Measurement of Z-lineshape

Strongly influenced by Bremsstrahlung
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Large Electron Positron Collider (LEP)

Circumference ~27 km
Centre-of-mass energy 92.1 GeV(LEP1) to 209 GeV(LEP
2)

Accelerating gradient Up to 7 MV/m (SC cavities)

Number of bunches 4 x4

Current per bunch ~ 750 pA

Luminosity (at Z0) ~24x10%cm™3s?! (~1 Z0/sec)
T Luminosity (at LEP2) ~50%x10%m™s™ (3 WW/hour)

Interaction regions 4 (ALEPH,DELPHI,L3,0PAL)

Energy calibration < 1 MeV (at Z0)

Year A D L Ol LEP[f A D L O|LEP

1000/91 || 433 357 416 454 1660 ] 53 36 39 58] 186 Events per

3

1992 | 633 697 678 733 | 2741 || 77 70 59 88| 24 experiment
1993 || 630 682 646 649 2607 f| 78 T 64 TO| 296
1994 || 1640 1310 1359 1601 | 5910 || 202 137 127 191 | 657
1995 735 639 526 659 | 2579 9O 66 54 81| 291

Total || 4071 3705 3625 4096 | 15497 || 500 384 343 497 | 1724
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LEP Detectors
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Example: OPAL Detector
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Measurement of Cross Section o(\s):

o(s) =

Nevents (1 B b)

8A ) l:mt

= 2E,

with _

g

N, ...« = number of selected events

b = background fraction in sample
gA = efficiency - acceptance

L. . = Integrated luminosity

Requires calibration of beam energy and
experiment dependent correction
(synchrotron loss). Uncertainties in the
energy scale translates into an absolute

error of m,.
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LEP Beam Energy Calibration

ec
EB - E?B(S)ds

Beam energy calibration requires precise measurements of the
average B-field along the LEP ring. In addition interaction point
dependent corrections are necessary to account for the energy
loss by synchrotron radiation (260 MeV / turn) and the
asymmetric position of the RF cavities during LEP-1.

o/ 232
{ [ 231

\
\ /
\ 632 /%
\ Y;
633

kS 673
IP8 672 IP6

- 671 _

s Ty

o ™~

IP2 272 \\IP4
273 x

233 \
[ Copper RF Cavities

EE Superconducting RF Cavities

6a1 /%

Different measurement to determine B-field of dipole magnets have been used:

» Field display: NMR probes / rotating coil inside a reference magnet powered in series
with the LEP dipole magnets. Problem: different position and different environment.

Used to extrapolate from periods w/o other measurements

* Flux loop measurements: induction loops in all 8 octants — measure induction

voltage when the B field is ramped.

 NMR probes inside the ring dipole magnets (installed only in 1995) _

Good reproducibility but no absolute calibration.

—_—
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Measurements to calibrate flux-loops / NMR probes:

Proton calibration: LEP ring was filled with 20 GeV protons.
— precise determination of proton velocity — proton momentum — B field
Method reached absolute accuracy of 104 at 20 GeV.

Resonant depolarization (ultimate method, precision better than 1 MeV (10-°).
Method is a “g-2 experiment” where the electron g-2 is known and the average
B-field / average electron energy Eg is determined instead.

. g-2 E,.

Spin-tune: AV
2 m,.c’

Absolute energy calibration at 17 ppm level has been achieved.

Requires the correction of many unexpected effects:

Tidal effects and ground water level — changes the circumference of the
LEP ring (1 — 2mm — + 5MeV )

French TGV passing in the neighborhood — vagabonding electrical
currents (~1A) produce additional B field which modifies the energy (MeV)
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Cross section measurements o(\s)

e e — hadrons e e >uu
40 2
L3 O 1990-92 - L3 O 1990-92
Fe'e” — hadrons(y) " 1993 - ee = (y) " 1993
30 A 1994 15 F A 1994
[ ® 1995 I ® 1995
o) o)
=20 k2)
o &
10
101} LOSE
= ' i =
= 1 * 3 + = 1 *
099 -_ 1 I 1 1 1 I 1 1 1 I 1 1 1 I 1 095 -_ 1 I 1 1 1 I 1 1 1 I 1 1 1 I 1
88 90 92 94 88 90 92 94
Vs [GeV] Vs [GeV]

Resonance shape is the same, independent of final state: same propagator 36




O,,.q4 [Nb]

Reminder:

T T T T T T T T T T T T T T T T

0 1
I G
) LI 2
40 _ A
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L3 ! A
30 + OPAL ] \ -
20 .

I casuremepts, error bars /
' n%ucreased E)‘ factor 10 /

¢

10 - o from fit J"
" -..-. QED unfolded ’."
L -

; " MZI 1
86 88 90 92 94
E_[GeV]
cm

Measurement of e*e- — e*e:

t-channel contribution (mostly y) needs to be
subtracted (see lecture on ee-annihilation).
This is done using QED predictions.

I.r S

o(s) =127 -4

M2 (s MEY + MET3

127 11,
Op = M2 12
z 1z

Peak:

« Resonance position - M,
* Height > T' . T,
+ Width - I,
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F e — e+e_(y) " 1993
A 1994

I+ 44° <@ < 136°
i ® (995

=)
g )
©0s5 ,,"s-chamlel
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Z line shape parameters (LEP average)

M, = 91.1876 + 0.0021 GeV +23 ppm (*)
T, = 24952 + 0.0023 GeV *0.09 %)
T, =17458+0.0027 GeV
T, = 0.08392 + 0.00012 GeV
r, = 0.08399 + 0.00018 GeV
T = 0.08408 + 0.00022 GeV

.
T, = 24952 + 0.0023 GeV
T, =17444+00022 GeV
r = 0.083985 + 0.000086 GeV

-

*) error of the LEP energy
determination: +1.7 MeV (19 ppm)
http://lepewwg.web.cern.ch/

3 leptons are treated
independently

I

test of lepton
universality

Assuming lepton

universality: I', = I" =I",

(predicted by SM: g, and g,, are the same:)

oM,

"~ 42sin? g, cos? 4,

CARICAT

38



Number of light neutrinos

In the Standard Model:

I,=1,,+3-T,+N, -

invisible:

Finv = 1—12 _Fhad _3'Ff

(

r‘V

=1_‘inv

-

\

I, =0.4990+0.0015 GeV %
To determine the number of light neutrinos: 3
N, = Frinv _ FF %
v.SM t Jexp \"Vv/SM
5.9431i(;.01;3 J =£/1-951i6-001

(small theo. uncertainties
from m,,, M,

N, = 2.9840 + 0.0082

No room for new physics:

e'e >Z->v,,
+ — —_—
ee >ZL-ovy,

e'e >Z->vv,

[LEP, Phys. Rep. 427 (2006) 257]

2v
30 - ALEPH /;;\:
DELPHI [/ \|
L3 /% \+
.",f / L“‘, \ \
OPAL
20 | I/ \\
4 average measurements, / \\
error bars increased |/ \\
by factor 10 / AN
/ N\
10 # \N
/J \+\
0-.|...|...|...|.,.|
86 88 90 92 94
E_, [GeV]
Z — péw invisible particles 39



Lepton couplings to the Z-boson

In the following we ignore the difference between chirality and helicity:
good approximation as leptons are produced with energies >> mass.

Z boson couples differently to LH and RH leptons:

1
9r ==(9y —94)

> —
2

1
g, = E(gv +ga)

‘ Coupling to LH leptons stronger

Z produced in e+e- collisions is polarized.

) ) . e"‘ o Ig u ' ~e e
Experimental configuration: / cos o, /4 5 (QR + QL)
e —¢@m>r «@m—c" = g

- = Or o
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Instead of measuring the spin averaged transition amplitudes try to
decompose the different “helicity” components to the cross section, i.e.:

Observables:

Will be
discussed in
the following

Will not be
discussed.

Vector coupling
removes all other
combinations.

O+ Ogr OpL t O

Related to 6 and o

AFB -
Or +0p
Forward-backward asym.

0 =0 tOg Ogr=0Rg t+Og

6.=0 +Op  O,=Opr*t O

O, —Opg
ALR =
O, + Op
Left right asym. (initial state)
O, — 0O
g =t "=
o, +0._

fermion polarization (final state) 41




Forward-backward asymmetry

Anqgular distribution: (see above)
Q.Q,
4sin’ g, cos® 6,

F,(cos @)= [2959(; (1+ cos® 8) + 4g5g; cos 6’]

Very small: g, =0

L [(952 + 9@ + g4 )(1+ cos® 0) +8gSg gLgL cos 6?]

F,(cos @) =
2(00s0) 16sin* ,, cos* 4,

do

Forward-backward asymmetry Agg ~(1+cos® 0) + %AFB cosd
— Ccos
« Away from the resonance large — interference term dominates \
s(s —M3) . Apg =
(s— M§ N M§F22 — Large, g, is large OF +0p

AFB ~ gf\gi\ .

* On the resonance (no interference) — only Z exchange (i.e. F) contributes:
A -3 94 9v9;
FB —
(9v) +(ga)” (90) +(94)

— very small because g,/ small in SM 42
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Determination of the couplings g, and gy

Asymmetrie at the Z pole

e e f

As ~ 9290949y

Cross section at the Z pole

o, ~|(9) +(da) || (&) +(9h) |

!

Lepton asymmetries together with lepton
pair cross sections allow the determination of
the lepton couplings g, and g, — elliptical
confidence regions

Good agreement between the 3 lepton
species confirms “lepton universality”

Different contour size: electrons are measured in

all measurements; tau contour uses additional
measurement (polarization)

-0.032 —F————F————————
m=178.0 + 4.3 GeV
my= 114...1000 GeV -

-0.0351 —

S
(@)]
-0.0381 * —
— T 1
ee
_____ Ll;.u_ ]
""" TT )
0041+
-0.503 -0.502 -0.501 -045
I
Tree level SM prediction

Deviation from tree level SM prediction

2
mW

2
mZ

is an effect of higher-order loop-corrections.

g,=T,-2qsin°0, g,=T, sin°g, =1-
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Assuming lepton universality the
measurements result in:

g, =—-0.03783 +0.00041
g, =—-0.50123+0.00026

g, = +0.23170 £0.00025
g, =—0.26959 +0.00024

As predicted by the SM: Z boson
couples stronger to LH leptons
than to RH leptons.

From g, one can calculate sin?6,,

sin® 65" =0.23113+0.00021

(“effective mixing angle” — measurement
includes higher order effects in couplings)

Using Z and W boson masses:
m,, =80.3692+0.0133 GeV
PDG

m, =91.1880 £ 0.0020 GeV
2

sin” 6, = 1— % = 0.2232 +0.0003
mZ

The difference between the two determination of the weak mixing angle is
related to higher-order loop corrections which modify the p-parameter and
leads to effective couplings and an effective mixing angle (next semester).
These loop correction are functions of the top and the Higgs mass. 45




W — mass measurement at LEP

46



W-pair production at LEP2 (Vs > 161 GeV)

AtLEP: ete™ - WW — ffff ~10K WW events / LEP-experiment

w* <r
1
!

W

I‘I.’i.-'h?.n'?f'l"r'.'-"

Threshold behavior of the S 201 LEP  PRELIMINARY y

cross section (kinematics, = B YFSWW and Racoonww

phase space) for ee>WW ©

production: ‘

10 -
Phase space factor = f(m,,, \/s):
_— Kinematic threshold

— Allows determination of my, . o~ = \/1—4”"5/ /s

f/ (B = velocity of W)
m,, =80.42 £0.20 + 0.03(E ;) GeV oL . .

160 180 200

Vs (GeV) 47



Topology of WW decays

IIIIIIIIIIIIIIIIII

HﬁlIIIIIIIIIIIIIIIII;{

IIIIIIIIIIIIIIIIII

Run# 945004 Event# 4035 DAQ Time : 02.11.2000 4:2534 h

Signatures for a mass measurement:

W,—=lv W,—Jetlet

or W,—Jetlet W,—Jetlet

mNMNWCi::: o
Vz’qu
qqlrv

olelele
iy

Lepton Neutrlno

> Jet

NVZENVZ
N

Use dijet invariant mass.
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W Leptonic Branching Ratios

ALEPH
DELPHI
L3
OPAL

LEP W—ev

ALEPH
DELPHI
L3
OPAL

LEP W—pnv

ALEPH
DELPHI
L3
OPAL

LEP W—1tv

LEPW—lv ¢

10.78 £ 0.29
10.55+ 0.34
I 10.78 + 0.32
10.71+ 0.27
10.71+ 0.16
10.87 + 0.26
3 10.65+ 0.27
] 10,03+ 0.31
— 10.78 £ 0.26
° 10.63 + 0.15
Py 11.25+ 0.38
—_ 11.46 + 0.43
—— 11.89 + 0.45
L 11.14 + 0.31
- 11.38 + 0.21
¥indf=6.3/9
10.86 + 0.09
xindf=15.4 /11
10 11 12

Br(W—lv) [%]

Agreement between leptons =
test of lepton universality

W-mass:

Use WW— qq vl or WW— qq qq

events and calculate the qq
invariant mass.

ALEPH o

DELPHI 1§
OPAL i}

LEP 4

W Hadronic Branching Ratio

67.13+ 0.40
67.45+ 0.48
67.50 £ 0.52
67.41+ 0.44

67.41+ 0.27

yIndf=15.4 /11

P L T T L T S T

66 68 70

Br(W—hadrons) [%]

LEP W-Boson Mass

ALEPH go—
DELPHI ——
L3 ——
OPAL ——
LEP -

80.440 £ 0.051
80.336 + 0.067
80.270+ 0.055

80.415+ 0.052

80.376 +£ 0.033

2 ?/DoF = 48.9/41

N R R
80.0 80.2 804 80.6

M, [GeV]

808 81.0
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Triple Gauge Boson Coupling
e W e’
VW WY
P
VWA W !
\ e W e
30

e'e” > WW

Cross section data confirms
the existence of the y/ZWW
triple gauge boson vertex.

b§ + /
20+ e ! +7 7+
| & . { lesepri—y™
10 N
YFSWW/RacoonWW

, _._.no ZWW vertex (Gentle)

‘,_:*’ ..... only v, exchange (Gentle)

01— . , . |

160 180 200

Vs (GeV)

CERN-PH-EP/2013-022

arXiv:1302.3415

W
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