
Standard Model of Particle Physics

Lecture Course at Heidelberg University
Summer term 2024

0. Revision Notes:
Relativity and Quantum Mechanics

Carlo Ewerz 
Institut für Theoretische Physik 

Skyler Degenkolb, Ulrich Uwer 
Physikalisches Institut 

Heidelberg University





0.1 Notation for Relativity

De�ne oordinates x

0

= t, x

1

= x, x

2

= y, x

3

= z. Consider a homogeneous Lorentz

tranformation (x

0

; x

1

; x

2

; x

3

) ! (x

00

; x

01

; x

02

; x

03

). This means any ombination of ve-

loity tranformations and rotations. A set of four quantities a

�

(� = 0; 1; 2; 3) tran-

forming aording to the rule

a

�

�! a

0�

=

�x

0�

�x

0

a

0

+

�x

0�

�x

1

a

1

+

�x

0�

�x

2

a

2

+

�x

0�

�x

3

a

3

(1)

�

�x

0�

�x

�

a

�

(2)

is alled a ontravariant 4-vetor, written with an upper index. (Note the summa-

tion onvention above | every index repeated on the same side of an equation is to

be summed over, from 0 to 3.) Clearly x

�

is an example of a ontravariant 4-vetor.

There are also ovariant 4-vetors, written with a lower index, whih transform

aording to

a

�

�! a

0

�

=

�x

�

�x

0�

a

�

: (3)

An obvious example is the vetor operator �

�

= �=�x

�

.

The salar produt of a ovariant and a ontravariant 4-vetor

a

�

b

�

� a

0

b

0

+ a

1

b

1

+ a

2

b

2

+ a

3

b

3

; (4)

is Lorentz invariant:

a

0

�

b

0�

=

�x

�

�x

0�

�x

0�

�x

�

a

�

b

�

=

�x

�

�x

�

a

�

b

�

= Æ

�

�

a

�

b

�

= a

�

b

�

; (5)

where Æ

�

�

= 1 for � = �, 0 for � 6= �. But we know that s

2

= 

2

t

2

� x

2

� y

2

� z

2

is

Lorentz invariant. We an write this as s

2

= x

�

x

�

where

x

0

= t; x

1

= �x; x

2

= �y x

3

= �z : (6)

x

�

is a ovariant 4-vetor formed from the ontravariant 4-vetore x

�

by the operation

x

�

= g

��

x

�

(7)

where the metri tensor g

��

has all elements zero exept the diagonal ones g

00

= 1,

g

11

= g

22

= g

33

= �1. Thus we an make a ovariant 4-vetor from any ontravariant

one (\lower an index") by multiplying by the matrix g

��

. Similarly, we an \raise an

index" with g

��

, whih has idential omponents to g

��

:

a

�

= g

��

a

�

: (8)

Note that

g

�

�

= g

��

g

��

= Æ

�

�

: (9)

Some important 4-vetors, in their ontravariant form, are
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� 4-momentum

p

�

= (E=; p

x

; p

y

; p

z

) (10)

� 4-momentum operator

i�h�

�

= i�hg

��

�

�

= i�h

�

1



�

�t

;

��

�x

;

��

�y

;

��

�z

�

(11)

(note signs)

� 4-potential

A

�

= (V=;A

x

; A

y

; A

z

) : (12)

Lorentz transformations are usually written

a

0�

= �

�

�

a

�

; �

�

�

=

�x

0�

�x

�

(13)

a

0

�

= �

�

�

a

�

; �

�

�

=

�x

�

�x

0�

: (14)

You an hek that

�

�

�

= g

��

g

��

�

�

�

(15)

as expeted. Lorentz transformations have the important property

�

�

�

�

�

�

=

�x

�

�x

0�

�x

0�

�x

�

= Æ

�

�

: (16)

Hene

�

�

�

= (�

�1

)

�

�

: (17)

You an hek this expliitly for a pure veloity transformation along the x-axis:

�

�

�

=

0

B

B

B

�

 �v= 0 0

�v=  0 0

0 0 1 0

0 0 0 1

1

C

C

C

A

;  = (1� v

2

=

2

)

�

1

2

: (18)

(�

�1

)

�

�

is the same expet v ! �v.

We an write

�

�

�

= [exp(!K

x

)℄

�

�

(19)

(whih you an verify by expanding the exponential as a power series) where ! is the

rapidity,

! = tanh

�1

(v=) ; (20)

and K

x

is the generator of veloity transformations (boosts) along the x-axis,

(K

x

)

�

�

=

0

B

B

B

�

0 �1 0 0

�1 0 0 0

0 0 0 0

0 0 0 0

1

C

C

C

A

: (21)
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For suessive boosts in the same diretion

�

1

�

2

= exp(!

1

K

x

) exp(!

2

K

x

) = exp[(!

1

+ !

2

)K

x

℄ ; (22)

so ! is additive.

To write the Dira equation

i�h

�	

�t

= �m

2

	� i�h~� �

~

r	 (23)

in \ovariant" notation we multiply on the left by �= and rearrange terms to get

i�h

�

�

�

	�m	 = 0 (24)

where



0

= � ; 

j

= ��

j

(j = 1; 2; 3) : (25)

If we need to use expliit matries, we shall use those that follow from our hoie for �

and �

j

in the letures:



0

=

 

I 0

0 �I

!



j

=

 

0 �

j

��

j

0

!

(26)

where the \elements" are 2� 2 submatries, e. g. I =

 

1 0

0 1

!

.

The  matries have the property



�



�

+ 

�



�

= 2g

��

I (27)

where I represents a 4�4 unit matrix (often omitted). Note that 

�

is not a 4-vetor.

It is simply a set of four onstant matries, invariant under Lorentz transformations. 	

has 4 omponents but it is neither an invariant nor a 4-vetor | it is alled a spinor

and has speial Lorentz transformation properties, whih we shall not use in this ourse.

The Feynman slash notation is often used for brevity:

6a � 

�

a

�

= g

��



�

a

�

: (28)

Expliitly

6a =

0

B

B

B

�

a

0

0 �a

3

�a

1

+ ia

2

0 a

0

�a

1

� ia

2

a

3

a

3

a

1

� ia

2

�a

0

0

a

1

+ ia

2

�a

3

0 �a

0

1

C

C

C

A

: (29)

The Dira equation is the

(i�h 6� �m)	 = 0 ; (30)

i. e.

(6p�m)	 = 0 : (31)

In pratie we shall usually set �h =  = 1.
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0.2 Transition Rates: Fermi's Golden Rule

Muh of partile physis is about the alulation of deay rates and sattering ross

setions. These are derived from quantum mehanial transition rates. Let us start by

realling how transition rates are obtained in non{relativisti quantum mehanis.

Suppose we have a Hamiltonian H

0

with eigenstates �

n

(~r) normalized in some

volume element V :

H

0

�

n

= E

n

�

n

;

Z

V

�

�

m

�

n

d

3

r = Æ

mn

: (32)

Consider some perturbation H

0

:

(H

0

+H

0

)	 = i

�	

�t

(33)

(remember that �h =  = 1). We want to know the transition rate to some state �

f

given that we start (say, at t = �T=2) in some state �

i

. We write

�(x) =

X

n



n

(t)�

n

(~r) e

�iE

n

t

(34)

(x represents the 4-vetor (t; ~r)), where 

n

(�T=2) = Æ

ni

. We easily �nd

d

f

dt

= �i

X

n



n

(t)

Z

d

3

r �

�

f

H

0

�

n

e

i(E

f

�E

n

)t

(35)

' �i hf jH

0

jii e

i(E

f

�E

i

)t

(36)

(assuming that the perturbation is small), where

hf jH

0

jii �

Z

�

�

f

H

0

�

i

d

3

r : (37)

Hene



f

(t) ' �i

Z

t

�T=2

dt

0

hf jH

0

jii e

i(E

f

�E

i

)t

0

: (38)

The transition amplitude (in the far future, t = +T=2) is thus

A

fi

= 

f

(+T=2) = �i

Z

+T=2

�T=2

dt hf jH

0

jii e

i(E

f

�E

i

)t

: (39)

We an write in ovariant notation

lim

T!1

A

fi

= �i

Z

�

�

f

(x)H

0

�

i

(x) d

4

x (40)

where

�

n

(x) = �

n

(~r)e

�iE

n

t

: (41)

If H

0

is time-dependent we have a transition probability

lim

T!1

jA

fi

j

2

= jhf jH

0

jiij

2

Z

+T=2

�T=2

dt e

i(E

f

�E

i

)t

Z

+T=2

�T=2

dt

0

e

i(E

f

�E

i

)t

0

(42)

= 2� jhf jH

0

jiij

2

Æ(E

f

�E

i

)T : (43)

4



Thus the transition rate is

�(i! f) = lim

T!1

jA

fi

j

2

T

= 2� jhf jH

0

jiij

2

Æ(E

f

�E

i

) : (44)

If we want to integrate over a number of possible �nal states with density �(E

f

) around

energy E

f

, we get

�(i! f) = lim

T!1

1

T

Z

jA

fi

j

2

�(E

f

) dE

f

(45)

= 2� jhf jH

0

jiij

2

�(E

i

) ; (46)

whih is Fermi's Golden Rule.

We an obtain the next orretion by suessive substitution:

d

f

dt

' �i hf jH

0

jii e

i(E

f

�E

i

)t

(47)

+(�i)

2

X

n 6=i

hf jH

0

jni e

i(E

f

�E

n

)t

Z

t

�T=2

dt

0

hnjH

0

jii e

i(E

n

�E

i

)t

0

: (48)

Sine we are assuming the perturbation was not present at t = �T=2 but was onstant

after that, we should interpret

Z

t

�T=2

dt

0

hnjH

0

jii e

i(E

n

�E

i

)t

0

= hnjH

0

jii

e

i(E

n

�E

i

)t

i(E

n

�E

i

)

; (49)

so

d

f

dt

= �ie

i(E

f

�E

i

)t

2

4

hf jH

0

jii+

X

n 6=i

hf jH

0

jni hnjH

0

jii

E

i

�E

n

+ : : :

3

5

: (50)

Then Fermi's Golden Rule beomes

�(i! f) = 2� jT

fi

j

2

�(E

i

) (51)

where

T

fi

= hf jH

0

jii+

X

n 6=i

hf jH

0

jni hnjH

0

jii

E

i

�E

n

+ : : : : (52)

Problem 1:

By further suessive substitution, �nd the next (i. e. third{order) term in equation

(52).

0.3 Phase Spae

Consider now the transition rate for the general deay proess a! 1 + 2+ 3+ : : :+ n.

There are (n� 1) independent momenta in the �nal state (beause ~p

1

+ : : :+ ~p

n

= ~p

a

)

and if all wavefuntions are normalized to one partile per unit volume there is one per
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volume h

3

of momentum spae, i. e. one per (2�)

3

volume sine �h = 1 implies h = 2�.

Therefore the total deay rate per initial partile is

� = 2�

Z

d

3

~p

1

(2�)

3

� � �

d

3

~p

n�1

(2�)

3

jT

fi

j

2

Æ

0

�

E

a

�

n

X

j=1

E

j

1

A

(53)

= (2�)

4�3n

Z

d

3

~p

1

: : : d

3

~p

n

jT

fi

j

2

Æ

3

�

~p

a

�

X

~p

j

�

Æ

�

E

a

�

X

E

j

�

: (54)

However, normalizing to one partile per unit volume is not a Lorentz invariant

proedure: it is only true in one frame sine volume elements are Lorentz ontrated

(the partile density inreased by ) in other frames. Now the density is the timelike

omponent of a 4-vetor, transforming like E, so a relativisti normalization should

be proportional to E partiles per unit volume. The usual onvention is to normalize

to 2E partiles per unit volume (the reason will appear shortly). The orresponding

invariant matrix element for a! 1 + 2 + : : :+ n is then

M

fi

= (2E

a

� 2E

1

� � � 2E

n

)

1=2

T

fi

; (55)

and

� =

(2�)

4�3n

2E

a

Z

d

3

~p

1

2E

1

: : :

d

3

~p

n

2E

n

jM

fi

j

2

Æ

3

�

~p

a

�

X

~p

j

�

Æ

�

E

a

�

X

E

j

�

: (56)

Now E

j

= (~p

2

j

+m

2

j

)

1=2

so inside the integral we an write

d

3

~p

j

2E

j

= d

3

~p

j

dE

j

Æ(p

�

j

p

j �

�m

2

j

) : (57)

This is Lorentz invariant so the integral is now frame{independent. � is proportional

to E

�1

a

due to the time{dilatation of lifetime: �

a

= �

�1

� E

a

. The integral in (56) is

alled a phase-spae integral.

We normalize to 2E partiles beause of the simple relation (57), whih follows from

the useful general relation

Z

dE Æ[f(E)℄ = 1

,

�

�

�

�

df

dE

�

�

�

�

f(E)=0

: (58)

0.4 Two-body Deay

Consider the deay a! b+  in the rest{frame of a, where

p

�

a

= (E

a

; ~p

a

) = (m

a

; 0) : (59)

Equation (56) gives

� =

(2�)

�2

2m

a

Z

d

3

~p

b

2E

b

d

3

~p



2E



jM

fi

j

2

Æ

3

(~p

b

+ ~p



) Æ(m

a

�E

b

�E



) (60)

=

(2�)

�2

2m

a

Z

d

3

~p

b

4E

b

E



jM

fi

j

2

Æ(m

a

�E

b

�E



) : (61)
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We an write d

3

~p

b

= p

2

b

dp

b

sin � d�d�. Also

E

b

= (p

2

b

+m

2

b

)

1=2

; E



= (p

2

b

+m

2



)

1=2

(62)

sine ~p



= �~p

b

. Now

Z

dp

b

Æ

h

m

2

a

� (p

2

b

+m

2

b

)

1=2

� (p

2

b

+m

2



)

1=2

i

=

"

p

b

(p

2

b

+m

2

b

)

1=2

+

p

b

(p

2

b

+m

2



)

1=2

#

�1

=

E

b

E



m

a

p

b

; (63)

where we used eq. (58) with p

b

in the plae of E. Hene

� =

p

b

32�

2

m

2

a

Z

jM

fi

j

2

sin �d�d� : (64)

If jM

fi

j

2

is independent of the deay angles � and �, then it is just a number and

�(a! b+ ) =

p

b

8�m

2

a

jM

fi

j

2

: (65)

Remember that p

b

here means the 3-momentum of b in the rest frame of a.

Problem 2:

Show that

p

b

= [(m

a

+m

b

+m



)(m

a

+m

b

�m



)(m

a

�m

b

+m



)(m

a

�m

b

�m



)℄

1=2

=(2m

a

) :

(66)

0.5 Two-body Sattering

We an also use Fermi's Golden Rule to alulate the transition rate for a sattering

proess suh as a+ b! + d. The invariant matrix element will again be normalized

to 2E partiles per unit volume, so

M

fi

= (2E

a

� 2E

b

� 2E



� 2E

d

)

1=2

T

fi

; (67)

�(a+ b! + d) =

(2�)

�2

2E

a

2E

b

Z

d

3

~p



2E



d

3

~p

d

2E

d

jM

fi

j

2

� (68)

�Æ

3

(~p

a

+ ~p

b

� ~p



� ~p

d

) Æ(E

a

+E

b

�E



�E

d

) :

The integral is invariant; we hoose to alulate it in the .m. frame, where ~p

a

= �~p

b

.

Then the integral is the same as for two{body deay, with

p

s = E+a+E

b

in the plae

of m

a

:

Integral =

p

�



4

p

s

Z

jM

fi

j

2

d


�

: (69)

From now on in ase of ambiguity we shall put a star on quantities de�ned in the .m.

frame; d


�

is the element of solid angle, d


�

= sin �

�

d�

�

d�

�

.
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We are interested in the ross setion � rather than the rate. It is de�ned in terms

of the following quantities in the lab (rest frame of b):

� = (Flux of a)� (Density of b)� � : (70)

Remember � is de�ned in terms of T

fi

, i. e. for unit density. Hene the ux of a is v

a

in the lab frame, i. e. p

a

=E

a

. Also E

b

= m

b

in the lab, so

�(ab! d) =

E

a

p

a

(2�)

�2

4E

a

m

b

p

�



4

p

s

Z

jM

fi

j

2

d


�

=

p

�



64�

2

p

a

m

b

p

s

Z

jM

fi

j

2

d


�

: (71)

Remember that p

a

is the 3-momentum of a in the lab while p

�



is that of  in the .m.

frame.

Problem 3:

Show that the lab and .m. 3-momenta of partile a are related by

p

a

m

b

= p

�

a

p

s : (72)

Using the results of problem 3 we may write the di�erential ross setion in the .m.

frame as

d�

d


�

(ab! d) =

1

64�

2

s

�

p

�



p

�

a

�

jM

fi

j

2

: (73)

The di�erential ross setion is also often expressed in terms of the invariant 4-

momentum transfer squared t (sometimes loosely referred to as just the momentum

transfer)

t � (p



� p

a

)

2

= m

2

a

+m

2



� 2p

a

� p



; (74)

where from now on p

a

et. refer to 4-momenta, so that p

2

a

� p

a�

p

�

a

= m

2

a

, p

a

�p



� p

a�

p

�



et.

In the .m. frame, hoosing the z axis along ~p

�

a

and ~p

�



in the x-z plane:

p

�

a

= (E

�

a

; 0; 0; p

�

a

) ; (75)

p

�



= (E

�



; p

�



sin �

�

; 0; p

�



os �

�

) ; (76)

so

p

a

� p



= E

�

a

E

�



� p

�

a

p

�



os �

�

(77)

and

dt = �2p

�

a

p

�



sin �

�

d�

�

: (78)

Assuming no �

�

dependene of jM

fi

j

2

, we an write d


�

= �2� sin �

�

d�

�

. Hene

d�

dt

(ab! d) =

1

64�s(p

�

a

)

2

jM

fi

j

2

: (79)
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In addition to s = (p

a

+ p

b

)

2

= (p



+ p

d

)

2

and t = (p



� p

a

)

2

= (p

b

� p

d

)

2

, another

ommonly{enountered invariant for the sattering proess a+ b! + d is

u � (p

a

� p

d

)

2

= (p

b

� p



)

2

: (80)

The quantities s, t and u are alled the Mandelstam variables.

Problem 4:

Show that the three Mandelstam variables are not independent but satisfy the equation

s+ t+ u = m

2

a

+m

2

b

+m

2



+m

2

d

: (81)

0.6 Interation via Partile Exhange

In partile physis we regard all fores as arising from partile exhange (exhange of

quanta oof the interation �eld). This is really just a way of looking at the terms in

the perturbation theory expansion. Consider the shift in energy of the state jii due to

the interation term H

0

in the Hamiltonian:

�E

i

= hijH

0

jii+

X

j 6=i

hijH

0

jjihjjH

0

jii

E

i

�E

j

+ : : : : (82)

Suppose H

0

an ause emission or absorption of partiles of rest{mass m. Bythis we

mean that if jii ontains a point soure of strength g at ~r = ~r

1

and jji ontains the soure

plus a partile of momentum

~

k(= �h

~

k), i. e. with wavefuntion �(~r) = e

i

~

k�~r

(normalized

to one partile per unit volume), then the ontribution from partile emission to hjjH

0

jii

is

g

p

eE

k

Z

d

3

~r�

�

(~r)Æ

3

(~r � ~r

1

) =

g

p

eE

k

e

�i

~

k�~r

1

(83)

where E

k

= (

~

k

2

+m

2

)

1=2

. (N. B. g gives the invariant matrix element, normalized to

2E

k

partiles per unit volume, so the normalization fator must be devided out).

Similarly for absorption of the partile by a soure at ~r

2

we have a ontribution to

hijH

0

jji of

g

p

eE

k

e

+i

~

k�~r

2

. Therefore exhange of the partiles from soure 1 to soure 2

gives a ontribution to �E

i

, via the seond term in the expansion (82), of

�E

1!2

i

=

g

X

j

g

2

2E

k

e

�i

~

k�(~r

2

�~r

1

)

E

i

�E

j

; (84)

whih an be represented by the diagram:

1

2

i ij

9



The intermediate state j onsists of the soures plus the partile, so E

j

= E

i

+E

k

.

Note that the atual prodution of this state would violate energy onservation. It is a

virtual state and the exhanged objet is a virtual parile. The diagram should not

be taken too literally. In only depits a ontribution in the perturbation expansion.

The sum

f

P

represents a phase spae integration over all momenta

~

k of the ex-

hanged partile, with (as usual) one state per (2�)

3

of momentum spae. Therefore

�E

1!2

i

=

g

2

(2�)

3

Z

d

3

~

k

2E

k

e

i

~

k�(~r

2

�~r

1

)

�E

k

(85)

= �

g

2

2(2�)

3

Z

d

3

~

k

e

i

~

k�~r

~

k

2

+m

2

(~r � ~r

2

� ~r

1

) : (86)

To do the integral hoose the z axis along ~r. Then

~

k � ~r = kr os � and d

3

~

k beomes

2�k

2

dk d(os �), and the os � integration gives

�E

1!2

i

= �

g

2

2(2�)

3

Z

1

0

k

2

dk

k

2

+m

2

e

ikr

� e

�ikr

ikr

: (87)

Write this integral as one half of the integral from �1 to 1, whih an be done by

residues:

�E

1!2

i

=

�g

2

8�

e

�mr

r

: (88)

The ontribution from emission from soure 2 and absorption by 1 turns out to be the

same:

�E

2!1

i

=

�g

2

8�

e

�mr

r

: (89)

It is represented by the diagram

1

2

i ij

These diagrams are alled time-ordered (or old-fashioned) perturbation theory di-

agrams. The sum of all time orderings is represented by a Feynman diagram (or

graph):

+ =

10



Beause the intermediate state is virtual, the time ordering of emission and absorp-

tion is frame dependent, but the sum of all orderings (the Feynman graph) is frame

independent:

�E

i

=

�g

2

4�

e

�mr

r

: (90)

This is the Yukawa potential, due to single partile exhange. The exponential de-

rease has range R = m

�1

, i. e. R = �h=(m), the Compton wavelength of the exhanged

partile. In eletromagnetism we have zero{mass photon exhange and hene \in�nite

range", R =1. In this ase the Yukawa formula (90) redues to the Coulomb potential.

0.7 Sattering via One-Partile Exhange

We an use the same method as for the Yukawa potential to �nd the di�erential ross

setion for the sattering proess a + b !  + d via exhange of partile x. Instead of

potential energy of two point soures, we now want the invariant matrix element M

fi

where jii onsists of a and b with momenta ~p

a

and ~p

b

and jfi is  + d with momenta

~p



, ~p

d

.

Consider �rst the ontribution from the time ordering a! + x, x+ b! d:

a

b

i j



d

x

f

The orresponding term in the perturbation expansion (52) of the non{invariant tran-

sition matrix element T

fi

is

T

fi

=

hf jH

0

jji hjjH

0

jii

E

i

�E

j

; (91)

i. e.

T

a!b

fi

=

hdjH

0

jx+ bi h+ xjH

0

jai

(E

a

+E

b

)� (E



+E

x

+E

d

)

: (92)

Notie that the momentum of x is �xed by ~p

x

= ~p

a

� ~p



so there is no phase spae

integration. If the invariant matrix element for a! + x is g

a

, we have as usual

h+ xjH

0

jai =

g

a

(2E

a

2E

x

2E



)

1=2

: (93)

Similarly, de�ne

hdjH

0

jx+ bi =

g

b

(2E

b

� 2E

x

� 2E

d

)

1=2

: (94)

Then

M

fi

= (2E

a

� 2E

b

� 2E



� 2E

d

)

1=2

T

fi

; (95)
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giving

M

a!b

fi

=

1

2E

x

g

a

g

b

E

a

�E



�E

x

: (96)

For the other time ordering

a

b

i j



d

f

�x

the quantum numbers are suh that the exhanged partile must be �x, the antipartile

of x. For example, for �pp ! �nn we ould have x = �

�

and then �x = �

+

. We assume

rossing symmetry

hjH

0

ja+ �xi = h+ xjH

0

jai ; et. (97)

Then

M

b!a

fi

=

1

2E

�x

g

a

g

b

E

b

�E

d

�E

�x

: (98)

But ~p

�x

= ~p

b

� ~p

d

and ~p

a

+ ~p

b

= ~p



+ ~p

d

, so ~p

�x

= ~p



� ~p

a

= �~p

x

and

E

�x

= E

x

=

h

(~p

a

� ~p



)

2

+m

2

x

i

1=2

: (99)

The

M

fi

= M

a!b

fi

+M

a!b

fi

(100)

=

g

a

g

b

2E

x

�

1

E

a

�E



�E

x

+

1

E

b

�E

d

�E

x

�

(101)

=

g

a

g

b

2E

x

�

1

E

a

�E



�E

x

+

1

E

a

�E



+E

x

�

; (102)

sine E

a

+E

b

= E



+E

d

. Combining the two terms gives

M

fi

=

g

a

g

b

2E

x

2E

x

(E

a

�E



)

2

�E

2

x

(103)

=

g

a

g

b

(E

a

�E



)

2

� (~p

a

� ~p



)

2

�m

2

x

(104)

=

g

a

g

b

t�m

2

x

; (105)

where t is the 4-momentum transfer squared, (p

a

� p



)

2

, whih is negative for the

proesses we shall enounter, so no in�nity ours in the di�erential ross setion.

Using our previous result (79), we have

d�

dt

=

1

64�s(p

�

a

)

2

g

2

a

g

2

b

(t�m

2

x

)

2

; (106)

assuming that g

a;b

are real. The di�erential ross setion has a forward (t = 0) peak

with width of order m

2

x

, orresponding to the range of interation m

�1

x

.
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0.8 Feynman Graphs

As in the alulation of the Yukawa potential, the sum of the time orderings, represented

by a single Feynman graph,

a

b

x

d



g

b

g

a

M

fi

=

g

a

g

b

(p

a

� p



)

2

�m

2

x

; (107)

has a simpler form than either individual term. For partiles without spin, there is

a oupling onstant g

a;b

for eah vertex and a propagator (q

2

� m

2

)

�1

for eah

internal line of 4-momentum q

�

and mass (i. e. rest{mass) m. Notie that in Feynman

graphs (unlike the old{fashioned, time{ordered graphs) 4-momentum is onserved at

the verties but internal lines are not onstrained to have q

2

= m

2

as real partiles

must. These lines represent both a virtual partile going one way and a virtual an-

tipartile going the other. They are said to be o� mass shell when q

2

6= m

2

beause

the surfae in 4-momentum spae desribed by q

�

q

�

= m

2

(on whih real partiles lie)

is alled the mass shell.

Problem 5:

Using old{fashioned perturbation theory, verify that the invariant matrix element due

to the Feynman graph

b

a

g

1



d

x

g

2

is

M

fi

=

g

1

g

2

s�m

2

x

: (108)

(Hint: Don't forget to inlude all time{orderings.)
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