Statistical Methods in Particle Physics

4. Monte Carlo Methods

Heidelberg University, WS 2023/24

Klaus Reygers, <u>Martin Völkl</u> (lectures) Ulrich Schmidt, (tutorials)

Monte Carlo method

- Any method which solves a problem by generating suitable random numbers
- Useful for obtaining numerical solutions to problems which are too complicated to solve analytically
- integration
- Pioneers
 - Enrico Fermi
 - Stanislaw Ulam
 - John von Neumann
 - Nicholas Metropolis

Enrico Fermi

http://mathworld.wolfram.com/MonteCarloMethod.html

The most common application of the Monte Carlo method is Monte Carlo

https://en.wikipedia.org

Stanislaw Ulam

J. von Neumann

N. Metropolis

Monte Carlo method: Examples

[from Bohm, Zech: Introduction to Statistics and Data Analysis for Physicists]

- Area of a circle
- Volume of the intersection of a cone and a torus
 - Hard to solve analytically
 - Easy to solve by scattering points homogeneously inside a cuboid containing the intersect
- Efficiency of particle detection with a scintillator
 - Produced photons are reflected at the surfaces and sometime absorbed
 - Almost impossible to calculate analytically for different parameters like incident angle, particle energy, ...
 - Monte Carlo simulation is the only sensible approach
- Complicated function $f(x_1, x_2, \dots, x_n)$, what is the marginal $f_j(x_j) = \int \dots \int f \, \mathrm{d}x_1 \dots \mathrm{d}x_{j-1} \, \mathrm{d}x_{j+1} \dots \mathrm{d}x_n$?

These problems are easy if we can just sample from the relevant distributions.

Pseudo-random numbers

- Principle: Use insignificant digits of an operation to generate next number
 - choose large integers λ and m, $\lambda < m$
 - choose integer $n_0 < m$ ("seed")
 - uniformly distributed random numbers r_i :

 $n_{i+1} = \lambda n_i \mod m$

 $r_i = n_i / m, \quad r_i \in [0, 1]$

"Multiplicative linear congruential algorithm" (period at maximum m - 1)

- Mersenne twister
 - Invented 1997 by M. Matsomoto and T. Nishimura
 - Sequence repeats after 2¹⁹⁹³⁷ calls, i.e., never ...
- Quality checks
 - Frequency of occurrence
 - Plot correlations between consecutive random numbers

Random Numbers from distributions: Inverse transform method

Consider a distribution *f* from which we want to draw random numbers. Let *u*(*r*) be the uniform distribution in [0, 1]:

$$\int_{-\infty}^{x} f(x') dx' = \int_{0}^{r(x)} u(r') dr' = r(x)$$

With F(x) = cumulative distr.:

F(x) = r

We get the random number *x* from the inverse of the cumulative distribution:

$$x(r) = F^{-1}(r)$$

Example I

Exponential:

One can store F(x) as a histogram if there is no analytical solution, cf. root's **GetRandom()** function:

> root [0] TF1 f("f", "x^3/(exp(x)-1)", 0., 15.); root [1] cout << f.GetRandom() << endl;</pre> 13.9571

Box-Muller algorithm for creating Gaussian distributed random numbers

1. Generate two uniformly distributed random numbers u_1 and u_2 in the range [0,1]

2. Set

$$\phi=2\pi u_1$$
 ,

3. Then

are two independent rv's following a standard normal distribution

Why?

$$u_{2}(r) = e^{-\frac{r^{2}}{2}}$$

$$dp = \frac{1}{2\pi}e^{-\frac{r^{2}}{2}}r dr d\phi = \frac{1}{2\pi}e^{-\frac{z_{1}^{2}+z_{2}^{2}}{2}} dz_{1} dz_{2}$$

$$dp = \frac{1}{2\pi}e^{-\frac{r^{2}}{2}}r dr d\phi = \frac{1}{2\pi}e^{-\frac{z_{1}^{2}+z_{2}^{2}}{2}} dz_{1} dz_{2}$$

$$dp = \frac{1}{2\pi}e^{-\frac{r^{2}}{2}}r dr d\phi = \frac{1}{2\pi}e^{-\frac{z_{1}^{2}+z_{2}^{2}}{2}} dz_{1} dz_{2}$$

$$dp = \frac{1}{2\pi}e^{-\frac{r^{2}}{2}}r dr d\phi = \frac{1}{2\pi}e^{-\frac{z_{1}^{2}+z_{2}^{2}}{2}} dz_{1} dz_{2}$$

$$dp = \frac{1}{2\pi}e^{-\frac{r^{2}}{2}}r dr d\phi = \frac{1}{2\pi}e^{-\frac{z_{1}^{2}+z_{2}^{2}}{2}} dz_{1} dz_{2}$$

$$dp = \frac{1}{2\pi}e^{-\frac{r^{2}}{2}}r dr d\phi = \frac{1}{2\pi}e^{-\frac{z_{1}^{2}+z_{2}^{2}}{2}} dz_{1} dz_{2}$$

$$dp = \frac{1}{2\pi}e^{-\frac{r^{2}}{2}}r dr d\phi = \frac{1}{2\pi}e^{-\frac{z_{1}^{2}+z_{2}^{2}}{2}} dz_{1} dz_{2}$$

$$dp = \frac{1}{2\pi}e^{-\frac{r^{2}}{2}}r dr d\phi = \frac{1}{2\pi}e^{-\frac{z_{1}^{2}+z_{2}^{2}}{2}} dz_{1} dz_{2}$$

$$dp = \frac{1}{2\pi}e^{-\frac{r^{2}}{2}}r dr d\phi = \frac{1}{2\pi}e^{-\frac{r^{2}}{2}}r dr d\phi$$

$$dp = \frac{1}{2\pi}e^{-\frac{r^{2}}{2}}r dr$$

$$dp = \frac{1}{$$

$$r = \sqrt{-2 \ln u_2}$$

 $z_1 = r \cos \phi$ and $z_2 = r \sin \phi$

Inverse transform method using histograms in Python

def get random(f, xmin, xmax, n samples): from arbitrary continuous function f using inverse transform sampling *II II II*

number of points for which we evaluate F(x)nbins = 10000

x = np.linspace(xmin, xmax, nbins+1) F = integrate.cumtrapz(f(x), x, initial=0) $\mathbf{F} = \mathbf{F} / \mathbf{F} [-1]$

interpolate F^{-1} and evaluate it for # uniformly distributed rv's in [0,1[inv F = interpolate.interpld(F, x, kind="quadratic") r = np.random.rand(n samples) return inv F(r)

[random numbers from distribution.ipynb]

```
"""Generate n samples random numbers within range [xmin, xmax]
```

```
# indefinite integral F(x), normalize to unity at xmax
```


Example II: Uniform points on a sphere

$$\frac{\mathrm{d}p}{\mathrm{d}\Omega} = \frac{\mathrm{d}p}{\sin\theta\,\mathrm{d}\theta\,\mathrm{d}\phi} = \mathrm{const} \equiv k$$

Distributions for θ and ϕ :

$$f(\phi) \equiv \frac{dp}{d\phi} = \text{const} = \frac{1}{2\pi}, \qquad 0 \le \phi \le 2\pi$$
$$g(\theta) \equiv \frac{dp}{d\theta} = \frac{1}{2}\sin\theta, \qquad 0 \le \theta \le \pi$$

Calculating the inverse of the cumulative distribution we obtain:

$$\phi = 2\pi r_1$$
$$\theta = \arccos(1 - 2r_2)$$

Upshot: ϕ and cos θ need to be distributed uniformly

$$\frac{\mathrm{d}p}{\mathrm{d}\theta\,\mathrm{d}\phi} = k\sin\theta \equiv f(\phi)g(\theta)$$

$$\left[\text{as } G(\theta) = \frac{1}{2}(1 - \cos \theta) \right]$$

Random numbers from distributions: Acceptance-rejection method

Idea:

- Create flat distribution in x,y
- Use points below function value
- X values are distributed like the distribution

Algorithm

- Generate random number x uniformly between *a* and *b*
- Generate another number $y \in [0,1]$
- For some number A larger than the maximum of the function: accept if y < f(x)/A
- Repeat many times

Statistical Methods in Particle Physics WS 2023/24 | K. Reygers, M. Völkl | 4. Monte Carlo Methods

Random numbers from distributions: Acceptance-rejection method (II)

- The efficiency of this algorithm can be quite small (e.g. long, small tails)
- Find another distribution p_m that is easy to sample, and where $f_m = \alpha p_m$ is always larger than the target distribution for some α
- This is called a *majorant*
- Now sample from p_m and accept points with the condition $y < f(x)/f_m(x)$

• (Example: $\sin^2(c_1x) \exp(-c_2x)$ is hard to sample from, but the majorant $exp(-c_2x)$ is easy to sample)

Statistical Methods in Particle Physics WS 2023/24 | K. Reygers, M. Völkl | 4. Monte Carlo Methods

Importance Sampling

- Almost the same as accept-reject
- Instead of accepting point with probability $f(x)/f_m(x)$, always accept, but with weight

 $w = f(x)/f_m(x)$

Comparison function does not need to be a majorant

Statistical Methods in Particle Physics WS 2023/24 | K. Reygers, M. Völkl | 4. Monte Carlo Methods

The curse of dimensionality

Trapezoidal rule in one dimension

accuracy improves as $1/n^2$ with the number of points

Monte Carlo integration in *d* dimensions:

- Averages, fractions from independent points all scale with $1/\sqrt{n}$
- *n* is accepted number of points

Trapezoidal rule in d dimension:

- accuracy improves as $1/n^{2/d}$ with the number of points
- for d > 4 the dependence on *n* is better for MC integration
- (However, fraction of accepted points tend to lower a bit with higher dimensions)

Metropolis-Hastings algorithm (1)

Bayesian inference often involves marginalization of a high-dimensional posterior distribution:

$$P(heta_0|\mathsf{data}) = \int P(heta)$$

Typically, the integral cannot be solved in closed form. Moreover, repeated onedimensional integration becomes inefficient ("curse of dimensionality").

Idea: sample distribution many times and consider only parameter of interest.

Method: Markov Chain Monte Carlo (MCMC)

MCMC has revolutionized Bayesian analysis.

A sequence of random numbers is a Markov chain if the probability of the next number only depends on the previous one:

$$f(x_{n+1}|x_n, x_{n-1})$$

Statistical Methods in Particle Physics WS 2023/24 | K. Reygers, M. Völkl | 4. Monte Carlo Methods

```
(\theta_0, \theta_1, \dots, \theta_n | \text{data}) d\theta_1 \dots d\theta_n
```

 $(x_{n+1}|x_n) = f(x_{n+1}|x_n)$

Metropolis-Hastings algorithm (2)

Goal: sample from a distribution $f(\vec{x})$ known up to a normalization constant.

Take initial \vec{x}_0 with $f(\vec{x}_0) > 0$ and repeat the following steps many times:

- 1. Generate candidate \vec{y} according to proposal distribution $q(\vec{y} \mid \vec{x}_k)$ 2. Generate uniformly distributed random number r in [0, 1] and set

$$\vec{x}_{k+1} = \begin{cases} \vec{y}, \\ \vec{x}_k, \end{cases}$$

where

 $\alpha(\vec{x}, \vec{y}) = \min \langle \langle \vec{x}, \vec{y} \rangle \rangle$

 $\alpha(\vec{x}, \vec{y})$ is called the acceptance probability.

- if $r \leq \alpha(\vec{x}_k, \vec{y})$
- otherwise

$$\left\{1, \frac{f(\vec{y}) q(\vec{x} \mid \vec{y})}{f(\vec{x}) q(\vec{y} \mid \vec{x})}\right\}$$

Metropolis-Hastings algorithm (3)

- The algorithm generates a correlated sequence of points (not suited for many) applications, but okay for marginalization)
- If a finite initial sequence of points is discarded, the remaining points can be shown to follow $f(\vec{x})$
- Not easy to figure out when the sequence has started to converge to $f(\vec{x})$
- The proposal function $q(\vec{y} \mid \vec{x})$ can be almost anything. Often, a multidimensional Gaussian is used.
- Often the proposal function is symmetric, i.e., $q(\vec{y} | \vec{x}) = q(\vec{x} | \vec{y})$. Then the acceptance probability reduces to

$$\alpha(\vec{x},\vec{y}) = \min\left\{1\right\}$$

and a step to a higher $f(\vec{y})$ is always taken.

Original Metropolis algorithm suggested symmetric proposal functions, Hastings modified original rules by using non-symmetric functions.

- $\left\{,\frac{f(\dot{y})}{f(\vec{x})}\right\}$

Statistical Methods in Particle Physics WS 2023/24 | K. Reygers, M. Völkl | 4. Monte Carlo Methods

Figure 1.5: A starting point is chosen.

$$x_{old} = x_{start} = 3$$

$$p = -4$$

$$x_{new} = x_{old} + p = -1$$

$$\rho = \min\left(1, \frac{f(x_{new})}{f(x_{old})}\right) = \min(1, 3.75) = 1$$

$$u = 0.9$$

$$\rho > u \Rightarrow \text{accept}$$

Figure 1.6: For $f(x_{new}) > f(x_{old})$ the step is always accepted.

 $x_{old} = -1$ p = 2.5 $x_{new} = x_{old} + p = 1.5$ $\rho = \min\left(1, \frac{f(x_{new})}{f(x_{old})}\right)$ $= \min(1, 0.81) = 0.81$ u = 0.4 $\rho > u \Rightarrow \mathbf{accept}$

Figure 1.7: For $f(x_{new}) < f(x_{old})$ it depends on u whether a step is accepted.

$$x_{old} = 1.5$$

$$p = -3.5$$

$$x_{new} = x_{old} + p = -2$$

$$\rho = \min\left(1, \frac{f(x_{new})}{f(x_{old})}\right) = \min(1, 0.75) = 0.75$$

$$u = 0.8$$

$$\rho < u \Rightarrow \mathbf{reject}$$

$$x_{old} = 1.5$$

$$p = -1.5$$

$$x_{new} = x_{old} + p = 0$$

$$\rho = \min\left(1, \frac{f(x_{new})}{f(x_{old})}\right) = \min(1, 1.45) = 1$$

$$u = 0.6$$

$$\rho > u \Rightarrow \mathbf{accept}$$

Figure 1.9: For $\rho > u$ the step is accepted again.

Each step only depends on the previous point

Metropolis-Algorithm Example 2

- Random-walk-like behaviour
- More time is spent in regions of high probability
- True distribution:

MCMC marginals

Properties of MCMCs

- Next position depends on current one samples are not uncorrelated
 - But after a few steps they essentially are
- As long as all parts of the distribution are reachable by the steps, the result will always converge to the true distribution
 - But this can take a long time
- If the algorithm starts at a point of very low probability, then these initial points take a long time to become unimportant for e.g. averages
 - Ignore some of the initial steps the "burn-in" for faster convergence

Statistical Methods in Particle Physics WS 2023/24 | K. Reygers, M. Völkl | 4. Monte Carlo Methods

A difficult example

- Thin distributions can make it difficult for the walker to traverse the distribution
 - Small steps: many iterations to go around
 - Large steps: most steps lead out of the ring and are rejected
- Many types of MCMC algorithms are developed to deal with difficult distributions, high dimensions, improve convergence etc.

The distribution is constant on the ring and 0 elsewhere

Statistical Methods in Particle Physics WS 2023/24 | K. Reygers, M. Völkl | 4. Monte Carlo Methods

The Gibbs-sampler

- Useful if we can sample easily from the conditional probability (keeping all coordinates except for one fixed)
 - e.g. $p(x_j | x_1, x_2, ..., x_{j-1}, x_{j+1}, ..., x_n)$
- Start sampling from $p(x_1 | x_2, ..., x_n)$ new value x'_1
- Now sample from $p(x_2 | x'_1, x_3, \dots, x_n)$
- Repeat for all variables, new position is \vec{x}'
 - No rejected steps
 - Can move through distributions quickly
- Special case of the Metropolis-Hastings algorithm

Statistical Methods in Particle Physics WS 2023/24 | K. Reygers, M. Völkl | 4. Monte Carlo Methods

Event Generators

- parameter of interest and a bunch of others:
 - Consider all possible processes; all possible angles in multiple scattering, all fluctuations in detector signal
 - Then integrate out all other variables
 - Not viable
- Instead simplify:
 - Tracking algorithms, detector signal reconstruction, track end event selections/ triggers
 - Results in efficiencies would still need to integrate over all processes and detector signals to find them
- Sampling from physics events and detector responses makes this easier ("Monte Carlo" generators/simulations)

Imagine a likelihood for getting the measured detector signals based on a

Monte Carlo simulation I: Event generators (Pythia, Sherpa, ...)

Examples: Pythia

- Simulation of pp and e+e- collision on quark and gluon level
- Hard and soft interactions, parton showers, fragmentation and particle decay
- Many applications
- Test underlying physics, e.g., perturbative QCD

- Calculate QCD background processes, e.g., in Higgs searches
- Calculation of detector efficiencies

Pythia

Output: Four-vectors of of produced particles

Event listing (summary)

Ι	particle/	jet	KS	KF	orig	p_x	р_у	p_z	E	m
1	(u)	A	12	2	0	0.000	0.000	10.000	10.000	0.006
2	(ubar)	V	11	-2	0	0.000	0.000	-10.000	10.000	0.006
3	(string)		11	92	1	0.000	0.000	0.000	20.000	20.000
4	(rho+)		11	213	3	0.098	-0.154	2.710	2.856	0.885
5	(rho-)		11	-213	3	-0.227	0.145	6.538	6.590	0.781
6	pi+		1	211	3	0.125	-0.266	0.097	0.339	0.140
7	(SigmaO)		11	3212	3	-0.254	0.034	-1.397	1.855	1.193
8	(K*+)		11	323	3	-0.124	0.709	-2.753	2.968	0.846
9	p~-		1	-2212	3	0.395	-0.614	-3.806	3.988	0.938
10	pi-		1	-211	3	-0.013	0.146	-1.389	1.403	0.140
11	pi+		1	211	4	0.109	-0.456	2.164	2.218	0.140

Monte Carlo simulation II: Detector simulation with GEANT

http://www.uni-muenster.de/Physik.KP/santo/thesis/diplom/kees

Calculation of detector response, reconstruction efficiencies, ...

Example: electromagnetic shower

> incident electron (red)

Monte Carlo simulation III: Treatment planning in radiation therapy

Intensity-Controlled Rasterscan Technique, Haberer et al., GSI, NIM A, 1993

Source: GSI

- GEANT 4
- FLUKA
- • •

