Experimental aspects of QCD

- 1. Experimental observations motivating QCD
- 2. Recap: QCD Feynman-Rules and color factors
- 3. Discovery of the gluon and its spin
- 4. $q\overline{q} \rightarrow q\overline{q}$: s- and t-channel process
- 5. Measurement of alphas and its running

1. Experimental observations motivating QCD

Recap:

Hadron matter made of quarks of different flavor (static quark model): Approximate SU(3) flavor symmetry for light quarks: $u \leftrightarrow d \leftrightarrow s$

DIS experiments provided existence proof of point-like spin $\frac{1}{2}$ constituents of the proton.

Color quantum number

Historically, an additional internal quantum number "color charge" with 3 possible values (often called r, g, b, or correspondingly \overline{r} , \overline{g} , \overline{b} for anti-quarks) was introduced to cure a symmetry-problem of the Δ^{++} (u[↑] u[↑]u[↑], J=3/2) quark wave function:

$$\Psi(uuu,\uparrow\uparrow\uparrow) = \Psi_{space} \cdot \phi_{flavor} \cdot \chi_{spin} \cdot \xi_{color}$$

symmetric under particle exchange

with
$$\Psi_{space} = \text{symmetric (L=0)}$$

 $\phi_{flavor} = \text{symmetric (uuu)}$
 $\chi_{spin} = \text{symmetric (\uparrow\uparrow\uparrow)}$

Need additional color wave function ξ_{color} fully anti-symmetric $\xi_{color} = \frac{1}{\sqrt{6}} \sum_{i,j,k} \varepsilon_{ijk} u_i u_j u_k$ with color indices i, j, k Experimental evidence for 3 different "color states": $N_c = 3$

In the fundamental representation the generator T_a of SU(3) are given by the 8 Gell-Mann matrices λ_a with a=1...8: $T_a = \frac{1}{2} \lambda_a$ (see QCD).

The 3x3 Gell-Mann matrices λ_a are traceless, hermitian and unitary.

Reminder Gell-Mann matrices (Recap)

SU(3) Generators:
$$T_a = \frac{1}{2}\lambda_a$$

Gell-Mann matrices:

$$\begin{split} \lambda_{1} &= \left[\begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \right], \quad \lambda_{2} &= \begin{pmatrix} 0 & -i & 0 \\ i & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad \lambda_{3} &= \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \\ \lambda_{4} &= \left[\begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix} \right], \quad \lambda_{5} &= \begin{pmatrix} 0 & 0 & -i \\ 0 & 0 & 0 \\ i & 0 & 0 \end{pmatrix}, \quad \lambda_{6} &= \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \\ \lambda_{7} &= \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -i \\ 0 & i & 0 \end{pmatrix}, \quad \lambda_{8} &= \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{pmatrix} \end{split}$$

Lie-Algebra:

$$\begin{bmatrix} T_{a}, T_{b} \end{bmatrix} = i f_{abc} T_{c} \qquad f_{abc} \qquad \text{ar}$$

$$tr \left(T_{a} T_{b} \right) = \frac{1}{2} \delta_{ab}$$

anti-symmetric SU(3) structure constants w/ $f_{acd}f_{bcd} = N_C \delta_{ab}$

2. QCD Feynman rules and color factors (recap)

Requiring local gauge invariance introduces 8 vector fields A_a^{μ} (gluon fields) and the quark-gluon interaction which depends on the color index i of the quarks:

As pointed out by Tilman, the color specific factors and the and Dirac algebra of the γ matrices factorize \rightarrow relevant traces of Gell-Man matrices separate.

$$\left|\mathcal{M}\right|^{2} \sim (T_{a})_{ji} (T_{b})_{jj} = tr(T_{a}T_{b})$$

Due to the non-abelian structure there are in addition triple and quartic gluon couplings:

QCD color flow for "pedestrians" I

Chosing the representation: $\left(\begin{array}{c}1\\0\\0\end{array}\right)\left(\begin{array}{c}0\\1\\0\end{array}\right)\left(\begin{array}{c}0\\1\\0\end{array}\right)\left(\begin{array}{c}0\\1\\0\end{array}\right)\left(\begin{array}{c}0\\1\\0\end{array}\right)\left(\begin{array}{c}0\\0\\1\end{array}\right)$

one has combinidious and an $\langle r|Ta|r \rangle = \frac{1}{2} (X_a)_{M}$ $\langle b|Ta|v \rangle = \frac{1}{2} (X_a)_{31}$

3. Discovery of the gluon & determination of gluon spin

Remark:

PETRA (1978 -) was e^+e^- circular accelerator at DESY: operated at \sqrt{s} between 13 and 46 GeV.

Earlier e⁺e⁻ machines (e.g. SPEAR) with $\sqrt{s_{max}} \approx 10$ GeV: ee \rightarrow qq events have been observed, however events much less jet-like (more spherical) due to the smaller boost.

20.8.79

29208

Fig. 11.12 A three-jet event observed by the JADE detector at PETRA.

But: How to exclude that the observed 3-jet signatures are fluctuations?

Check transverse $< p_T^2 >$ outside and inside event plane: fluctuations should be the same: Outside $< p_T^2 >$ well described by 2-jet model. Inside: "broadening" cannot be described, even not by higher string-tension.

Exp:

 $\frac{\#3-\text{ jet events}}{\#2-\text{ jet events}} \approx 0.15 \sim \frac{\alpha_s}{\pi_{10}}$

Spin of the Gluon:

Angular distribution of jets depend on gluon spin:

Figure 8: (a) Representation of the momentum vectors in a three-jet event, an (b) definition of the Ellis-Karliner angle.

Measure direction of jet-1 in the rest frame of jet-2 and jet-3: θ_{EK}

Figure 9: The Ellis-Karliner angle distribution of three-jet events recorded by TASSO at $Q \sim 30$ GeV [18]; the data favour spin-1 (vector) gluons.

4. $q\bar{q} \rightarrow q\bar{q}$: s- and t-channel process

The easiest process to calculate is, e.g. $q\overline{q} \rightarrow b\overline{b}$ at tree-level. Processes w/ external gluons require to think about the ghost-fields (ξ =1 gauge).

$$q \overline{q} \rightarrow b \overline{b}$$

$$q \overline{q} \rightarrow b \overline{b}$$

$$q_{j}(p_{2})$$

$$b_{l}(p_{4})$$

$$-i \mathcal{M} = -i g_{s}(T_{a})_{ji} \overline{q}_{j}(p_{2}) \gamma^{\mu} q_{i}(p_{1}) \left(-\frac{g_{\mu\nu}}{q^{2}} \delta_{ab}\right)$$

$$-i g_{s}(T_{b})_{lk} \overline{b}_{l}(p_{3}) \gamma^{\nu} b_{k}(p_{4})$$

$$= g_{s}^{2} \cdot (T_{a})_{ji}(T_{a})_{lk} \cdot (...QED...)$$

$$= g_{s}^{2} \cdot C(i \overline{j} \rightarrow l \overline{k}) \cdot (...QED...)$$

To calculate $\langle |\mathcal{M}|^2 \rangle$ we need $\langle |\mathcal{C}|^2 \rangle$ $\langle |\mathcal{C}|^2 \rangle = \frac{1}{9} \sum_{a} \sum_{i,j,k,l} |\mathcal{C}(i \ j \rightarrow k \ l)|^2$ $= \frac{1}{9} \sum_{a,b} |(tr(T_a T_b))|^2 = \frac{1}{9} \sum_{a,b} \left| \left(\frac{1}{2} \delta_{ab} \right) \right|^2 = \frac{1}{9} \frac{8}{94} = \frac{2}{9}$ See QCD lecture

$$\left\langle \left| \mathcal{M}(q\overline{q} \rightarrow b\overline{b}) \right|^2 \right\rangle = 2g_s^2 \left\langle \left| \mathcal{C} \right|^2 \right\rangle \left(\frac{t^2 + u^2}{s^2} \right) = 2g_s^2 \frac{2}{9} \left(\frac{t^2 + u^2}{s^2} \right)$$

Color factors for "pedestrians" II

$$c(r = 3 r = 4 \sum_{n=1}^{\infty} (\lambda_{n})_{n} (\lambda_{n})_{n}$$

$$= 4 \sum_{n=1}^{\infty} (\lambda_{n})_{n} (\lambda_{n})_{n}$$

$$= 4 \sum_{n=1}^{\infty} (\lambda_{n})_{n}^{2} + (\lambda_{n})_{n}^{2}$$

$$= 4 \sum_{n=1}^{\infty} (\lambda_{n})_{n}^{2} + (\lambda_{n})_{n}^{2}$$

 $C(r\overline{S} \rightarrow r\overline{S}) = \frac{1}{4} \sum_{a} (\lambda_{a})_{13} (\overline{\lambda}_{a})_{34} = \frac{1}{4} \left[(\overline{\lambda}_{4})_{13} (\overline{\lambda}_{4})_{3} - (\overline{\lambda}_{5})_{13} (\overline{\lambda}_{3})_{34} \right] = \frac{1}{2}$ 14

(Ta); (Ta)en

qq QCD potential ("t-channel"):

In QED: attractive potential.

For the quark-antiquark pair there are two different configurations possible:

Color singlet: $|q\overline{q}\rangle_{s} = \delta_{ik} |q_{i}\overline{q}_{k}\rangle$ $C = \delta_{ik}C(i\overline{k} \rightarrow j\overline{l}) = C_{F}\delta_{jl} = \frac{4}{3}$ Color octet: $|q\overline{q}\rangle_{s} \sim (T_{a})_{ki} |q_{i}\overline{q}_{k}\rangle$ $C = (T_{a})_{ki}C(i\overline{k} \rightarrow j\overline{l}) \sim (T_{a}T_{b}T_{a})_{jl} = -\frac{1}{2N_{c}}(T_{a})_{jl}$ 16

Summary qq-potential

$$V(\vec{q}) = -\frac{g_s^2}{|\vec{q}|^2} \cdot C \quad \text{with} \quad C = \begin{bmatrix} C_F & \text{for color singlet: attractive} \\ -\frac{1}{2N_C} & \text{for color octet: repulsive} \end{bmatrix}$$

This is consistent w/ the fact that only color singlet $q\overline{q}$ pairs are observed as bound states (mesons) in nature.

5. Running of strong coupling constant α_s

Recap:

$$\frac{1}{(M^2)} = \frac{1}{\alpha_s(p^2)} - b_0 \log \frac{p^2}{M^2} + \mathcal{O}(\alpha_s) \qquad (\text{QCD lecture})$$

Strong coupling $\alpha_s(q^2)$

 $\alpha_{s}(q^{2}) = \frac{\alpha_{s}(\mu^{2})}{1 + \alpha_{s}(\mu^{2})b_{0}\log\frac{q^{2}}{\mu^{2}}}$

 α_{s}

 μ^2 = renormalization scale

$$b_0 = \frac{1}{4\pi} (\frac{11}{3} N_c - \frac{2}{3} n_f)$$

- n_f = active quark flavors
- In QED similar function but w/o first term $\sim N_C \rightarrow$ different sign!!

 $\alpha_{s}(\boldsymbol{q}^{2}) = \frac{1}{\boldsymbol{b}_{0} \log(\boldsymbol{q}^{2}/\Lambda_{QCD}^{2})}$

with $\Lambda_{\text{QCD}} \approx 210 \text{MeV}$

scale at which perturbation theory diverges

Measurement of q^2 dependence of α_s

 α_s measurements are done at given scale q²: α_s (q²)

a) α_s from total hadronic cross section in QED or at Z pole

Recap <u>Measurement of e⁺e⁻→hadrons and R_{had}</u>

$$R_{had} = \frac{\sigma(e^+e^- \rightarrow hadrons)}{\sigma(e^+e^- \rightarrow \mu^+\mu^-)} = \frac{\sigma_{had}}{\sigma_{\mu\mu}}$$

$$R_{had} = N_C \cdot \sum_{quarks \ i} Q_i^2 =$$

Data lies systematically higher than the prediction from Quark Parton Model (QPM) \rightarrow QCD corrections

$$\sigma(\mathbf{s}) = \sigma_{\text{QED}}(\mathbf{s}) \left[1 + \frac{\alpha_{s}(\mathbf{s})}{\pi} + 1.4 \cdot \frac{\alpha_{s}(\mathbf{s})^{2}}{\pi^{2}} + \dots \right]$$

Quarks
$$R_{had} = 3 \cdot \sum_{i} Q_{i}^{2}$$

< ~3 GeV uds $3 \cdot 6/9 = 2.00$
< ~10 GeV udsc $3 \cdot 10/9 = 3.33$
< ~350 GeV udscb $3 \cdot 11/9 = 3.67$
10⁰ 10¹ 10²

Resonances at beginning of step $\alpha PM + \alpha CD + z^{\circ}$
 e^{QPM}
 QPM
 QPM
 $PETRA \circ SPEAR \circ PEP \circ ADONE$
 $PEP \circ ADONE$
 $PEP \circ ADONE$
 Q^{2} (GeV²) 8290A34

)

Z pole:

At the Z-pole instead of the electric charge the relevant couplings are c_L and c_R of the quarks and the muon to the Z.

However QCD corrections stay the same:

$$\sigma_{had}(s) = \sigma_{had}^{Z}(s) \left[1 + \frac{\alpha_{s}(s)}{\pi} + 1.4 \cdot \frac{\alpha_{s}(s)^{2}}{\pi^{2}} + \dots \right]$$

$$for \ \sigma_{had}^{Z}(s) \ look at EW \ lecture$$

$$\sigma(s) = 12\pi \frac{\Gamma_{e}\Gamma_{\mu}}{M_{z}^{2}} \cdot \frac{s}{(s - M_{z}^{2})^{2} + M_{z}^{2}\Gamma_{z}^{2}}$$

$$r_{t} = \frac{aM_{z}}{12\sin^{2}\theta_{w}\cos^{2}\theta_{w}} \cdot \left[(g_{v}^{t})^{2} + (g_{A}^{t})^{2} \right]$$

Early Z-pole measurement:
$$R_{had}^{Z} = 20.89 \pm 0.13$$

$$\delta_{QCD} = 0.0461 \pm 0.0065$$

$$\alpha_{s}(m_{z}) = 0.136 \pm 0.019$$

b) α_s from hadronic event shape variables

3-jet rate: $R_3 \equiv \frac{\sigma_{3-jet}}{\sigma_{had}}$ depends on α_s

3-jet rate is measured as function of Jet resolution

QCD calculation provides a theoretical prediction for ${\sf R}_3{}^{theo}(\alpha_s$)

 \rightarrow fit R₃^{theo}(α_s) to the data to determine α_s

Other event shape variables (sphericity, thrust,...) can be used to obtain a prediction for $\alpha_{\rm s}$

Jet Algorithms (next semester)

Iterative Jet algorithms ("Jade"-type, developed for e⁺ e⁻)

1) for all pairs of particles i, j calculate distance parameter y_{ii}

2) find pair i, j with smallest $y_{ij, min}$

3) add 4-momenta: $p_i + p_j = p_k$ replace p_i , p_j by p_k

4) iterate till $y_{ij} > y_{cut}$

Distance measures:

$$y_{ij} = 2 \frac{E_i E_j (1 - \cos \theta_{ij})}{s}$$

$$y_{ij} = 2 \frac{\min(E_i^2, E_j^2)(1 - \cos\theta_{ij})}{s}$$

$$\min(E_i^2, E_j^2) \rightarrow \min(E_i^{-2}, E_j^{-2})$$

Jade algorithm: IRCS but theoretically difficult; large higher order correction. (invariant mass squared)

k_T – algorithm: better higher order behavior (relative transverse momentum squared)

anti- k_T – algorithm: often used nowadays (\rightarrow jets with only soft radiation are conical)

c) α_s from hadronic τ decays

$$R_{had}^{\tau} = \frac{\Gamma(\tau \to v_{\tau} + Hadrons)}{\Gamma(\tau \to v_{\tau} + e\overline{v_{e}})} \sim f(\alpha_{s})$$

d) α_s from DIS (deep inelastic scattering): DGLAP fits to PDFs (next semester)

Running of α_s and asymptotic freedom

Experimental determination. $\alpha_s(M_Z^2) = 0.1175 \pm 0.0010$

Alphas from the lattice:

 $\alpha_s(M_Z^2) = 0.1182 \pm 0.0008$

Unweighted average w/ average uncertainty of the two:

 $\alpha_s(M_Z^2) = 0.1179 \pm 0.0009$

Figure 9.3: Summary of measurements of α_s as a function of the energy scale Q. The respective degree of QCD perturbation theory used in the extraction of α_s is indicated in brackets (NLO: next-to-leading order; NNLO: next-to-leading order; NNLO+res.: NNLO matched to a resummed calculation; N³LO: next-to-NNLO).