Statistical Methods in Particle Physics

4. Monte Carlo Methods

Heidelberg University, WS 2023/24
Klaus Reygers, Martin Völkl (lectures)
Ulrich Schmidt, (tutorials)

Monte Carlo method

- Any method which solves a problem by generating suitable random numbers
- Useful for obtaining numerical solutions to problems which are too complicated to solve analytically
- The most common application of the Monte Carlo method is Monte Carlo integration
- Pioneers
- Enrico Fermi
- Stanislaw Ulam
- John von Neumann
- Nicholas Metropolis
https://en.wikipedia.org

Enrico Fermi

Stanislaw Ulam

J. von Neumann

N. Metropolis

[^0]
Monte Carlo method: Examples

[from Bohm, Zech: Introduction to Statistics and Data Analysis for Physicists]

- Area of a circle
- Volume of the intersection of a cone and a torus
- Hard to solve analytically
- Easy to solve by scattering points homogeneously inside a cuboid containing the intersect
- Efficiency of particle detection with a scintillator
- Produced photons are reflected at the surfaces and sometime absorbed

- Almost impossible to calculate analytically for different parameters like incident angle, particle energy, ...
- Monte Carlo simulation is the only sensible approach
- Complicated function $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, what is the marginal $f_{j}\left(x_{j}\right)=\int \ldots \int f \mathrm{~d} x_{1} \ldots \mathrm{~d} x_{j-1} \mathrm{~d} x_{j+1} \ldots \mathrm{~d} x_{n} ?$

These problems are easy if we can just sample from the relevant distributions.

Pseudo-random numbers

- Principle: Use insignificant digits of an operation to generate next number
- choose large integers λ and $m, \lambda<m$
- choose integer $n_{0}<m$ ("seed")
- uniformly distributed random numbers r_{i} :

$$
\begin{aligned}
n_{i+1} & =\lambda n_{i} \bmod m \\
r_{i} & =n_{i} / m, \quad r_{i} \in[0,1]
\end{aligned}
$$

"Multiplicative linear congruential algorithm" (period at maximum m-1)

- Mersenne twister
- Invented 1997 by M. Matsomoto and T. Nishimura
- Sequence repeats after 2^{19937} calls, i.e., never ...
- Quality checks
- Frequency of occurrence
- Plot correlations between
consecutive random numbers

Bohm, Zech:
http://www-library.desy.de/preparch/books/vstatmp_engl.pdf

Random Numbers from distributions: Inverse transform method

Consider a distribution f from which we want to draw random numbers.
Let $u(r)$ be the uniform distribution in [0, 1]:

$$
\int_{-\infty}^{x} f\left(x^{\prime}\right) \mathrm{d} x^{\prime}=\int_{0}^{r(x)} u\left(r^{\prime}\right) \mathrm{d} r^{\prime}=r(x)
$$

With $F(x)=$ cumulative distr.:

$$
F(x)=r
$$

We get the random number x from the inverse of the cumulative distribution:

$$
x(r)=F^{-1}(r)
$$

Example I

Linear function:

$$
\begin{aligned}
& f(x)=2 x, \quad 0 \leq x \leq 1 \\
& F(x)=x^{2} \quad \rightarrow \quad x=\sqrt{r}
\end{aligned}
$$

Exponential:

$$
\begin{aligned}
& f(x)=\gamma e^{-\gamma x}, \quad x \geq 0 \\
& F(x)=1-e^{-\gamma x} \quad \rightarrow \quad x=-\frac{\ln (1-r)}{\gamma}
\end{aligned}
$$

One can store $F(x)$ as a histogram if there is no analytical solution, cf. root's GetRandom() function:

```
root [0] TF1 f("f", "x^3/(exp(x)-1)", 0., 15.);
root [1] cout << f.GetRandom() << endl;
13.9571
```


Box-Muller algorithm for creating Gaussian distributed random numbers

1. Generate two uniformly distributed random numbers u_{1} and u_{2} in the range $[0,1]$
2. Set

$$
\phi=2 \pi u_{1}, \quad r=\sqrt{-2 \ln u_{2}}
$$

3. Then

$$
z_{1}=r \cos \phi \quad \text { and } \quad z_{2}=r \sin \phi
$$

are two independent rv's following a standard normal distribution

Why?

$$
\begin{aligned}
& u_{2}(r)=e^{-\frac{r^{2}}{2}} \\
& \frac{d p}{d r}=\frac{d p}{d u_{2}} \cdot\left|\frac{d u_{2}}{d r}\right|=e^{-\frac{r^{2}}{2}} r
\end{aligned}
$$

$$
d p=\frac{1}{2 \pi} e^{-\frac{r^{2}}{2}} r d r d \phi=\frac{1}{2 \pi} e^{-\frac{z_{1}^{2}+z_{2}^{2}}{2}} d z_{1} d z_{2}
$$

Inverse transform method using histograms in Python

```
def get_random(f, xmin, xmax, n_samples):
    """Generate n_samples random numbers within range [xmin, xmax]
    from arbitrary continuous function f
    using inverse transform sampling
    """
    # number of points for which we evaluate F(x)
    n.bins = 10000
    # indefinite integral F(x), normalize to unity at xmax
    x = np.linspace(xmin, xmax, nbins+1)
    F = integrate.cumtrapz(f(x), x, initial=0)
    F = F / F[-1]
    # interpolate F^{-1} and evaluate it for
    # uniformly distributed rv's in [0,1[
    inv_F = interpolate.interpld(F, x, kind="quadratic")
    r = np.random.rand(n_samples)
    return inv_F(r)
```

[random numbers from distribution.ipynb]

Example II: Uniform points on a sphere

$$
\frac{\mathrm{d} p}{\mathrm{~d} \Omega}=\frac{\mathrm{d} p}{\sin \theta \mathrm{~d} \theta \mathrm{~d} \phi}=\mathrm{const} \equiv k \quad \frac{\mathrm{~d} p}{\mathrm{~d} \theta \mathrm{~d} \phi}=k \sin \theta \equiv f(\phi) g(\theta)
$$

Distributions for θ and ϕ :

$$
\begin{aligned}
& f(\phi) \equiv \frac{\mathrm{d} p}{\mathrm{~d} \phi}=\mathrm{const}=\frac{1}{2 \pi}, \quad 0 \leq \phi \leq 2 \pi \\
& g(\theta) \equiv \frac{\mathrm{d} p}{\mathrm{~d} \theta}=\frac{1}{2} \sin \theta, \quad 0 \leq \theta \leq \pi
\end{aligned}
$$

Calculating the inverse of the cumulative distribution we obtain:

$$
\begin{aligned}
& \phi=2 \pi r_{1} \\
& \theta=\arccos \left(1-2 r_{2}\right) \quad\left[\operatorname{as} G(\theta)=\frac{1}{2}(1-\cos \theta)\right]
\end{aligned}
$$

Upshot: ϕ and $\cos \theta$ need to be distributed uniformly

Random numbers from distributions: Acceptance-rejection method

- Idea:
- Create flat distribution in x,y
- Use points below function value
- X values are distributed like the distribution
- Algorithm
- Generate random number x uniformly between a and b
- Generate another number $y \in[0,1]$
- For some number A larger than the maximum of the function: accept if $y<f(x) / A$
- Repeat many times

Random numbers from distributions: Acceptance-rejection method (II)

- The efficiency of this algorithm can be quite small (e.g. long, small tails)
- Find another distribution p_{m} that is easy to sample, and where $f_{m}=\alpha p_{m}$ is always larger than the target distribution for some α
- This is called a majorant
- Now sample from p_{m} and accept points with the condition $y<f(x) / f_{m}(x)$
- (Example: $\sin ^{2}\left(c_{1} x\right) \exp \left(-c_{2} x\right)$ is hard to sample from, but the majorant $\exp \left(-c_{2} x\right)$ is easy to sample)

Importance Sampling

- Almost the same as accept-reject
- Instead of accepting point with probability $f(x) / f_{m}(x)$, always accept, but with weight

$$
w=f(x) / f_{m}(x)
$$

- Comparison function does not need to be a majorant

The curse of dimensionality

Trapezoidal rule in one dimension

- accuracy improves as $1 / n^{2}$ with the number of points

Monte Carlo integration in d dimensions:

- Averages, fractions from independent points all scale with $1 / \sqrt{n}$
- n is accepted number of points

Trapezoidal rule in d dimension:

- accuracy improves as $1 / n^{2 / d}$ with the number of points
- for $d>4$ the dependence on n is better for MC integration
- (However, fraction of accepted points tend to lower a bit with higher dimensions)
same as in 1d case
For multidimensional integrals MC integration outperforms other numerical integration methods

Metropolis-Hastings algorithm (1)

Bayesian inference often involves marginalization of a high-dimensional posterior distribution:

$$
P\left(\theta_{0} \mid \text { data }\right)=\int P\left(\theta_{0}, \theta_{1}, \ldots, \theta_{n} \mid \text { data }\right) d \theta_{1} \ldots d \theta_{n}
$$

Typically, the integral cannot be solved in closed form. Moreover, repeated onedimensional integration becomes inefficient ("curse of dimensionality").

Idea: sample distribution many times and consider only parameter of interest.
Method: Markov Chain Monte Carlo (MCMC)
MCMC has revolutionized Bayesian analysis.
A sequence of random numbers is a Markov chain if the probability of the next number only depends on the previous one:

$$
f\left(x_{n+1} \mid x_{n}, x_{n-1}, \ldots, x_{0}\right)=f\left(x_{n+1} \mid x_{n}\right)
$$

Metropolis-Hastings algorithm (2)

Goal: sample from a distribution $f(\vec{x})$ known up to a normalization constant.
Take initial \vec{x}_{0} with $f\left(\vec{x}_{0}\right)>0$ and repeat the following steps many times:

1. Generate candidate \vec{y} according to proposal distribution $q\left(\vec{y} \mid \vec{x}_{k}\right)$
2. Generate uniformly distributed random number r in $[0,1]$ and set

$$
\vec{x}_{k+1}= \begin{cases}\vec{y}, & \text { if } r \leq \alpha\left(\vec{x}_{k}, \vec{y}\right) \\ \vec{x}_{k}, & \text { otherwise }\end{cases}
$$

where

$$
\alpha(\vec{x}, \vec{y})=\min \left\{1, \frac{f(\vec{y}) q(\vec{x} \mid \vec{y})}{f(\vec{x}) q(\vec{y} \mid \vec{x})}\right\}
$$

$\alpha(\vec{x}, \vec{y})$ is called the acceptance probability.

Metropolis-Hastings algorithm (3)

- The algorithm generates a correlated sequence of points (not suited for many applications, but okay for marginalization)
- If a finite initial sequence of points is discarded, the remaining points can be shown to follow $f(\vec{x})$
- Not easy to figure out when the sequence has started to converge to $f(\vec{x})$
- The proposal function $q(\vec{y} \mid \vec{x})$ can be almost anything. Often, a multidimensional Gaussian is used.
- Often the proposal function is symmetric, i.e., $q(\vec{y} \mid \vec{x})=q(\vec{x} \mid \vec{y})$. Then the acceptance probability reduces to

$$
\alpha(\vec{x}, \vec{y})=\min \left\{1, \frac{f(\vec{y})}{f(\vec{x})}\right\}
$$

and a step to a higher $f(\vec{y})$ is always taken.

- Original Metropolis algorithm suggested symmetric proposal functions, Hastings modified original rules by using non-symmetric functions.

Example

Figure 1.5: A starting point is chosen.

$$
x_{\text {old }}=x_{\text {start }}=3
$$

$$
p=-4
$$

$$
x_{\text {new }}=x_{\text {old }}+p=-1
$$

$$
\rho=\min \left(1, \frac{f\left(x_{\text {new }}\right)}{f\left(x_{\text {old }}\right)}\right)=\min (1,3.75)=1
$$

$$
u=0.9
$$

$$
\rho>u \Rightarrow \text { accept }
$$

Figure 1.6: For $f\left(x_{\text {new }}\right)>f\left(x_{\text {old }}\right)$ the step is always accepted.

$$
x_{o l d}=-1
$$

$$
p=2.5
$$

$x_{\text {new }}=x_{\text {old }}+p=1.5$
$\rho=\min \left(1, \frac{f\left(x_{\text {new }}\right)}{f\left(x_{\text {old }}\right)}\right)=\min (1,0.81)=0.81$ $u=0.4$
$\rho>u \Rightarrow$ accept

$$
x_{o l d}=1.5
$$

$$
p=-3.5
$$

$$
x_{\text {new }}=x_{\text {old }}+p=-2
$$

$$
\rho=\min \left(1, \frac{f\left(x_{\text {new }}\right)}{f\left(x_{\text {old }}\right)}\right)=\min (1,0.75)=0.75
$$

$$
u=0.8
$$

$$
\rho<u \Rightarrow \text { reject }
$$

Figure 1.8: For $\rho<u$ the step is rejected.

$$
\begin{aligned}
x_{\text {old }} & =1.5 \\
p & =-1.5 \\
x_{\text {new }} & =x_{\text {old }}+p=0 \\
\rho & =\min \left(1, \frac{f\left(x_{\text {new }}\right)}{f\left(x_{\text {old }}\right)}\right)=\min (1,1.45)=1 \\
u & =0.6 \\
\rho & >u \Rightarrow \text { accept }
\end{aligned}
$$

Figure 1.9: For $\rho>u$ the step is accepted again.

- Each step only depends on the previous point

Figure 1.7: For $f\left(x_{\text {new }}\right)<f\left(x_{\text {old }}\right)$ it depends on u whether a step is accepted.

Metropolis-Algorithm Example 2

- Random-walk-like behaviour
- More time is spent in regions of high probability
- True distribution:

MCMC marginals

- With sampling, marginals become trivially easy: Just take the distribution of the coordinate
- Means and variances are estimated by the means and variances of the sampled points

Properties of MCMCs

- Next position depends on current one - samples are not uncorrelated
- But after a few steps they essentially are
- As long as all parts of the distribution are reachable by the steps, the result will always converge to the true distribution
- But this can take a long time
- If the algorithm starts at a point of very low probability, then these initial points take a long time to become unimportant for e.g. averages
- Ignore some of the initial steps - the "burn-in" - for faster convergence

A difficult example

- Thin distributions can make it difficult for the walker to traverse the distribution
- Small steps: many iterations to go around
- Large steps: most steps lead out of the ring and are rejected
- Many types of MCMC algorithms are developed to deal with difficult distributions, high dimensions, improve convergence etc.

The distribution is constant on the ring and 0 elsewhere

The Gibbs-sampler

- Useful if we can sample easily from the conditional probability (keeping all coordinates except for one fixed)
, e.g. $p\left(x_{j} \mid x_{1}, x_{2}, \ldots, x_{j-1}, x_{j+1}, \ldots x_{n}\right)$
- Start sampling from $p\left(x_{1} \mid x_{2}, \ldots x_{n}\right)$ - new value x_{1}^{\prime}
- Now sample from $p\left(x_{2} \mid x_{1}^{\prime}, x_{3}, \ldots x_{n}\right)$
- Repeat for all variables, new position is \vec{x}^{\prime}
- No rejected steps
- Can move through distributions quickly
- Special case of the Metropolis-Hastings algorithm

Event Generators

- Imagine a likelihood for getting the measured detector signals based on a parameter of interest and a bunch of others:
- Consider all possible processes; all possible angles in multiple scattering, all fluctuations in detector signal
- Then integrate out all other variables
- Not viable
- Instead simplify:
- Tracking algorithms, detector signal reconstruction, track end event selections/ triggers
- Results in efficiencies - would still need to integrate over all processes and detector signals to find them
- Sampling from physics events and detector responses makes this easier ("Monte Carlo" generators/simulations)

Monte Carlo simulation I:

Event generators (Pythia, Sherpa, ...)

Examples: Pythia

- Simulation of pp and $\mathrm{e}^{+} \mathrm{e}^{-}$collision on quark and gluon level
- Hard and soft interactions, parton showers, fragmentation and particle decay
- Many applications
- Test underlying physics, e.g., perturbative QCD
- Calculate QCD background processes, e.g., in Higgs searches
- Calculation of detector efficiencies

Pythia

Output:

Four-vectors of of produced particles

I	particle/		KS	KF	orig	P_x	p_y	p_z	E	m
1	(u)	A	12	2	0	0.000	0.000	10.000	10.000	0.006
2	(ubar)	V	11	-2	0	0.000	0.000	-10.000	10.000	0.006
3	(string)		11	92	1	0.000	0.000	0.000	20.000	20.000
4	(rho+)		11	213	3	0.098	-0.154	2.710	2.856	0.885
5	(rho-)		11	-213	3	-0.227	0.145	6.538	6.590	0.781
6	pi+		1	211	3	0.125	-0.266	0.097	0.339	0.140
7	(Sigma0)		11	3212	3	-0.254	0.034	-1.397	1.855	1.193
8	($\mathrm{K} *+$)		11	323	3	-0.124	0.709	-2.753	2.968	0.846
9	$\mathrm{p}^{\sim}-$		1	-2212	3	0.395	-0.614	-3.806	3.988	0.938
10	pi-		1	-211	3	-0.013	0.146	-1.389	1.403	0.140
11	pi+		1	211	4	0.109	-0.456	2.164	2.218	0.140

Monte Carlo simulation II:

Detector simulation with GEANT

http://www.uni-muenster.de/Physik.KP/santo/thesis/diplom/kees
Calculation of detector response, reconstruction efficiencies, ...

Example:

Monte Carlo simulation III:
Treatment planning in radiation therapy

Intensity-Controlled Rasterscan Technique, Haberer et al., GSI, NIM A, 1993 Source: GSI

Codes

- GEANT 4
- FLUKA
-

...

[^0]: http://mathworld.wolfram.com/MonteCarloMethod.html

