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Problem 1. Index gymnastics

These small exercises are intended for you to review some basic ideas about tensors and get
some practice in doing index manipulations. In the Standard Model, you will come across a lot of
different indices (many of which will sometimes be omitted), so it’s a good idea that you become
familiar in dealing with them.

On this sheet, Greek (space-time) indices will range from 0 to d− 1 = 4− 1 = 3 (the Standard
Model is constructed in 4 space-time dimensions), whereas Latin indices from the middle of the
alphabet starting with i will be spatial indices, and so will run from 1 to d − 1 = 3. Keep in
mind that in the lectures you will find indices that are not space-time or spatial ones (for example,
gauge or family indices), and those might follow different conventions and run over a different set
of values!

We will use the Einstein summation convention, which means that repeated indices (usually
appearing as one lower and one upper index) are summed over all the possible values of the index.

1. Let gµν denote the inverse of the metric gµν , i.e. the tensor for which gµνgνσ = δµσ .
Evaluate gµνgνµ.

2. Evaluate gijgij .

3. In these lectures, gµν always denotes the flat-space metric. However, in general this can be a
function of space-time. Prove that, in these cases, ∂µgνρ = −gνκgρλ∂µgλκ.

4. We denote symmetrization of a tensor Tαβ...γ as T(αβ...γ), and antisymmetrization as T[αβ...γ].
Evaluate T (αβ)ω[αβ].

5. Evaluate ω[αβ]U
αUβ . Hence, show that ωαβUαUβ = ω(αβ)U

αUβ .

Problem 2. Dimensional Analysis

This problem is intended as a summary of some basic concepts in collider physics, and it is for
you to gain better control on the quantities that you will be working with during the course.

a) At a particle collider, the number of events of a certain scattering process is given by

N = Lσ (1)
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where L is called luminosity and it’s a property of the collider, and σ is the cross-section and
is a property of the process.
Let’s assume that the collider operates with two beams of particles traveling in opposite
directions, that therefore collide head-on. In a time interval ∆t, each beam delivers N
particles, that are contained in cylinder with effective area A and height c∆t (if the particles
move at the speed of light). In this case the integrated luminosity during ∆t is

L =
N2

A
(2)

It’s more common to define a instantaneous luminosity, differentiating over time

dL
dt

=
N2

A∆t
=
N2f

A
(3)

and f = 1/∆t is the frequency with which bunches of N particles cross. In this way R =
σdL/dt is the rate at which the process takes place.
What dimensions do L and σ have? And the instantaneous luminosity?

b) In particle physics is very common to use natural units, ie. to set ~ = 1 = c. What are the
dimensions in this case?
Hint: remember ~ has dimensions of an action and c of a speed: [~] = [ET ], [c] = [LT−1].

c) When doing a measurement, one often measures the cross section as a function of a kinematic
quantity, for instance the invariant mass of the collision s or the angle between two scattering
products.

What are the dimensions of the differential cross section
dσ

ds
? and of

dσ

d cos θ
?

d) Imagine that you are observing 1000 collision events of a given process. For each of them you
have a measurement of

√
s, with values that span between 0 and 500 GeV. You divide this

range in 20 bins of equal size and you make a histogram of
√
s values.

What is the quantity you are representing in the y axis? What units would it have?

e) Unstable particles can decay into other states, which gives them a finite lifetime τ .
The lifetime is related to the decay width of the particle Γ by τ = ~/Γ.
What are the dimensions of the decay width? And in natural units?
Can you relate τ = ~/Γ to the uncertainty principle?

f) In general, an unstable particle p can decay to different final states: p → fi. The particle
width is then the sum over the partial widths into each channel:

Γp =
∑
i

Γ(p→ fi) (4)

In this case it is convenient to define quantities called branching ratios, that indicate the
probability of each decay compared to the total rate:

Br(p→ fi) =
Γ(p→ fi)∑
j Γ(p→ fj)

(5)

What are the dimensions of a branching ratio?
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Problem 3. Symmetries

a) Suppose we have a theory of two independent U(1) gauge groups with field strength tensors:
Fµν andBµν respectively. Does the following Lagrangian density respect the basic symmetries
(Lorentz and the U(1)× U(1) gauge symmetry)?

L =
1

4
FµνFµν +

1

4
BµνBµν +

1

4
FµνBµν (6)

b) We repeat the same exercise but this time with two SU(2) gauge groups with field strength
tensors F Iµν and BIµν where I is the SU(2) generator index. Does the following Lagrangian
density respect the basic symmetries (Lorentz and the SU(2)× SU(2) gauge symmetry)?

L =
1

4
F IµνF Iµν +

1

4
BIµνBI

µν +
1

4
F IµνBI

µν (7)

Problem 4. Lagrangian and field redefinitions

In this exercise we will construct the most general Lagrangian for a fermion field, compatible with
Lorentz invariance.

Consider a theory that contains N non-interacting fermion states ψm. The Lagrangian is a
quadratic function in the fields, with dimensions [L] = [E4]. The most general set of Lorentz-
invariant terms that we can write is then

L = Amniψ̄mγ
µ∂µψn +Bmniψ̄m(iγ5)γ

µ∂µψn − Cmnψ̄mψn −Dmnψ̄miγ5ψn + E (8)

a) The Lagrangian must always be a Hermitian function. What does this imply for the quantities
Amn, Bmn, Cmn, Dmn, E?

b) Rewrite the Lagrangian above separating the left-handed and right-handed components of
the spinors:

ψL = PLψ, ψR = PRψ (9)

Hint: remember the projectors properties PL + PR = 1, and the definition PL = (1 − γ5)/2,
PR = (1 + γ5)/2.

c) The Lagrangian given above is redundant, ie. some of the terms can be removed performing
field redefinitions. Consider the redefinition

ψL,m 7→ Vmnψ′Ln , (10)
ψR,m 7→ V∗mnψ′Rn . (11)

Show that this is equivalent to

ψm 7→ Vmnψ
′
n − Umniγ5ψ′n . (12)

for V = V + iU .
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d) Define the complex matrices A = A+ iB, C = C+ iD. What properties do they satisfy, given
those of A,B,C,D?

What properties does A have to fulfill for the theory to be bounded from below?

Apply the transformation in Eqs (10), (11) to the Lagrangian written in terms of chiral fields.

e) We can still choose the form of V. Define V = (A∗)−
1
2M∗ where M is the unitary matrix

that satisfies the following property:

MTC′M =


c1

c2
. . .

cN

 , (13)

where C′ is the symmetric matrix defined by: C′ =
[
(A∗)−

1
2CA−

1
2

]
. One can show that such

a matrixM always exists and that we can chose the c1 . . . cN to be real and non-negative.

Apply this transformation to the Lagrangian. What is the final form of the Lagrangian?
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