4. Discovery of the Higgs boson and its properties

Recap: Higgs couplings

$$v^{2} = \frac{1}{\sqrt{2}G_{F}} = \frac{4m_{W}^{2}}{g^{2}} = (246.22\,\text{GeV})^{2}$$

$$\Gamma(H \to f\bar{f}) = \frac{CG_F m_f^2 M_H}{4\pi\sqrt{2}} \left(1 - 4\frac{m_f^2}{M_H^2}\right)^{\frac{3}{2}}$$

Two additional effective couplings:

M. E. Peskin, MITP Summer School 2018

The decay widths of the Higgs boson will depend on the Higgs boson mass, but, once this is known, the widths can be computed precisely.

F. Gianotti: "Thank you, Nature."

Direct Higgs searches at LEP

Higgs bremsstrahlung

ve,e

W,Z

Vector boson fusion (suppressed)

Mass sensitivity limited by center-of-mass energy: $m_H \approx \sqrt{s_{\text{max}}} - m_Z \approx 205 \,\text{GeV} - m_Z \approx 114 \,\text{GeV}$

Higgs decay channels analyzed: $H \rightarrow bb$

Some interesting events but at the end nothing seen! Confidence level for lower limit for signal: At 95% CL (0.05): $m_H > 114,4$ GeV

Searches at Tevatron: no significant signal.

Large Hadron Collider

8 arcs (octants,2450 m): **23 arc cells (FODO)** FODO: 2 Quadrupoles + 6 dipoles + multipoles

Beam parameters:

C = 26659 m $n_b = 2808 / beam$ $N_b = 1,15 \cdot 10^{11}$ $I_B = 0,54 \text{ A} / beam$ $\pi \epsilon = 1.68 \times 10^{-9} \text{ rad m}$ $\beta^* = 0.55 (0.33) \text{ m}$ L = $10^{34} \text{ cm}^{-2} \text{ s}^{-1}$

RF Cavities: 8 per beam
400.8 MHz
2 MV per cavity (5 MV/m field)
→ 16 MV in total

Live display of machine status: https://op-webtools.web.cern.ch/vistar/

ATLAS Detector

Proton-proton scattering

Slide: H.C Schultz-Coulon

Proton-proton scattering

Slide: H.C Schultz-Coulon

Higgs production at LHC: pp @ 7 and 13.6 TeV

Strongest contribution from gluon-gluon fusion:

The other production processes can be important to search for Higgs decays with large background: associated signatures \rightarrow background reduction

Higgs cross section in comparison

e.g.: ATLAS Trigger (Run 1)

The "easy" Higgs decay channels

 $H \rightarrow ZZ^* \rightarrow 4\ell$

 $H \rightarrow \gamma \gamma$

Higgs signals in 2012

Higgs signals as presented in Moriond 2024

For discovery also important: $\ \mbox{H} \rightarrow \mbox{WW} \rightarrow \mbox{I} \nu \ \mbox{I} \nu$

Huge background from pp \rightarrow WW. Interesting experimental detail to reduce backgrounds: Higgs is a scalar \rightarrow 2 leptons are very close.

$H \rightarrow bb$: large signal but extremely large background

Use associated VH production: Reconstruct V: $W \rightarrow I_{\nu}$, $Z \rightarrow II$, and $Z_{\nu\nu}$ Use b-jet-tagging (displaced 2nd vertex)

Higgs mass:

Resolution (%) of reconstructed Higgs mass:

		-
$H \rightarrow ZZ \rightarrow 4I$	1-2	
$H \to gg$	1-2	
$H \rightarrow WW \rightarrow 2l2v$	20	
$H \rightarrow tau tau$	15	
$H \to bb$	10	1

(taken from C. Paus)

Recent 4I measurement from CMS: $m_{H} = 125.04 \pm 0.11_{stat} \pm 0.05_{syst} \text{ GeV}$

(most precise single measurement)

Reference: see J.-B. de Vivie, Moriond 2024

115

120

m₄ (GeV)

125

130

135

140

110

105

Higgs production cross section: $H \rightarrow \gamma \gamma$

ATLAS, 10.1007/JHEP08(2022)027

 $\sigma_{\text{fid}} = 67 \pm 5 \text{ (stat.)} \pm 4 \text{ (sys.)} \text{ fb}$ SM: 64±5 fb

$$\sigma(pp \rightarrow H) = (58 \pm 4_{stat} \pm 4_{syst}) \text{pb}$$

$$\sigma(pp \rightarrow H)_{SM} = (55.6 \pm 2.7) \text{pb}$$

Higgs production cross section $pp \rightarrow H \rightarrow ZZ \rightarrow 4I$

CMS, arXiv:2103.04956v

$$\sigma_{\rm fid} = 2.84^{+0.34}_{-0.31} = 2.84^{+0.23}_{-0.22} \,({
m stat})^{+0.26}_{-0.21} \,({
m syst}) \,{
m fb}$$

$$\sigma_{\rm fid}^{\rm SM} = 2.84 \pm 0.15 \, {\rm fb}.$$

U.Uwer

$$\sigma(pp \rightarrow H) = (52.3 \pm 6.7) \text{pb}$$

 $\sigma(pp \rightarrow H)_{SM} = (55.6 \pm 2.7) \text{pb}$

84

Measurement of Higgs total widths $\Gamma_{\rm H}$

Direct measurement difficult because of experimental errors of many contributions. Also need assumptions on invisible decay with Γ_{inv} .

 \rightarrow Instead study "off-shell" Higgs production, i.e.

$$\frac{d\sigma(i \to H^{(*)} \to f)}{d\hat{s}} \sim \frac{g_i^2 g_f^2}{(\hat{s} - m_H^2) + m_H^2 \Gamma_H^2} \quad \text{with} \quad \hat{s} \gg m_H$$

Breit-Wigner Resonanz

Higgs cross section "off-shell", i.e. $\hat{s} \gg m_{H}$ Higgs cross section "on-shell"

$$\sigma(i \to H^{(*)} \to f) \sim \frac{g_i^2 g_f^2}{\Gamma_H} \sim \mu_{on} \qquad \sigma(i \to H^{(*)} \to f) \sim g_i^2 g_f^2 \sim \mu_{on} \Gamma_{Hig}$$

Often used parameter: production strength

$$\sigma(i \to H^{(*)} \to f) \sim g_i^2 g_f^2 \sim \mu_{on} \Gamma_{Higgs}$$

 $\mu_{on,off} = \frac{\sigma(i \to H^{(*)} \to f)}{\sigma(i \to H^{(*)} \to f)}$

Measurement of on- and off-shell contribution allows determination of
$$\Gamma_{\text{higss}}$$

<u>Studied Higgs decay:</u> Vector boson pair production $H \rightarrow ZZ$

But: in addition to Higgs amplitudes, there are electroweak background processes which need to be considered, e.g.

 H^2 + interference + C^2

Experimentally studies Z-decays: (1) $ZZ \rightarrow \ell^+ \ell^- \ell^+ \ell^-$ (2) $ZZ \rightarrow \ell^+ \ell^- \nu \overline{\nu}$

Additional complication: Beside gluon fusion there is also vector boson fusion.

Theoretical predictions:

CMS; Nature Physics 2022, arXiv:2202.06923

Extraction of Γ_{Higgs}

CMS; Nature Physics 2022, arXiv:2202.06923

CMS 2023: $\Gamma = 2.9 + 1.9 - 1.4 \text{ MeV}$ ATLAS 2018: $\Gamma = 4.5 + 3.0 - 2.5 \text{ MeV}$

Constraints from Higgs production on 4th generation:

Presence of additional heavy quarks will increase the effective ggH coupling by a large factor, i.e. we would expect an enhanced Higgs production rate at the LHC w/r to the Standard Model rate.

Observed Higgs rate excludes the existence of a heavy 4th generation of quarks. Cancellation of triangle anomalies requires the same number of lepton and quark families:

Higgs results establish the existence of only four sequential generations of fermion.

Higgs Couplings to Fermions and Bosons

e.g. $H \rightarrow \mu\mu$ coupling

Measurement of Higgs couplings to light Fermions is most difficult.

Categorization based on special selection for each production mode: CMS used Neural Network to enhance signal / background ratio.

CMS:

Signal strength $H \rightarrow \mu\mu$ $\mu = 1.19^{+0.40}_{-0.39}$ (stat.) $^{+0.15}_{-0.14}$ (syst.)

Branching fraction: $0.8 \times 10^{-4} < BR(H \rightarrow \mu\mu) < 4.5 \times 10^{-4}$ (95%CL) SM BR = 2.18×10^{-4}

Triple Higgs Coupling and Double Higgs Production

Higgs self coupling relevant for the form of Higgs potential:

$$V = \frac{m_h^2}{2}h^2 + \lambda_3 vh^3 + \frac{1}{4}\lambda_4 h^4 \qquad \lambda_3^{\rm SM} = \lambda_4^{\rm SM} = \frac{m_h^2}{2v^2} \qquad \qquad \kappa_\lambda = \lambda_3 \big/ \lambda_{3,\rm SM} \big/ \lambda_3 \big$$

Triple Higgs coupling can be tested in double Higgs production:

Beside the gluon fusion contribution also contributions from associated production.

The following HH final-states are considered: bbbb, $bb\tau\tau$, bbWW, $\gamma\gamma bb$, $\gamma\gamma\gamma WW$, and WWWW, where bbbb has largest branching fraction

However, through loop corrections there is also dependency of the single Higgs production on the triple Higgs vertex:

ATLAS results on triple Higgs couplings

ATLAS, Physics Letters B 843 (2023) 137745

Combination assumption	Obs. 95% CL	Exp. 95% CL	Obs. value $^{+1\sigma}_{-1\sigma}$
HH combination	$-0.6 < \kappa_\lambda < 6.6$	$-2.1 < \kappa_{\lambda} < 7.8$	$\kappa_{\lambda} = 3.1^{+1.9}_{-2.0}$
Single-H combination	$-4.0 < \kappa_{\lambda} < 10.3$	$-5.2 < \kappa_\lambda < 11.5$	$\kappa_{\lambda} = 2.5^{+4.6}_{-3.9}$
HH+H combination	$-0.4 < \kappa_{\lambda} < 6.3$	$-1.9 < \kappa_{\lambda} < 7.6$	$\kappa_{\lambda} = 3.0^{+1.8}_{-1.9}$
HH+H combination, κ_t floating	$-0.4 < \kappa_{\lambda} < 6.3$	$-1.9 < \kappa_{\lambda} < 7.6$	$\kappa_{\lambda} = 3.0^{+1.8}_{-1.9}$
<i>HH</i> + <i>H</i> combination, κ_t , κ_V , κ_b , κ_τ floating	$-1.4 < \kappa_{\lambda} < 6.1$	$-2.2 < \kappa_{\lambda} < 7.7$	$\kappa_{\lambda} = 2.3^{+2.1}_{-2.0}$

Hardly any sensitivity yet.

Triple Higgs Coupling at High-Lumi LHC 3000 fb⁻¹ (Run 1+2: ~190 fb⁻¹)

Oberservation of double Higgs productuion

