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Colour SU(3)

• Hadronic matter is made of quarks of different flavours. Approximate SU(3)f flavour

symmetry is observed in spectrum of lowest-lying mesons and baryons.

• The known quarks and their properties are

Quark Charge Mass Isospin

u +2/3 ∼ 4 MeV +1/2

d −1/3 ∼ 7 MeV −1/2

c +2/3 ∼ 1.5 GeV 0

s −1/3 ∼ 135 MeV 0

t +2/3 ∼ 173 GeV 0

b −1/3 ∼ 5 GeV 0

• Additional quantum number colour with three possible values was introduced for

quarks in order to cure problem with statistics of spin-32 baryons.



• Only colour singlet states exist in nature. If group of transformations colour is SU(3),

the basic colour singlet states are mesons q̄fqf ′ and baryons εabcqaqbqc.

• There now is sound proof of validity of colour SU(3).

⋆ Early evidence for the number of colours Nc = 3 came from rate of decay π0 → γγ.

⋆ Another test of number of colours of charged fundamental constituents is ratio R

of e+e− total hadronic cross section to cross section for muon pairs, diagram (b).

(See also later). At low energy virtual photon excites only u, d, s quarks, each of

which occurs in 3 colours. Therefore
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For center-of-mass energies Ecm ≥ 10GeV one is above threshold for production

of c, b quarks, and hence
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• Existence of approximately point-like constituents inside hadrons was known from

electron deep inelastic scattering experiments at SLAC. Measured cross section did

not fall exponentially with inelasticity but showed approximate scaling behaviour,

indicative of point-like structure inside target nucleons.

This gave rise to parton model. Partons are now known to be coloured quarks and

gluons.

• Discovery of asymptotic freedom of QCD gave an answer to question why quarks

behave as almost free particles when probed at small distances: coupling between

quarks and gluon decreases with decreasing distance.











• Note that gluon field strength tensor is not gauge invariant.

Contrast this with gauge-invariance of QED field strength. QCD field strength is not

gauge invariant because of self-interaction of gluons. Carriers of the colour force are

themselves coloured, unlike the electrically neutral photon.

• Note there is no gauge-invariant way of including a gluon mass. A term such as

m2AαAα

is not gauge invariant. This is similar to QED result for mass of the photon. On the

other hand quark mass term is gauge invariant.











• In the last years, also a number of tetraquark and pentaquark states have been

discovered.

Tetraquarks consist of four quarks: two quarks and two antiquarks, giving baryon

number zero.

Pentaquarks consist of five quarks: four quarks and one antiquark, giving baryon

number one.

So far, all known tetraquarks and pentaquarks contain at least one heavy quark

(charm or bottom). Their internal structure (molecules?) is not yet well understood.





• The force between two colour charges (e.g. quarks) becomes strong at large distances,

and is believed to give rise to a linear potential.



Exact symmetries of QCD

• In addition to being gauge invariant, QCD Lagrangian is invariant under C, P and T

transformations.

• A CP violating term could be added to the the QCD Lagrangian, the θ term

Lθ = θ
g2s

32π2
FA
µνF̃

Aµν

with the dual field strength tensor

F̃µν =
1

2
εµνρσFρσ

A non-zero value of the parameter θ would imply CP violation. It produces electric

dipole moment of neutron. Non-observation of the latter gives limit θ ≤ 10−10.

No convincing mechanism for absense of θ-term has been found so far. This is the

strong CP problem.



Approximate symmetries

• The small difference between u and d quark masses gives rise to an approximate light

quark flavour symmetry. Write

q =

(

u

d

)

then QCD Lagrangian becomes

L = q̄(i6D +M)q with M =

(

mu 0

0 md

)

With mu −md much smaller than hadronic mass scales approximate M by diagonal

matrix. Then symmetry of L is increased to U(2)V = U(1)V ⊗ SU(2)V ,

q → q′ = exp

(

3
∑

0

αiσ
i

)

q

The new approximate SU(2)V symmetry is isospin symmtery (the U(1)V symmetry

corresponds to quark number conservation).



⋆ This symmetry is further enhanced by assuming also the strange quark to be

degenerate in mass with the u and d quarks. That gives rise to SU(3)V flavour

symmetry which gives classification of mesons and baryons into flavour octets and

decuplets.

⋆ In the limit that u and d quark masses vanish, M = 0, symmetry becomes even

larger. Introducing left- and right-handed components,

qL =
1

2
(1− γ5)q qR =

1

2
(1 + γ5)q

quark sector of the Lagrangian is

L = q̄Li6DqL + q̄Ri6DqR

Without the mass term positive and negative helicity states are not connected.

Therefore independent rotations of the two are permitted, yielding U(2)L⊗U(2)R
symmetry. A symmetry acting separately on left- and right-handed fields is a chiral

symmetry . Here we have a chiral SU(2). This is again enhanced to chiral SU(3)

if also ms = 0 is assumed.



⋆ Chiral symmetry is not apparent in the hadron spectrum (since it would imply a

partner with equal mass and opposite parity for every hadron). Instead, chiral

SU(2) is spontaneously broken, leaving SU(2)V ⊗ U(1)V as above.

Spontaneous symmetry breaking takes place if the vacuum state is not invariant

under the full symmetry group. The QCD vacuum is believed to be have a

nonvanishing expectation value of the light-quark operator q̄q,

〈0|q̄q|0〉 = 〈0|(ūu+ d̄d)|0〉 ≃ (250MeV)3

referred to as a quark condensate. It breaks chiral symmetry since it connects left-

and right-handed fields, q̄q = q̄LqR + q̄RqL.

⋆ Spontaneous chiral symmetry breaking gives rises to three pseudoscalar Goldstone

bosons π±, π0.

Also U(1)L ⊗ U(1)R is broken down to U(1)V , but the lost U(1)A does not give

rise to Goldstone bosons due to quantum effects.

⋆ Since light quark masses are not exactly zero also Goldstone bosons are not

massless, but still much lighter than all other hadrons. Deviation of light quark

masses from zero can be treated as a perturbation, giving rise to chiral perturbation

theory.



⋆ Neglecting also strange quark mass yields chiral SU(3), spontaneously broken

to SU(3)V , with eight pseudoscalar Goldstone bosons π±, π0,K±,K0, K̄0, η

corresponding to flavour octet.

• QCD also has approximate heavy quark symmetry which resembles the weak

dependence of atoms on the isotopic composition of the nucleus. Heavy quark

symmetry relates bound states of c and b quarks. The top quark decays too quickly

to form hadronic bound states.









• Nowadays, most calculations are performed in modified minimal subtraction (MS)

renormalization scheme. Ultraviolet divergences are ‘dimensionally regularized’ by

reducing number of space-time dimensions to D < 4:

d4k

(2π)4
−→ (µ)2ǫ

d4−2ǫk

(2π)4−2ǫ

where ǫ = 2 − D
2 . Note that renormalization scale µ still has to be introduced to

preserve dimensions of couplings and fields.

• Loop integrals of form
∫

dDk

(k2 +m2)2

lead to poles at ǫ = 0. The minimal subtraction (MS) prescription is to subtract

poles and replace bare coupling by renormalized coupling αs(µ). In practice poles

always appear in combination
1

ǫ
+ ln(4π)− γE,

(Euler’s constant γE = 0.5772 . . .). In modified minimal subtraction scheme



ln(4π)− γE is subtracted as well. It follows that

Λ MS = Λ MSe
[ln(4π)−γE]/2 = 2.66Λ MS

• Current best fit value of αs at mass of Z is

αs(MZ) = 0.1179± 0.0010

corresponding to a preferred value of Λ MS (for Nf = 5) in the range

196 MeV < Λ
(5)

MS
< 224 MeV.

• Uncertainty in αs propagates directly into QCD cross sections. Thus we expect at

least errors of ∼ 1% in prediction of cross sections which begin in order αs.



• Recent compilation of αs measurements is shown below. Evidence that αs(Q) has a

logarithmic fall-off with Q is persuasive.



• Using the formula for running αs(Q) to rescale all measurements to Q = MZ gives

excellent agreement.







Infrared divergences

• Even in high-energy, short-distance regime, long-distance aspects of QCD cannot

be ignored. Soft or collinear gluon emission gives infrared divergences in PT. Light

quarks (mq ≪ Λ) also lead to divergences in the limit mq → 0 (mass singularities).

⋆ Spacelike branching: gluon splitting on incoming line (a)

p2b = −2EaEc(1− cos θ) ≤ 0 .

Propagator factor 1/p2b diverges as Ec → 0 (soft singularity) or θ → 0 (collinear

or mass singularity). If a and b are quarks, inverse propagator factor is

p2b −m2
q = −2EaEc(1− va cos θ) ≤ 0 ,



Hence Ec → 0 soft divergence remains; collinear enhancement becomes a

divergence as va → 1, i.e. when quark mass is negligible. If emitted parton

c is a quark, vertex factor cancels Ec → 0 divergence.

⋆ Timelike branching: gluon splitting on outgoing line (b)

p2a = 2EbEc(1− cos θ) ≥ 0 .

Diverges when either emitted gluon is soft (Eb or Ec → 0) or when opening angle

θ → 0. If b and/or c are quarks, collinear/mass singularity in mq → 0 limit. Again,

soft quark divergences cancelled by vertex factor.

• Similar infrared divergences in loop diagrams, associated with soft and/or collinear

configurations of virtual partons within region of integration of loop momenta.

• Infrared divergences indicate dependence on long-distance aspects of QCD not

correctly described by PT. Divergent (or enhanced) propagators imply propagation

of partons over long distances. When distance becomes comparable with hadron

size ∼ 1 fm, quasi-free partons of perturbative calculation are confined/hadronized

non-perturbatively, and apparent divergences disappear.



• Can still use PT to perform calculations, provided we limit ourselves to two classes

of observables:

? Infrared safe quantities, i.e. those insensitive to soft or collinear branching. Infrared

divergences in PT calculation either cancel between real and virtual contributions or

are removed by kinematic factors. Such quantities are determined primarily by hard,

short-distance physics; long-distance effects give power corrections, suppressed by

inverse powers of a large momentum scale.

? Factorizable quantities, i.e. those in which infrared sensitivity can be absorbed into

an overall non-perturbative factor, to be determined experimentally.

• In either case, infrared divergences must be regularized during PT calculation, even

though they cancel or factorize in the end.

? Gluon mass regularization: introduce finite gluon mass, set to zero at end of

calculation. However, as we saw, gluon mass breaks gauge invariance.

? Dimensional regularization: analogous to that used for ultraviolet divergences,

except we must increase dimension of space-time, ε = 2− D
2

< 0. Divergences are

replaced by powers of 1/ε.



e
+
e
− annihilation cross section

• e+e− → µ+µ− is fundamental electroweak process. The same type of process,

e+e− → qq̄, will produce hadrons. Cross sections are roughly proportional.



• But formation of hadrons is a non-perturbative process. How can PT give correct

hadronic cross section? To understand this visualize event in space-time:

? e+ and e− collide to form γ or Z0 with virtual mass Q =
√

s. This fluctuates

into qq̄, qq̄g, . . . , occupying space-time volume ∼ 1/Q. At large Q, rate for this

short-distance process is given by PT.

? Subsequently, at much later time ∼ 1/Λ, produced quarks and gluons form

hadrons. This modifies outgoing state, but occurs too late to change original

probability for event to happen.

• Well below Z0 mass, process e+e− → f f̄ is purely electromagnetic, with lowest-order

(Born) cross section (neglecting quark masses)

σ0 =
4πα2

3s
Q2

f



Thus (N = 3 = possible number of qq̄ colors)

R ≡ σ(e+e− → hadrons)

σ(e+e− → µ+µ−)
=

∑

q σ(e+e− → qq̄)

σ(e+e− → µ+µ−)
= 3

∑

q

Q2
q .

• On Z0 pole,
√

s = MZ, neglecting γ/Z interference

σ0 =
4πα2κ2

3Γ2
Z

(a2
e + v2

e)(a
2
f + v2

f)

where κ =
√

2GFM2
Z/4πα = 1/ sin2(2θW ) ' 1.5. Hence

RZ =
Γ(Z → hadrons)

Γ(Z → µ+µ−)
=

∑

q Γ(Z → qq̄)

Γ(Z → µ+µ−)
=

3
∑

q(a
2
q + v2

q)

a2
µ + v2

µ



• Measured cross section is about 5% higher than σ0 due to QCD corrections. For

massless quarks, corrections to R and RZ are equal. To O(αs) we have the diagrams

• Real emission diagrams (b) contain soft (Eg → 0) and collinear (θqg → 0 or θq̄g → 0)

divergences. These singularities are not physical – they simply indicate the breakdown

of PT when energies and / or invariant masses approach QCD scale ΛQCD.

• Collinear and/or soft regions do not make important contribution to R. To see this,

make integrals finite using dimensional regularization, D = 4 − 2ε, but ε < 0 now.



Then

σqq̄g = 2σ0

αs

π
H(ε)

[

2

ε2
+

3

ε
+

19

2
− π2 + O(ε)

]

with

H(ε) =
3(1 − ε)(4π)2ε

(3 − 2ε)Γ(2 − 2ε)
= 1 + O(ε)

Now soft and collinear singularities are regulated and appear as poles at D = 4.

• Virtual gluon contributions, diagrams (a), give in dimensional regularization

σqq̄ = 3σ0

{

1 +
2αs

3π
H(ε)

[

− 2

ε2
− 3

ε
− 8 + π2 + O(ε)

]}

• Adding real and virtual contributions, poles cancel and result is finite as ε → 0:

R = 3
∑

q

Q2
q

[

1 +
αs

π
+ O(α2

s)
]

Thus R is an infrared safe quantity.



• Coupling constant αs is evaluated at renormalization scale µ . UV divergences in R

cancel to O(αs) , so coefficient of αs is independent of µ. At O(α2
s) and higher, UV

divergences make coefficients renormalization scale and scheme dependent:

R = 3KQCD

∑

q

Q2
q

KQCD = 1 +
αs(µ

2)

π
+

∑

n≥2

Cn

(

s

µ2

)(

αs(µ
2)

π

)n

• Scale and scheme dependence only cancels completely when series is computed to all

orders. A scale change at O(αn
s ) induces changes at O(αn+1

s ). The more terms are

added, the more stable is the prediction with respect to changes in µ.

• Residual scale dependence is an important source of uncertainty in QCD predictions.

One can vary the scale over some ‘physically reasonable’ range, e. g.
√
s/2 < µ <

2
√
s, to try to quantify this uncertainty. But there is no real substitute for a full

higher-order calculation.



• Residual scale dependence:



Deep inelastic scattering

• Consider lepton-proton scattering via exchange of virtual photon:

• Standard variables are:

x =
−q2

2p · q =
Q2

2M(E − E′)

y =
q · p
k · p = 1 − E′

E

where Q2 = −q2 > 0, M2 = p2 and energies refer to target rest frame.



• Elastic scattering has (p + q)2 = M2, i.e. x = 1. Hence deep inelastic scattering

(DIS) means Q2 � M2 and x < 1.

• Structure functions Fi(x,Q2) parametrise target structure as ‘seen’ by virtual photon.

Defined in terms of cross section

d2σ

dxdy
=

8πα2ME

Q4

[(

1 + (1 − y)2

2

)

2xF1

+(1 − y)(F2 − 2xF1) − (M/2E)xyF2

]

.

• Bjorken limit is Q2, p · q → ∞ with x fixed. In this limit structure functions obey

approximate Bjorken scaling law, i.e. depend only on dimensionless variable x:

Fi(x, Q2) −→ Fi(x).



• Figure shows F2 structure function for proton target. Although Q2 varies by two

orders of magnitude, in first approximation data lie on universal curve.

• Bjorken scaling implies that virtual photon is scattered by pointlike constituents

(partons) — otherwise structure functions would depend on ratio Q/Q0, with 1/Q0

a length scale characterizing size of constituents.



• Parton model of DIS is formulated in a frame where target proton is moving very

fast — infinite momentum frame.

? Suppose that, in this frame, photon scatters from pointlike quark with fraction ξ of

proton’s momentum. Since (ξp+q)2 = m2
q � Q2, we must have ξ = Q2/2p·q = x.

? In terms of Mandelstam variables ŝ, t̂, û, spin-averaged matrix element squared for

massless eq → eq scattering (related by crossing to e+e− → qq̄) is

∑

|M|2 = 2e2
qe

4 ŝ
2 + û2

t̂2

where
∑

denotes average (sum) over initial (final) colours and spins.

? In terms of DIS variables, t̂ = −Q2, û = ŝ(y − 1) and ŝ = Q2/xy. Differential

cross section is then

d2σ̂

dxdQ2
=

4πα2

Q4
[1 + (1 − y)2]

1

2
e2
qδ(x − ξ).



? From structure function definition (neglecting M)

d2σ

dxdQ2
=

4πα2

Q4

{

[1 + (1 − y)2]F1 +
(1 − y)

x
(F2 − 2xF1)

}

.

? Hence structure functions for scattering from parton with momentum fraction ξ is

F̂2 = xe2
qδ(x − ξ) = 2xF̂1 .

? Suppose probability that quark q carries momentum fraction between ξ and ξ + dξ

is q(ξ) dξ. Then

F2(x) =
∑

q

∫ 1

0

dξ q(ξ) xe2
qδ(x − ξ)

=
∑

q

e2
qxq(x) = 2xF1(x) .

? Relationship F2 = 2xF1 (Callan-Gross relation) follows from spin-1
2

property of

quarks (F1 = 0 for spin-0).



• Proton consists of three valence quarks (uud), which carry its electric charge and

baryon number, and infinite sea of light qq̄ pairs.

• Probed at scale Q, sea contains all quark flavours with mq � Q. Thus at Q ∼ 1

GeV expect

F em
2 (x) ' 4

9
x[u(x) + ū(x)] +

1

9
x[d(x) + d̄(x) + s(x) + s̄(x)]

where

u(x) = uV (x) + ū(x)

d(x) = dV (x) + d̄(x)

s(x) = s̄(x)

with sum rules
1

∫

0

dx uV (x) = 2 ,

∫ 1

0

dx dV (x) = 1 .



• Experimentally one finds
∑

q

∫ 1

0

dx x[q(x) + q̄(x)] ' 0.5 .

Thus quarks only carry about 50% of proton’s momentum. Rest is carried by gluons.

Although not directly measured in DIS, gluons participate in other hard scattering

processes such as large-pT jet and prompt photon production.

• Figure shows typical set of parton distributions extracted from fits to DIS data, at

Q2 = 10 GeV2.









Evolution of quark distribution

• Consider enhancement of higher-order contributions due to multiple small-angle

parton emission, for example in deep inelastic scattering (DIS)

• Incoming quark from target hadron, initially with low virtual mass-squared −t0 and

carrying a fraction x0 of hadron’s momentum, moves to more virtual masses and

lower momentum fractions by successive small-angle emissions, and is finally struck

by photon of virtual mass-squared q2 = −Q2.

• Cross section will depend on Q2 and on momentum fraction distribution of partons

seen by virtual photon at this scale, D(x,Q2).

• To derive evolution equation for Q2-dependence of D(x, Q2), first introduce pictorial

representation of evolution (also useful for Monte Carlo simulation).



• Represent sequence of branchings by path in (t, x)-space. Each branching is a step

downwards in x, at a value of t equal to (minus) the virtual mass-squared after the

branching.

• At t = t0, paths have distribution of starting points D(x0, t0) characteristic of target

hadron at that scale. Then distribution D(x, t) of partons at scale t is just the

x-distribution of paths at that scale.

• Consider change in the parton distribution D(x, t) when t is increased to t+ δt. This

is number of paths arriving in element (δt, δx) minus number leaving that element,

divided by δx.



• Number arriving is branching probability times parton density integrated over all

higher momenta x′ = x/z,

δD in(x, t) =
δt

t

∫ 1

x

dx′ dz
αs

2π
P̂ (z)D(x′, t) δ(x − zx′)

=
δt

t

∫ 1

0

dz

z

αs

2π
P̂ (z)D(x/z, t)

• For the number leaving element, must integrate over lower momenta x′ = zx:

δD out(x, t) =
δt

t
D(x, t)

∫ x

0

dx′ dz
αs

2π
P̂ (z) δ(x′ − zx)

=
δt

t
D(x, t)

∫ 1

0

dz
αs

2π
P̂ (z)

• Change in population of element is

δD(x, t) = δD in − δD out

=
δt

t

∫ 1

0

dz
αs

2π
P̂ (z)

[

1

z
D(x/z, t) − D(x, t)

]

.



• Introduce plus-prescription with definition

∫ 1

0

dz f(z) g(z)+ =

∫ 1

0

dz [f(z) − f(1)] g(z) .

Using this we can define regularized splitting function

P (z) = P̂ (z)+ ,

and obtain Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) evolution equation:

t
∂

∂t
D(x, t) =

∫ 1

x

dz

z

αs

2π
P (z)D(x/z, t) .

• Here D(x, t) represents parton momentum fraction distribution inside incoming

hadron probed at scale t. In timelike branching, it represents instead hadron

momentum fraction distribution produced by an outgoing parton. Boundary

conditions and direction of evolution are different, but evolution equation remains

the same.



Quark and gluon distributions

• For several different types of partons, must take into account different processes by

which parton of type i can enter or leave the element (δt, δx). This leads to coupled

DGLAP evolution equations of form

t
∂

∂t
Di(x, t) =

∑

j

∫ 1

x

dz

z

αs

2π
Pij(z)Dj(x/z, t) .

• Quark (i = q) can enter element via either q → qg or g → qq̄, but can only leave via

q → qg. Thus plus-prescription applies only to q → qg part, giving

Pqq(z) = P̂qq(z)+ = CF

(

1 + z2

1 − z

)

+

Pqg(z) = P̂qg(z) = TR [z2 + (1 − z)2]



• Gluon can arrive either from g → gg (2 contributions) or from q → qg (or q̄ → q̄g).

Thus number arriving is

δDg, in =
δt

t

∫ 1

0

dz
αs

2π

{

P̂gg(z)

[

Dg(x/z, t)

z
+

Dg(x/(1 − z), t)

1 − z

]

+
P̂qq(z)

1 − z

[

Dq

(

x

1 − z
, t

)

+ Dq̄

(

x

1 − z
, t

)

]}

=
δt

t

∫ 1

0

dz

z

αs

2π

{

2P̂gg(z)Dg

(x

z
, t

)

+ P̂qq(1 − z)
[

Dq

(x

z
, t

)

+ Dq̄

(x

z
, t

)]}

,

• Gluon can leave by splitting into either gg or qq̄, so that

δDg, out =
δt

t
Dg(x, t)

∫ 1

0

dz
αs

2π

[

P̂gg(z) + Nf P̂qg(z) dz
]

.



• After some manipulation we find

Pgg(z) = 2CA

[

(

z

1 − z
+ 1

2
z(1 − z)

)

+

+
1 − z

z
+ 1

2
z(1 − z)

]

− 2

3
NfTR δ(1 − z) ,

Pgq(z) = Pgq̄(z) = P̂qq(1 − z) = CF

1 + (1 − z)2

z
.

• Using definition of the plus-prescription, can show that Pqq and Pgg can be written

in more common forms

Pqq(z) = CF

[

1 + z2

(1 − z)+
+

3

2
δ(1 − z)

]

Pgg(z) = 2CA

[

z

(1 − z)+
+

1 − z

z
+ z(1 − z)

]

+
1

6
(11CA − 4NfTR) δ(1 − z) .





Solution by moments

• Given Di(x, t) at some scale t = t0, factorized structure of DGLAP equation means

we can compute its form at any other scale.

• One strategy for doing this is to take moments (Mellin transforms) with respect to

x:

D̃i(N, t) =

∫ 1

0

dx xN−1 Di(x, t) .

Inverse Mellin transform is

Di(x, t) =
1

2πi

∫

C

dN x−N D̃i(N, t) ,

where contour C is parallel to imaginary axis to right of all singularities of integrand.

• After Mellin transformation, convolution in DGLAP equation becomes simply a

product:

t
∂

∂t
D̃i(x, t) =

∑

j

γij(N, αs)D̃j(N, t)



where anomalous dimensions γij are given by moments of splitting functions:

γij(N, αs) =
∞
∑

n=0

γ
(n)

ij (N)
(αs

2π

)n+1

γ
(0)

ij (N) = P̃ij(N) =

∫ 1

0

dz zN−1 Pij(z)

• From above expressions for Pij(z) we find
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• Consider combination of parton distributions which is flavour non-singlet, e.g. DV =

Dqi
− Dq̄i

or Dqi
− Dqj

. Then mixing with the flavour-singlet gluons drops out and

solution for fixed αs is

D̃V (N, t) = D̃V (N, t0)

(

t

t0

)γqq(N,αs)

• We see that dimensionless function DV , instead of being scale-independent function

of x as expected from dimensional analysis, has scaling violation: its moments vary

like powers of scale t (hence the name anomalous dimensions).

• For running coupling αs(t), scaling violation is power-behaved in ln t rather than t.

Using leading-order formula αs(t) = 1/b ln(t/Λ2), we find

D̃V (N, t) = D̃V (N, t0)

(

αs(t0)

αs(t)

)dqq(N)

where dqq(N) = γ
(0)
qq (N)/2πb.

• Flavour-singlet distribution and quantitative predictions will be discussed later.



Scaling violation

• Bjorken scaling is not exact. Structure functions decrease at large x and grow at

small x with increasing Q2. This is due to Q2 dependence of parton distributions,

considered earlier. In present notation, they satisfy DGLAP evolution equations of

form

t
∂

∂t
q(x, t) =

αs(t)

2π

∫ 1

x

dz

z
P (z)q

(x

z
, t

)

≡ αs(t)

2π
P ⊗ q

where P is q → qg splitting function.

• Taking into account other types of parton branching that can occur in addition to

q → qg, we obtain coupled evolution equations

t
∂qi

∂t
=

αs(t)

2π
[Pqq ⊗ qi + Pqg ⊗ g]

t
∂q̄i

∂t
=

αs(t)

2π
[Pqq ⊗ q̄i + Pqg ⊗ g]

t
∂g

∂t
=

αs(t)

2π

[

Pgq ⊗
∑

(qi + q̄i) + Pgg ⊗ g
]

.



• Lowest-order splitting functions derived earlier. More generally they are power series

in αs, same for deep inelastic scattering (spacelike branching) and jet fragmentation

(timelike branching) in leading order, but differing in higher orders. Consequently,

behaviour of structure functions at small x is different from that of jet fragmentation

functions.

• For the present, concentrate on larger x values (x∼>0.01), where PT expansion

converges better.

• Recall solution of evolution equations for flavour non-singlet combinations V , e.g.

qi − q̄i or qi − qj. Mixing with gluons drops out and

t
∂

∂t
V (x, t) =

αs(t)

2π
Pqq ⊗ V .



Taking moments (Mellin transform)

Ṽ (N, t) =

∫ 1

0

dx xN−1 V (x, t)

we find

t
∂

∂t
Ṽ (N, t) =

αs(t)

2π
γ(0)
qq (N) Ṽ (N, t)

where γ
(0)
qq (N) is Mellin transform of P

(0)
qq . Solution is

Ṽ (N, t) = Ṽ (N, 0)

(

αs(0)

αs(t)

)dqq(N)

where dqq(N) = γ
(0)
qq (N)/2πb.

• Now dqq(1) = 0 and dqq(N) < 0 for N ≥ 2. Thus as t increases Ṽ (N, t) is constant

for N = 1 and decreases and at larger N .



• Since larger-N moments emphasize larger x, this means that DV (x, t) decreases at

large x and increases at small x. (Physically, this is due to increase in the phase

space for gluon emission by quarks as t increases, leading to loss of momentum.)

This is clearly visible in data.
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• For flavour-singlet combination, define

Σ =
∑

i

(qi + q̄i) .

Then we obtain

t
∂Σ

∂t
=

αs(t)

2π
[Pqq ⊗ Σ + 2NfPqg ⊗ g]

t
∂g

∂t
=

αs(t)

2π
[Pgq ⊗ Σ + Pgg ⊗ g] .

• Thus flavour-singlet quark distribution Σ mixes with gluon distribution g: evolution

equation for moments has matrix form

t
∂

∂t

(

Σ̃

g̃

)

=

(

γqq 2Nfγqg

γgq γgg

)(

Σ̃

g̃

)



• Singlet anomalous dimension matrix has two real eigenvalues γ± given by

γ± = 1

2
[γgg + γqq ±

√

(γgg − γqq)2 + 8Nfγgqγqg] .

• Expressing Σ̃ and g̃ as linear combinations of eigenvectors Σ̃+ and Σ̃−, we find they

evolve as superpositions of terms of above form with γ± in place of γqq.



Small x

• At small x, corresponding to N → 1, γ+ → γgg → ∞, γ− → γqq → 0. Therefore

structure functions grow rapidly at small x.
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• Kinematic region at HERA is shown in figure.
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Hadron-hadron processes

• In hard hadron-hadron scattering, constituent partons from each incoming hadron

interact at short distance (large momentum transfer Q2).
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• For hadron momenta P1, P2 (S = 2P1 · P2), form of cross section is

σ(S) =
∑

i,j

∫

dx1dx2Di(x1, µ
2)Dj(x2, µ

2)

× σ̂ij(ŝ = x1x2S,αs(µ
2), Q2/µ2)

where µ2 is factorization scale and σ̂ij is subprocess cross section for parton types

i, j.



? Notice that factorization scale is in principle arbitrary: affects only what we call

part of subprocess or part of initial-state evolution (parton shower).

? Unlike e+e− or ep, we may have interaction between spectator partons, leading to

soft underlying event and/or multiple hard scattering.



Jet production

• Lowest-order subprocess for purely hadronic jet production is 2 → 2 scattering

p1 + p2 → p3 + p4

E3E4d
6σ̂

d3p3d
3p4

=
1

32π2ŝ

∑

|M|2 δ4(p1 + p2 − p3 − p4) .

• Many processes even at O(α2
s):



• Single-jet inclusive cross section obtained by integrating over one outgoing

momentum:

Ed3σ̂

d3p
=

d3σ̂

d2pTdy
−→ 1

2πET

d3σ̂

dET dη
=

1

16π2ŝ

∑

|M|2 δ(ŝ+ t̂+ û)

where (neglecting jet mass)

ET ≡ E sin θ = |pT | , η ≡ − ln tan(θ/2) = y .

• Jets in hadron-hadron usually defined using cone algorithm: combine all hadrons h

with

∆RhJ ≡
√

(ηh − ηJ)2 + (φh − φJ)2 < R

where ηJ , φJ refer to jet axis, chosen to maximize jet ET , and R ∼ 0.7 is cone size.

• Use η rather than θ for invariance under longitudinal boosts: x1 → ax1, x2 → x2/a

gives

ηh,J → ηh,J + ln a

so ηh − ηJ is invariant.



• Slight excess at large ET caused excitement, but can be reduced/removed by

adjusting gluon distribution.



• Contribution of different parton combinations ij determined by subprocess cross

sections and parton distributions.

• Quarks dominate at large ET since this selects large x1,2:

ŝ = x1x2S > 4E2
T
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