (you will have to restore \hbar and c for this). Use the Planck mass, time and length to construct one unit of speed and one unit of action. Evaluate them in SI units and comment.

Hint: $G = 6.67430 \times 10^{-11} \,\mathrm{m^3 \cdot kg^{-1} \cdot s^{-2}}$

Problem 2. $2 \rightarrow 2$ scattering

We consider a scattering experiment where we have 2 incoming and 2 outgoing particles $(1 + 2 \rightarrow 3 + 4)$ of masses m_1, m_2, m_3 and m_4 respectively. In the laboratory frame the incoming particles have 4-momentum $P_1^{\mu} = (E_1, 0, 0, p_1)$ and $P_2^{\mu} = (E_2, 0, 0, -p_2)$.

- a) Calculate, in the center-of-mass system, the energies and momenta of the individual particles, and give their asymptotic behaviour $(s \gg m_i^2)$. Remember: $s = (P_1^{\mu} + P_2^{\mu})^2$
- b) Show that the scattering angle θ^* in the center-of-mass (COM) frame is given by

$$\cos\theta^* = \frac{s(t-u) + (m_1^2 - m_2^2)(m_3^2 - m_4^2)}{\sqrt{\lambda(s, m_1^2, m_2^2)\lambda(s, m_3^2, m_4^2)}} \,. \tag{1}$$

Remember: $s = (P_1^{\mu} + P_2^{\mu})^2$, $t = (P_3^{\mu} - P_1^{\mu})^2$ and $u = (P_4^{\mu} - P_1^{\mu})^2$. Finally $\lambda(a, b, c) = a^2 - 2a(b+c) + (b-c)^2$ and θ^* is the angle between particles 1 and 3 $(\vec{p_1} \cdot \vec{p_3} = |\vec{p_1}||\vec{p_3}|\cos\theta^*)$.

Sebastian	bruggisser@thphys.uni-heidelberg.de
Ting	ting.cheng@mpi-hd.mpg.de
Christoph	csauer@physi.uni-heidelberg.de
Nele	volmer@mpi-hd.mpg.de

- c) Calculate the energies and momenta of the individual particles in the lab frame (as opposed to the COM frame).
- d) Calculate the scattering angle θ in the lab frame.

Problem 3. Kinematics

- a) Show that the decay $e^- \rightarrow e^- \gamma$ is kinematically forbidden.
- b) In Grand Unified Theories the proton can decay into e^+ and π^0 $(p^+ \to e^+ + \pi^0)$. Show that this decay is kinematically allowed.
- c) Use a simple argument to show that electron-positron pair production from photon decay $(\gamma \rightarrow e^+e^-)$ is forbidden as well.
- d) Electron-positron pair production is one of the dominant modes of interaction of an incoming photon with matter. How is this reconcilable with the previous result?
- e) A photon γ ($p^2 = 0$) with 4-momentum $p^{\mu} = (E, E, 0, 0)$ scatters with an electron at rest. After the process the photon has 4-momentum $p^{\mu} = (E', E' \cos\theta, E' \sin\theta, 0)$. Show that

$$E' = \frac{E}{1 + \frac{E}{m_e}(1 - \cos\theta)} \,. \tag{2}$$

Problem 4. 3-Body Phase Space

Consider an unpolarized 3-body decay $p \to p_1 + p_2 + p_3$, e.g. β -decay of a muon: $\mu^- \to e^- \bar{\nu}_e \nu_\mu$. Show that when $m_\mu \gg m_{e,\nu}$ the phase space in the rest frame of the decaying particle is:

$$\int d^4 p_1 d^4 p_2 d^4 p_3 \delta(p_1^2 - m_1^2) \delta(p_2^2 - m_2^2) \delta(p_3^2 - m_3^2) \Theta(E_1) \Theta(E_2) \Theta(E_3) \delta(p_1 + p_2 + p_3 - p) = \pi^2 \int_0^{m_\mu/2} dE_1 \int_{m_\mu/2 - E_1}^{m_\mu/2} dE_3$$
(3)