Detectors in Particle Physics

- 1. Interactions of particles and radiation with matter (recap)
- 2. Tracking detectors, vertexing and magnetic spectrometer
- 3. Calorimeters
- 4. Particle identification
- 5. Detector systems

1. Interactions of particle and radiation w/ matter

Energy loss of heavy charged particles:

Energy loss of particles from ionization of matter atoms through collisions with shell electrons.

Average specific energy loss dE/dx described by Bethe-Bloch formula

$$\left\langle \frac{dE}{dx} \right\rangle_{\text{ion}} = -\underbrace{\left(\rho N_A \frac{Z}{A}\right)}_{n_e} 4\pi r_e^2 m_e c^2 z^2 \cdot \frac{1}{\beta^2} \cdot \left(\ln\frac{2m_e c^2 \gamma^2 \beta^2}{I} - \beta^2\right)$$

 ρ = density N_A = Avogadro number Z, A = charge and mass number r_e = class. Electron radius I = effective ionization energy

z = charge of the projectile $<math>\beta = velocity of the projectile$

$$r_{\rm e} = \frac{{\rm e}^2}{4\pi m_{\rm e} {\rm c}^2}$$

To reduce the material dependence one often divides the specific energy loss by the material density

$$\left\langle \frac{dE}{dx} \right\rangle \rightarrow \left\langle \frac{1}{\rho} \frac{dE}{dx} \right\rangle$$

(this is often hidden by redefining the $\rho x \rightarrow x'$

$$\frac{1}{\rho} \langle \frac{dE}{dx} \rangle = -\underbrace{\left(N_A 4\pi r_e^2 m_e c^2\right)}_K z^2 \frac{Z}{A} \cdot \frac{1}{\beta^2} \cdot \left(\ln\frac{2m_e c^2 \gamma^2 \beta^2}{I} - \beta^2\right)$$

 $K/A = 0.307 \,\mathrm{MeV}\,\mathrm{g}^{-1}\,\mathrm{cm}^2 \,\mathrm{mit}\,A = 1\,\mathrm{g}\cdot\mathrm{Mol}^{-1}$

w/ Z/A \approx 0.5 for most materials: K Z/A \approx 0.150 MeV g⁻¹cm²

- ~1/ β^2 for small $\beta\gamma$
- Minimum at $\beta\gamma = 3...4$ w/ dE/dx =1...2 MeV g⁻¹ cm² (multiply with ρ to get dE/dx): if one ignores Bremsstrahlung (for muons up to $\beta\gamma = O(1000)$ i.e. 100 GeV) particles are quasi "minimal ionizing" also above $\beta\gamma$ of 3.
- For small $\beta\gamma$, dE/dx can be used for particle ID (see below)

Multiple scattering:

Multiple collisions of the projectile with the atoms of the material (stochastic process) leads to a deflection of the particle

For small angles the deflection follows a Gaussian distribution, at least for the central 98%.

The widths of the Gaussian can be approximated. Depending if one measures the deflection in a plan or in space one obtains:

One finds that the width parameter θ_0 depends on the path x through the material in units of the radiation length X_0 and on the particle's momentum. It is less for high momentum particles.

$$\frac{1}{\sqrt{2\pi}\,\theta_0} \exp\left(-\frac{\theta_{\text{plane}}^2}{2\theta_0^2}\right)$$

$$\theta_0 = \theta_{\text{plane}}^{\text{rms}} = \frac{1}{\sqrt{2}} \theta_{\text{space}}^{\text{rms}}$$

$$\theta_0 = \frac{13.6 \text{ MeV}}{\beta cp} \ z \ \sqrt{\frac{x}{X_0}}$$

Cherenkov-radiation:

When a particle traverses a medium with a velocity β (particle velocity β close to c for highly relativistic particles) which is larger than the speed of light within that medium, the particle emits Cherenkov radiation (threshold $\beta > 1/n$).

Cherenkov radiation is emitted on a cone with an opening angle θ_{c}

$$\cos\theta_C = \frac{1}{\beta n}$$

Emitted photons are ranging from the visible blue spectrum to the ultraviolet and The number of photons per unit length of the radiator and per wave-length unit is

$$\frac{d^2 N_{\gamma}}{dx d\lambda} = \frac{2\pi \alpha z^2}{\lambda^2} \left(1 - \frac{1}{\beta^2 n(\lambda)^2} \right) \qquad \text{z is the charge} \\ \text{of the particle.}$$

Medium must be transparent: gases (\rightarrow Ring-Cherenkov counter) or water (e.g. large water Cherenkov detectors used for neutrino detection).

Energy loss of electrons (positrons)

For light electrons there are two mechanism competing:

- Energy loss through ionization (essentially a la Bethe-Bloch, but max. momentum transfer much larger: ∆E=1/2 E_{kin} & identical particles!)
- Energy loss through Bremsstrahlung

<u>Critical energy E_c:</u>

$$\langle \frac{dE}{dx} \rangle = \langle \frac{dE}{dx} \rangle_{\rm ion} + \langle \frac{dE}{dx} \rangle_{\rm Brems}$$

For high-energy electrons the energy loss by Bremsstrahlung is by far dominating. Only for very low-energy electrons the energy loss by ionization takes over.

$$\left\langle \frac{dE}{dx} \right\rangle_{\text{ion}} \bigg|_{E_c} = \left\langle \frac{dE}{dx} \right\rangle_{\text{Brems}} \bigg|_{E_c}$$

One finds empirically for solid materials: $E_c \approx 610 \,\mathrm{MeV}/(Z+1.2)$ Remark: for lead, bremsstrahlung dominates above ~10 MeV

Typical length scale for Bremsstrahlung: Radiation length X₀:

$$\frac{1}{X_0} = \rho N_A \frac{Z^2}{A} \cdot 4\alpha \cdot r_e^2 \cdot \ln\left(\frac{183}{Z^{1/3}}\right)$$

(strong Z dependence)

Energy loss:

$$\langle \frac{dE}{dx} \rangle_{\rm Brems} \approx -\frac{1}{X_0} E$$

Energy loss of photons

Photons interact in different ways with matter. Most relevant mechanisms:

- Photo-electric effect for low energy photons
- Compton effect for photon energies between 10 KeV and MeV
- Pair production for $E_{\gamma} > 1 \text{ MeV} (2m_e)$

The typical length scale for pair production in matter is again the radiation length. An exact calculation however results into $9/7 X_0$ - slightly larger than for bremsstrahlung) (both processes w/ similar Feynman diagrams)

Cross section is largely constant:

$$\sigma = \frac{7}{9}(A/X_0N_A)$$

Electromagnetic shower

Simple shower model for higher-energy photons/electrons. Electrons/photons make bremsstrahlung / pair production after $\sim X_0$

Shower depth $t=x/X_0$

$$E / 2^{t_{\max}} = E_c$$

$$\rightarrow \ln(E / E_c) = t_{\max} \ln 2 =$$

In every step the number of shower particles is doubled: $N(t) = 2^t$

The average energy of the shower particles is E/N – the shower stops when the particle energy has reached the critical energy E_C in the material:

Max. shower depth: $t_{\text{max}} = \frac{\ln(E/E_c)}{\ln 2}$

With increasing energy E of the detected particle the calorimeter depth should increase with $\sim \ln(E / E_c)$

Hadronic shower

High-energy hadrons (E>>1 GeV) interact with the nuclei and the nucleons of the of the matter and produce a shower of secondary particles.

 $n, p, \pi^{\pm}, K^{\pm}, K^{0} + A \longrightarrow$ Shower of secondary particles

The details of the shower are more difficult to describe compared to electromagnetic showers:

Characteristic interaction length (λ_{int}) for hadron passing matter is given by:

$$\lambda_{\text{int}} = \frac{1}{n \cdot \sigma_{\text{int}}} = \frac{A}{\rho N_A} \cdot \frac{1}{\sigma_{\text{int}}}$$

Element	$\frac{\lambda}{2}$ int
Fe	16.8 cm
Pb	$17.6~\mathrm{cm}$
\mathbf{C}	39 cm

Where one finds empirically $\sigma_{\rm int} \approx 35 \,{
m mb} \, A^{0.7}$

2. Tracking, vertexing and magnetic spectrometer

Reconstruct track of charged particle in an magnetic field \rightarrow use the track curvature to estimate the momentum \rightarrow reconstruct decay vertices.

Historical example: **Bubble chamber** (by D. Glaser in 1952, Nobel prize in 1960)

vessel filled with a superheated transparent liquid (often H_2).

Reconstruction of tracks, decay vertices, momenta. Disadvantage: photo w/ subsequent digitization, heavy piston to arm the detector

Multi-wire proportional chambers (MWPCs)

Georges Charpak (1968), Nobel prize in 1992.

Wire chambers have revolutionized charged particle detection: fully electronic event recording, high data acquisition rates (up to 40 MHz), excellent position resolution when operated as drift chambers.

Gas amplification:

Wire inside tube:

$$E(r) = \frac{U}{r\ln\frac{b}{a}}$$

b = radius of tube a = radius of wire

Strong electrical field near the wire leads to acceleration of primary electrons and to further ionization \rightarrow avalanche: gas amplification. Typ. gain ~10⁵

Drift chamber principle was found first in Heidelberg (Physikalisches Institut, by A. H. Valenta).

Using special wire configurations one can construct "drift cells" with very homogenous drift paths \rightarrow one can use the drift time to reconstruct the particle trajectory.

Instead of building drift cells from complicated wire configurations simple tubes with an anode wire can be used:

Example 1: JADE Jet-Chamber

Inner Radius: 20cm Outer Radius: 80cm Length: 2.4m

<u>J. Heintze et al.</u> https://doi.org/10.1016/0029-554X(82)90658-9

Spatial resolution $r\phi$: 170 μm

Example 2: LHCb Outer Tracker

170 μ m resolution over 360 m² detection areas

LHCb OT

Semiconductor strip & pixel detectors

Semiconductor detector – based on depleted np-junctions (diodes)

In the junction of p(n) doped semicondutors, the majority charge carriers will diffuse into the other region until the Fermi level is equalized.

Around the junction, there is a region w/o free charge carriers: depletion zone. A space charge is created (pos / neg one n / p-side). The related electrical field produces a drift of charge carriers which compensates the diffusion.

The depletion zone can be enlarged by applying an external voltage: With p-doping larger than n-doping, the depletion zone extends mostly into n:

q(V_{bi}+V_{ext})

Ε,

"reverse biasing"

$$\begin{split} d &\approx x_n \approx \sqrt{\frac{2\epsilon\epsilon_0}{e} \frac{1}{N_D} \left(U_{bin} + U_{ext} \right)} \\ &\approx 3.6 \cdot 10^3 \sqrt{\frac{U_{ext}}{N_D (\mathrm{V\,cm})}} \quad \stackrel{\sim 300 \ \mathrm{\mu m}}{\mathrm{reachable}} \end{split}$$

typ. strip length (into the figure plane) is O(10cm)

Schematics of a silicon strip sensor:

Strongly doped p⁺-strips w/ aluminum contacts on weakly doped n-bulk which has an aluminum contact (by technical reasons there is a thin layer of strongly doped Al in between). Charge carriers (electrons) created by particles drift in the applied field to the p+ strips where they are detected.

Schematics of a pixel sensor:

Instead of strips one uses small pixels typ. size 50 x 200...400 μ m². Challenge: Readout of the individual channels (please don't conclude from your mobile camera – these devices are really very slow). Requires a readout chip bonded on top of the pixel: Hybrid pixel detectors.

<u>Novel development:</u> Monolithic pixel sensors with part of electronics in pixel.

(→Heidelberg: Mu3ePix and MightyPix). ¹⁹

Example 1: CMS Tracker

Silicon Pixel detector:

 about 66 million 100×150 µm² pixels arranged at distance of 4 to 11 cm

Silicon strip detectors:

divided in the inner barrel part (TIB), the inner disks (TID), the outer barrel (TOB) and outer end-caps (TEC).

Tracker contains 15,200 sensitive modules with a total of about 10 million detector strips.

Strip distance = 80 μ m to 200 μ m w/ strip widths about 25%

Spatial resolution: $20 - 30 \ \mu m$

CMS TIB silicon strip modules.

Example 2: ATLAS Inner Tracker

ATLAS pixel detector:

- 92 million pixels (92 million electronic channels).
- Silicon area approx. 1.9m²
- Pixel 50 x 400µm² and 50 x 250 µm² for outer / inner external
- 4-barrel layers with 1736 modules
- 3 disks per end-cap w/ 288 modules
- Typ. Spatial resolution: 10 μm

ATLAS strip detector:

4,088 two-sided modules and over 6 million implanted readout strips (6 million channels) 60m² of silicon distributed over 4 cylindrical barrel layers and 18 planar endcap discs Readout strips every 80μm.

Typ. spatial resolution: 25 μ m

Momentum measurement and B field configurations

Curvature 1/R in xy-plane and particles transverse momentum p_T (within xy plane):

$$p_{\perp} = q \cdot B \cdot R$$
 or $p_{\perp}[\text{GeV}] = 0.3 \cdot B[\text{T}] \cdot R[\text{m}]$

The momentum of the particle is obtained from $p = p_T / \cos \theta$

.How well can the transverse momentum be measured? What is its error?

Forward spectrometer configuration (fixed target exp. or forward experiments

Minimum spectrometer configuration: 2 tracking station before and after magnet 3rd station is used for redundancy, fake rejection

Deflection angle
$$\theta \approx \frac{L}{R} = \frac{L}{p}eB \rightarrow p = \frac{eBL}{\theta} = \frac{0.3B[T]L[m]}{\theta}$$

(p is p_T)
 $\rightarrow dp = \frac{eLB}{\theta^2}d\theta = \frac{p}{\theta}d\theta \rightarrow \frac{dp}{p} = \frac{d\theta}{\theta}$ Relative is given resolution.

Relative momentum resolution is given by relative angular resolution (depends on spatial resolution of tracker)

Deflection results into momentum-kick Δp_x :

 $\Delta p_x = p \sin \theta \approx p \theta = eBL$ often called bending power

Assume the minimum tracker configuration w/ 2 + 2 tracking stations w/ spatial resolution σ_x

deflection
$$\theta = \beta - \alpha \approx \tan \beta - \tan \alpha$$

 $\theta \approx \frac{X_4 - X_3}{d} - \frac{X_2 - X_1}{d}$

W/ $\sigma_{\!x}$ for all layers, one obtains w/ error propagation:

$$d\theta = \frac{2\sigma_x}{d}$$
 and with $\frac{dp}{p} = \frac{d\theta}{\theta}$

dp

$$=\frac{p}{eBL}\frac{2\sigma_x}{d}=\frac{p}{0.3B[T]L[m]}\frac{2\sigma_x}{d}$$

For N points before d and after magnet:

$$\theta = \frac{\sigma_x}{d} \sqrt{\frac{24(N-1)}{N(N+1)}}$$

Relative momentum resolution depends on p. Improves for larger field integral BL and larger Measurement "arm" h.

There is also a uncertainty on θ from multiple scattering inside the plane:

$$\sigma_{p,MS} = p \sin \theta_{0,MS} \approx p \theta_{0,MS} = p \cdot \frac{13.6 \text{MeV}}{\beta p} \sqrt{\frac{L'}{X_0}} = 13.6 \text{MeV} \sqrt{\frac{L'}{X_0}} \quad \text{all material}$$

Contribution to p resolution results from the comparison w/ p-kick and bending power:

$$\frac{\sigma_{p,MS}}{p} = \frac{\sigma_{p,MS}}{\Delta p_{x}} = \frac{13.6 \,\text{MeV}}{eBL} \sqrt{\frac{L'}{X_{0}}}$$

Contribution from multiple scattering to relative resolution has no momentum dependence

Momentum resolution considering detector spatial resolution and multiple scattering is given by:

$$\frac{\sigma_{\rho_{T}}}{\rho_{T}}\Big|_{tot} = \sqrt{\left(\frac{\sigma_{\rho_{T}}}{\rho_{T}}\Big|_{det}\right)^{2} + \left(\frac{\sigma_{\rho_{T}}}{\rho_{T}}\Big|_{MS}\right)^{2}}$$

This formula can be applied to more complicated cases – e.g. measurement of the track curvature be cylindrical tracking detector. Assuming the curvature is measured by N space points over distance L one finds for the detector resolution:

$$\frac{\sigma_{\rho_T}}{\rho_T}\Big|_{\text{det}} = \frac{\rho_T}{0.3} \frac{\sigma_{\text{Hit}}}{BL^2} \sqrt{\frac{720}{N+4}} \quad \text{for N} \ge 10$$
(B in T, L in m, p in GeV

(In literature referred as Gluckstern formula)

25

Track reconstruction:

Track reconstruction is usually split into two separate steps:

- Pattern recognition: detector hits (space points) are assigned to individual tracks
- Fit of track model to space points, accounting for resolution & multiple scattering

Tracking detector layout optimized to allow fast and efficient pattern recognition and very good prediction of the vertex from the fitted track model at the last hit. ²⁶

