Standard Model of Particle Physics

Lecture Course at Heidelberg University Summer term 2024

7. Neutrino Physics

Carlo Ewerz Institut für Theoretische Physik

Skyler Degenkolb, Ulrich Uwer Physikalisches Institut

Heidelberg University

Neutrino Masses and Oscillations

- * In the conventional Standard chodel neutrinos are assumed to be massless. But there is no symmetry which enforces this.
- * There is now compelling evidence that neutrinos do have a mass.
- * In the case of massive neutrinos the eigenstates of the weak interaction, v_α (α = e, μ , τ), can ni genoral be difficunt from the mass eigenstates v; (i=1,2,3). As was the case for quarks, there can be Mentrino Mixing

It is the <u>leptour mixing matrix</u> (the analogue of the CKM rustrix), often referred to as the <u>haki-Nakagawa</u>. Sakate (- Poutcorvo) or MNS (P) Matrix. It can be parametrized exactly in the same long as the CKM matrix (for Dirac mentrinos).
Les de belou

- * In order to have massive neutrinos we chave to add night-handed neutrino fields to the Standard Model fields.
- * Suice neutrinos are electrically neutral there are two possibilities for their mass tous in the Lagrange density. * The Dirac mass tour
	- $\mathcal{L}_D = -u_0 \overline{v}_R v_L + L.c.$ is similar to the other fermion mass tous with me generated via a Higgs-Yukawa Coupling up = go Ve. Pictorially. $\frac{x}{y}$ $\frac{x}{u_p}$ $\frac{y}{y}$

* For neutrinos one can also have <u>degjorana mass</u> tous, which are possible as left handed $\mathcal{L}_{u_{L}}$ - $\frac{u_{L}}{2}$ $\overline{v_{L}^{e}}$ v_{L} + ℓ .c. or right handed $L_{\mu_{R}} = -\frac{\mu_{R}}{2} \overline{v_{R}^{c}} v_{R} + L.c.$ tous, where $4^c = C4^T$. Pictonially, V_{L} and V_{L}

- * In general the above mass tous can be present simultaneously. If no hajorana mass tour is present the mentiones are called Dirac neutrinos, otherwise Majorana ruentrinos.
- * The Dirac mass tour conserver leptou numbre 1, whereas the Majorana mass tour violates lepton munber conservation. * If neutrinos are chapioraina particles there can bence be neutrinoless double beta decay (OUBB) via the diagram

The observation of such a decay would
prove the Majorana nature of neutrinos.

Neutrino uasies are buy small. In the
cast of a Dirac neutrino, a uuss of
say 0.05 eV world require a Yukawe
coupling 30 of the order 10⁻¹³. Sud
a five- tuning appears unuabval.
In ordu to find a possible explanation
for small neutrino uasies course due the
cast of a Dirac and a right-handed
Juajoraua luass Itu
du_u = -u_D
$$
\overline{v_R}v_L - \frac{u_{IR}}{2} \overline{v_R}v_R + L.c.
$$

$$
= -\frac{1}{2} \left(\overline{v_{L}^{c}} , \overline{v_{R}} \right) \left(\begin{array}{c} 0 & u_{D} \\ u_{D} & u_{R} \\ \hline -H_{D} \end{array} \right) \left(\begin{array}{c} v_{L} \\ v_{R}^{c} \end{array} \right) + l_{L} c.
$$

where My is the <u>neutrino mass matix</u>. It seems natural to assume that Mes ~ O (me) suice it aries due to the Higgs mechanism like the electron mass. On the other hand nothing requires me to be small. We therefore assume map >> mp. Then to order $\left(\frac{u_{\text{D}}}{u_{\text{R}}}\right)^2$ the mass matrix has the eigenvalues μ_{12} = μ_{1R}

With $u_{B} \sim \mathcal{O}(u_{C})$ and $u_{R} \gg u_{B}$ the mass of v_i can be very small. The linergence of this very small mass scale is Known as the see-saw meclanism. The mass u_R is assumed to reflect some ligh mass scale where new physics resides that is responsible for neutrino masses. ve is then a liggothetical veg heavy lepton. Assuming for example mp ~ 10" GeV (just below a typical grand unification scale) and $u_p \sim u_t = \sqrt{2} \omega \omega$ one fruids m'a 3. 10² eU, in a realistic rauge.

* Neutrino Oscillations Neutrino mixing implies neutrino <u>flavour</u> oscillations. For simplicity consider only two neutrino species, Ve and Vp. Assume that v_μ 's are created in a weak interaction process at time t=0 with momentum p. The weak eigenstates are then. $V_{\mu}(\theta) = V_{4}(\theta) \cos \alpha + V_{2}(\theta) \sin \alpha$ V_{e} (0) = - V_{1} (0) $\hbar i \propto + V_{2}$ (0) $\cos \alpha$ The mass eigenstates vary with time as $v_i(t) = e^{-iE_i t} v(0)$ Suice they are freely propagating with lulifies $E_i = \sqrt{{a_i}^2 + {p}^2}$. Thus $v_{p}(t) = e^{-iE_{1}t} v_{1}(0) cos \alpha + e^{-iE_{2}t} v_{2}(0) sin \alpha$ = $(e^{-iE_1t} cos^2 \alpha + e^{-iE_2t} sin^2 \alpha) v_p(0)$ + sin cosa $(e^{-iE_1t}-e^{-iE_tt})v_e(0)$ The second term is ni general non-200

if my + me. The state hence has an admixture of ve after time t.

The probability that an initial beam of Vp later contains some ve is $P(v_{p} \rightarrow v_{e}) = |\langle v_{e}(0) | v_{p}(1) \rangle|^{2}$ = $sin^2 \alpha cos^2 \alpha$ $|e^{-iE_2t} - e^{-iE_1t}|^2$ = $\frac{1}{2} sin^{2} 2a [1 - cos(E_{2}-E_{1})+]$

For small masses my, mr $E_{L}-E_{1} \approx \frac{\mu_{12}-\mu_{11}}{2\rho}$. After travelling a distance L=ct bence $P(v_p \rightarrow v_e) = \frac{1}{2} \sin^2 2a \left[1 - \cos \frac{2\pi L}{L_{osc}} \right]$ with the oscillation bugth $L_{osc} = \pi \frac{4\rho}{\Delta u^2}$ with $\Delta u^2 = u_1^2 - u_1^2$. Note that oscillations between neutrino
flavours are only suisitive to An^e but not to ma and me nidependently. The above considerations are readily generalized to the Case of three neu trino flavours.

* Neutrino Oscillations ni Matter

When neutrinos travel through matter (e.g. in the Sun, Earth, superions...) their coherent forward scattering from matter particles can significantly modify their propagation. This is the <u>Mikheyer-Suirror</u> <u>Wolfenstein (MSW) effect.</u>

For simplicity consider again the case of only two neutrino flavours. We can describe the time evolution of neutrino flavour oscillations ni vacumen by a Schröduige equation with Hamiltonian Kvac = $\frac{\Delta u^2}{4E}$ (-cos 20 $\sin 2\theta$).

The action of Huse on a newtime state (ve, up) then gives for the transition probability

 $P(v_{e} \rightarrow v_{f}) = sin^{2}2\theta$ $sin^{2}(\Delta m \frac{L}{4E})$ as above.

but this process is not possible for v_p due to the absence of muous in matter. This gives a contribution to the ve-ve element of the Hamiltonion (but none to the $v_{\mu} - v_{\mu}$ element): $\kappa = \kappa_{vac} + \begin{pmatrix} V & O \\ O & O \end{pmatrix}$

with $V = \sqrt{2} G_F N_E$, where N_E is the number of electrons per moit volume. In addition, there is an identical contribution to the ve-ve and vp-vp elements of the Hamiltonian from 2-exchange. Suice it is diagonal it does not affect the probability $P(\nu_e \rightarrow \nu_p)$, and can bence be neglected here.

The above Hamiltonian can be written in the equivalent form K - $\frac{\Delta u_n^2}{4E}$ $\begin{pmatrix} -\cos 2\theta_n & \sin 2\theta_n \\ \sin 2\theta_n & \cos 2\theta_n \end{pmatrix}$ with the effective mass splitting in matter, $\Delta \mu_{\mu}^{2} = \Delta \mu^{2} [\sin^{2} 2\theta + (\cos 2\theta - x)^{2}]^{12}$ and the effective mixing angle in matter, Sin² 20 = $\frac{sin^2 2\theta}{sin^2 2\theta + (cos 2\theta - x)^2}$ where

 $x = V \cdot \frac{2E}{\Delta w^2}$.

Note that mentions oscillations in backen cannot distriguish between a mixing angle 0 and an angle $\theta' = \frac{\pi}{2} - \theta$. But if neutrinos propagate through matter (e.g. the Sun) these cases can be distriprished suice the ve-ve element of the is different in Matter for the two Mixing angles. Note also that matter interaction can change a

Small nitxing into an effectively makinal one.

Neutrino Oscillations - Experiments

Variety of experiments, sensitive to different neutrino flavors, energies and oscillation lengths:

- Solar neutrinos
- Atmospheric neutrinos
- Reactor neutrinos
- Beam neutrinos

Solar Neutrinos With all these ingredients, the solar model predicts fluxes of ⇠ 10¹⁰ neutrinos*·*cm²*·*s¹

Neutrinos Experiments

Solar neutrino experiments: Homestake exp $(^{37}Cl \rightarrow ^{37}Ar)$, GALLEX, GNO, SAGE (71Ge→71Ga), (Super-)Kamiokande (water, Cerenkov), Sudbury Neutrino Observatory SNO (heavy water, Cerenkov), Borexino (liquid organic scintillator)

Atmospheric neutrino experiments: (Super-)Kamiokande, …

SNO Super-Kamiokande

The detection of neutrinos is also via Cherenkov e
The heavy water for the heavy w first observation of oscillations

Neutrinos Experiments

Reactor neutrino experiments: Double Chooz, Daya Bay, RENO (all liquid scintillator)

Beam neutrino experiments: LSND (liquid scintillator), MiniBooNE (oil, Cerenkov)

with near and far detector: MINOS (steel-scintillator), NOvA (liquid scint.), K2K (KEK to Super-K), T2K (J-PARC to Super-K)

Neutrino Oscillation Parameters

$$
\sin^2 \theta_{12} = 0.307 \pm 0.013
$$

\n
$$
\Delta m_{21}^2 = (7.53 \pm 0.18) \times 10^{-5} \text{ eV}^2
$$

\n
$$
\sin^2 \theta_{32} = 0.558 \pm 0.015
$$

\n
$$
\Delta m_{32}^2 = 0.002455 \pm 0.000028 \text{ eV}^2
$$

\n
$$
\sin^2 \theta_{13} = 0.0219 \pm 0.0007
$$

\n
$$
\delta = 1.19 \pm 0.22 \pi \text{ rad}
$$

Two mixing angles large, one small. CP violating phase depends on assumption about hierarchy of neutrino masses.

Neutrino Masses

Many experiments, only upper limits so far.

Best current upper limit on anti-electron neutrino mass:

Katrin Exp.: m_{ν} < 0.8 eV