
CP-Violation 
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Recap:

• CP transformation is the combination of parity transformation (P) and 
charge conjugation (C).

• CP violation was discovered in 1964 in the system of neutral K-mesons 
by Christenson, Cronin, Fitch, Turlay where it occurs in the mixing of K0

and K0 (effect only ~10-3)

• Many years later, also direct CPV has been discovered in the decay of 
neutral kaons (even smaller effect ~10-6).  

• More recently CPV has been discovered in neutral B-mesons (B0
d in 

2001, and Bs mesons – very large effect O(10-20%)) and more recently 
(2019) also in neutral D mesons (small).



CP-Violation in Standard Model
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In the Standard Model CP violation can arise from 3 different sources:

• in the quark (hadron) sector via the CKM matrix

• for massive neutrinos via the  PMNS matrix (the neutrino mixing 
matrix, analogue to CKM matrix)

• strong interaction allow a CP violating θ-term to the Lagrangian

with the dual field strength tensor 
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A non –zero value of θ would imply CP-violation and would lead to 
an electric dipole moment of the neutron. Experimental bounds on 
the  neutron EDM limits θ<10-10. No convincing mechanism for the 
absence of θ has been established so far: strong CP problem.
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Baryon Asymmetry
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CP violation together with a departure from thermal equilibrium and the 
violation of Baryon number conservation are necessary conditions for the 
Baryon Asymmetry of the Universe (BAU).

Conditions formulated by Andrei Sakharov in 1967



Quark Mixing Matrix 
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Weak and mass eigenstates of the quarks differ – described by the quark mixing 
(Cabibbo-Kobayashi-Maskawa CKM) matrix: 

Complex, unitary matrix 
with 3+1 free parameters: 
Often chosen as 3 mixing 
angles and 1 phase

L
id L

jujiV CKM matrix elements only 
enter in the weak charged 
currents (neutral currents are 
flavor diagonal).

Unitarity of matrix : ij ik jki
V V δ∗ =∑ ij kj ikj

V V δ∗ =∑



Wolfenstein Parametrization
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The structure of the matrix cannot be predicted. 
From data we find that the matrix has a hierarchical structure 
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which is very well reflected by the Wolfenstein parametrization:
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λ, A, ρ, η with λ= 0.22 ≈|Vub|×e-iγ

≈|Vtd|×e-iβ
(exact definition of  β and γ - see below)



CP Violating Phase
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Remark: For 2 quark generations the mixing is described by the  real 2x2
Cabibbo matrix  → no CP violation! To explain CPV in the SM 
Kobayashi and Maskawa have predicted a third quark generation. 

CP (T) violation ∗≠⇔ jiji VV

i.e. complex elements

But: Absolut phases not observable, and what about rephrasing of CKM matrix?



CP Violating Invariants
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Independent of a specific parameter choice or a possible rephasing of the CKM 
matrix is the so called Jarlskog invariant:  

Unitarity condition: ij ik jki
V V δ∗ =∑ leads to 6 triangle equations in the 

complex plane. The most important relation for experimental tests is:

0=++ ∗∗∗

tbtdcbcdubud VVVVVV

Angles and sides experimentally  accessible using B decays, 
All sides have similar length ~A λ3 - other triangles are squashed.
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“The Unitarity triangle”
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(Division by Vcd Vcb*)
Rescaled unitarity condition

The definition of the 
angle are invariant 
under rephasing. 

The area of all 
unitarity triangles is   

2
CPJ

Invariant under 
rephasing of the 
CKM matrix →
measureable



Mixing of neutral mesons
The quark mixing results into several interesting “loop” effects:                 
Standard Model predicts at loop-level: Flavor Changing Neutral Currents 

Mixing present 
in neutral 
mesons: bsBbdBcuDsdKP
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(forbidden at tree-level)

Mixing of neutral mesons, e.g.:
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Mixing Phenomenology
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Off – diagonal elements describe the mixing.

Non-hermitian → P0 and P0 decay 



Mixing Phenomenology
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+π

−π

„long distant, on-shell states“

„short distant, virtual states“

for K0 very important, for B0 small
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Mass eigenstates
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The mass (physical) states Pa and Pb are usually labeled by the 
properties which distinguish them the best:

Mass eigenstates are obtained by diagonalizing the matrix:

For p = q = 1/√2:    Pa = P1 (CP +) , Pb = P2 (CP -) are  CP  eigenstates! 

• lifetime for kaons:  KS and KL (short and long)
• mases for the B mesons: BH and BL (heavy and light)
• CP values for D mesons:  D1 and D2 (assuming no direct CPV)



Neutral Mesons K0, D0, B0, Bs
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Labeling of physical states: heavy/light, short/long, CP-even/CP-odd

Parameter:   ( )1
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Mixing of neutral mesons
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Example:   Bd
0 Mesons  ∆Γ=ΓH - ΓL ≈ 0   → simplifies mixing formulae

Use time evolution of BH, BL and insert into B0 and B0 …. with some algebra



B0-B0 Mixing - illustration
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Simplification for

Mixing 
asymmetry
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Measurement of Bd
0 - Mixing  

B0

B0
-1ps0061051560 .. ±=∆ dm

Phys. Lett. B 719 (2013) 318.



Bs-Mixing
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∆ms = 17.7656± 0.0057 ps-1

(Bs oscillation is  much faster than Bd because Vts >> Vtd )



Theoretical predictions ∆m for B mesons
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u quark is very small – can be neglected

122Mm ≈∆

= Loop-function = result of box diagram. ( )22
0 Wt mmS

BB fB2 = non-perturbative hadronic effects  
ηB = perturbative QCD corrections
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Question: What happens if quarks have the same mass?

Bs:    (V*tsVtb)2 ∼ λ4 about ×20 larger
2
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Unitarity makes the mixing diagram to vanish!



CP Violation in meson decays

19

CP violation in mesons is linked to the CKM 
phases in the transition amplitude.

But: All observable quantities are in general 
“squares” of the amplitudes. Phases do not 
lead easily to observable effects (absolute 
phases are not observable!) 

Only phase differences are observable 
via interference effects: At lease two 
interfering amplitudes are required to 
observe a phase difference related to a 
CKM phase and to study CP violation:

The interference term should be a 
product of 4 matrix elements. 

(see part I)

General remarks:



CP Violation in meson decays
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Observation of CP violation needs at least two amplitudes with different 
weak (sign flip under CP) and different strong (invariant under CP) 
amplitudes: 

11
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Problem: The strong phases are a result of interactions 
between the hadronic final state particles → difficult to calculate

CPV:



CP Violation in meson decays
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The observed CP violating effects in meson decays are usually classified 
in the following way:

(I) CPV in decay:

This implies

( ) ( )P f P fΓ → ≠ Γ →

1( )
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e.g.:
( ) ( )0 0B K B Kπ π+ − − +Γ → ≠ Γ →

( ) ( )B DK B DK+ + − −Γ → ≠ Γ →

In charged mesons where no mixing is possible, CPV in decay is the only 
possible type of CPV which can occur.

Interference between b→u
tree amplitudes  and so 
called penguin amplitudes 
with different weak and 
strong phased



Direct CP Violation in B decays
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B0 → K+ π- B0 → K- π+
PRL 110 (2013) 221601

ACP = 8.1 ± 0.8 %

(direct CPV is a huge effect in B decays)



Indirect CP Violation
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(II) CPV in mixing:
( ) ( )0 0 0 0P P P P→ ≠ →P P

This implies 1q
p

≠ (see the mixing equation section 3)

While for B-mesons
CPV in mixing is the dominating effect for kaons  

6 51 10 10 1( ... )q p − −= + ≈O
310( )−O

(III) CPV in interference between a decay w/ and w/o mixing:

→ time-dependent effect (see below) 
→ No effect in time integrated measuremts!

Can only occur if                           . I.e. if either q/p or the amplitude ratio has 

a non-trivial phase.
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Reminder:

CP violation in mixing:   Discovery of CPV in K0 decays  

Kaon ,ass eigenstates assuming no CP violation (p=q, no direct CPV):

One can show that the 2π final state has always CP=+1:
The observation of  KL (CP=-) → ππ (CP=-) thus violates CP.

Decay:   KL → 3π CP= -

Decay:    KL → 2π CP=+

Decays 
obey CP



First Observation of CP Violation
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Christenson, Cronin, Fitch, Turlay, 1964

π

π

ϑKL

1 2p p+
 

KL is not a pure K2 state.

( )1221

1 KKKL ε
ε

−
+

=

1−=CP 1= +

This is equivalent with |p/q| ≠ 1

Explanation

Remark: Experiment was not done to discover 
CPV but to study unususal “regeneration”. 
CPV was nor easily accepted by community: 
difference between a world and a anti-world!



Today’s Knowledge
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After 35 years of kaon physics:
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(Direct CPV)
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i.e. there is also  small  a very 
small (10-6) direct CP violation.

Origin of CPV in kaon mixing:

0P
0P

Off-shell weak 
box-diagrams

On-shell real states: 
P0 → X→ P0



Experimental Test of the Unitarity Triangle
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http://ckmfitter.in2p3.fr

, from B  mixingtd
s d

td

V
V

Impressive confirmation of the CKM paradigm of the Standard Model: 
Main source of the observed CP violation in mesons is the quark mixing.

Question: Are there contributions from new (unknown) physical effects?
→ rare FCNC decays are excellent testbeds (active research)



CP Violation in Mesons – Final Remarks
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CP Violating effects all depend on JCP (Jarlskog invariant) and should 
therefore be in the same order in the Standard Model. The observable 
asymmetries = ratio between CP violating to CP conserving quantities are 
enhanced for suppressed quantities.  Observable CP asymmetries are in 
general larger in B decays  than in kaon: 
→ B decays have smaller CKM couplings (suppressed compared to kaons), 

sizable contributions from Vub and Vtd possible

To exhibit a CP violating phase the interference term must involve at least 4 
different CKM matrix elements (see definition of JCP).

• Below the charm threshold on-shell processes cannot violate CP as only 
Vud and Vus are involved (no phases).

• CPV in Kaon sector only through virtual processes to which also heavier 
quarks can contribute: K0 mixing diagrams or penguin decays. 
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