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Monte Carlo method

■ Any method which solves a problem by generating suitable random 
numbers 

■ Useful for obtaining numerical solutions to problems which are too 
complicated to solve analytically 

■ The most common application of the Monte Carlo method is Monte Carlo 
integration 

■ Pioneers 
‣ Enrico Fermi 
‣ Stanislaw Ulam 
‣ John von Neumann 
‣ Nicholas Metropolis
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http://mathworld.wolfram.com/MonteCarloMethod.html

Enrico Fermi Stanislaw Ulam J. von Neumann N. Metropolis

https://en.wikipedia.org
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Monte Carlo method: Examples

■ Area of a circle 
■ Volume of the intersection of a cone and a torus 
‣ Hard to solve analytically 
‣ Easy to solve by scattering points homogeneously inside a 

cuboid containing the intersect 
■ Efficiency of particle detection with a scintillator 
‣ Produced photons are reflected at the surfaces and 

sometime absorbed 
‣ Almost impossible to calculate analytically for different 

parameters like incident angle, particle energy, … 
‣ Monte Carlo simulation is the only sensible approach  

■ Complicated function , what is the marginal 

 ?

f(x1, x2, …, xn)

fj(xj) = ∫ …∫ f dx1…dxj−1 dxj+1…dxn
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[from Bohm, Zech: Introduction to Statistics and Data Analysis for Physicists]

These problems are easy if 
we can just sample from the 
relevant distributions.

http://www-library.desy.de/preparch/books/vstatmp_engl.pdf
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Pseudo-random numbers
■ Principle: Use insignificant digits of an 

operation to generate next number 
‣ choose large integers λ and m,  λ < m 
‣ choose integer n0 < m (“seed”)  
‣ uniformly distributed random numbers ri:
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5.2 Generation of Statistical Distributions 111

Fig. 5.1. Correlation plot of consequtive random numbers (top) and frequency of random
numbers (bottom).

In the following we use the notations u for the uniform distribution and r for
a uniformly distributed variate in the interval [0, 1]. Other univariate distributions
f(x) are obtained by variable transformations r(x) with r a monotone function of x
(see Chap. 3):

f(x)dx = u(r)dr,
∫ x

−∞
f(x′)dx′ =

∫ r(x)

0
u(r′)dr′ = r(x),

■ Mersenne twister 
‣ Invented 1997 by M. Matsomoto 

and T. Nishimura 
‣ Sequence repeats after 219937 

calls, i.e., never …
■ Quality checks 
‣ Frequency of occurrence 
‣ Plot correlations between 

consecutive random numbers
Bohm, Zech: 
http://www-library.desy.de/preparch/books/vstatmp_engl.pdf

“Multiplicative linear congruential algorithm“ 
(period at maximum m – 1)

ni+1 = �ni mod m

ri = ni/m, ri 2 [0, 1]
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Random Numbers from distributions: Inverse transform method

5

112 5 Monte Carlo Simulation

Fig. 5.2. The p.d.f (top) follows from the distribution function as indicated by the arrows.

F (x) = r,

x(r) = F−1(r) .

The variable x is calculated from the inverse function F−1 where F (x) is the
distribution function which is set equal to r. For an analytic solution the p.d.f. has
to be analytically integrable and the distribution function must have an inverse in
analytic form.

The procedure is explained graphically in Fig. 5.2: A random number r between
zero and one is chosen on the ordinate. The distribution function (or rather its
inverse) then delivers the respective value of the random variable x.

In this way it is possible to generate the following distributions by simple variable
transformation from the uniform distribution:

• Linear distribution:

f(x) = 2x 0 ≤ x ≤ 1 ,

x(r) =
√
r .

• Power-law distribution:

f(x) = (n+ 1)xn 0 ≤ x ≤ 1, n > −1 ,

x(r) = r1/(n+1) .

• Exponential distribution (Sect. 3.6.6) :

Consider a distribution f from which 
we want to draw random numbers. 
Let u(r) be the uniform distribution in 
[0, 1]:

xZ

�1

f (x 0) dx 0 =

r(x)Z

0

u(r 0) dr 0 = r(x)

With F(x) = cumulative distr.: 

F (x) = r

We get the random number x from the 
inverse of the cumulative distribution:

x(r) = F�1(r)
dp

dx
=

dp

dr|{z}
=1

dr

dx
=

dF (x)

dx
= f (x) ⇤

Cross check:

Bohm, Zech: 
http://www-library.desy.de/preparch/books/vstatmp_engl.pdf
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Example I
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Linear function: f (x) = 2x , 0  x  1

F (x) = x2 ! x =
p
r

Exponential: f (x) = �e��x , x � 0

F (x) = 1� e��x ! x = � ln(1� r)

�

One can store F(x) as a histogram if there is no analytical solution, cf. root's 
GetRandom() function:

root [0] TF1 f("f", "x^3/(exp(x)-1)", 0., 15.); 
root [1] cout << f.GetRandom() << endl; 
13.9571 
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Box-Muller algorithm for creating Gaussian 
distributed random numbers
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1. Generate two uniformly distributed random numbers u1 and u2 in  
    the range [0,1]

2. Set
� = 2⇡u1, r =

p
�2 ln u2

3. Then
z1 = r cos� and z2 = r sin�

are two independent rv’s following a standard normal distribution

Why?

dp

dr
=

dp

du2
· |du2

dr
| = e�

r2

2 r 2d standard normal 
distribution in polar 
coordinates

2d standard normal 
distribution in cartesian 
coordinates

dp =
1

2⇡
e�

r2

2 r dr d� =
1

2⇡
e�

z21+z22
2 dz1 dz2u2(r) = e�

r2

2
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Inverse transform method using histograms in Python
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Random numbers from an arbitrary distribution
K. Reygers, 2020, inspired by https://tmramalho.github.io/blog/2013/12/16/how-to-do-inverse-transformation-sampling-in-scipy-and-
numpy/

In [45]: import numpy as np 
import matplotlib.pyplot as plt 
import scipy.interpolate as interpolate 
import scipy.integrate as integrate 

In [46]: # Bosetype distribution 
def f(x): 
    # return 0 if x = 0 
    num = x**3 
    den = np.exp(x)  1 
    return np.divide(num, den, out=np.zeros_like(num), where=den!=0) 

In [47]: def get_random(f, xmin, xmax, n_samples): 
    """Generate n_samples random numbers within range [xmin, xmax]  
    from arbitrary continuous function f 
    using inverse transform sampling  
    """ 
     
    # number of points for which we evaluate F﴾x﴿ 
    nbins = 10000 
     
    # indefinite integral F﴾x﴿, normalize to unity at xmax  
    x = np.linspace(xmin, xmax, nbins+1) 
    F = integrate.cumtrapz(f(x), x, initial=0) 
    F = F / F[1] 
     
    # interpolate F^{1} and evaluate it for  
    # uniformly distributed rv's in [0,1[ 
    inv_F = interpolate.interp1d(F, x, kind="quadratic") 
    r = np.random.rand(n_samples) 
    return inv_F(r) 

In [48]: from scipy import integrate 
ran = get_random(f, 0., 10., 100000) 
plt.hist(ran, bins = 100, histtype='step', density=True); 
x = np.linspace(0, 10, 1000) 
norm, norm_err = integrate.quad(f, 0., 10.) 
plt.plot(x, 1/norm * f(x)); 

[random_numbers_from_distribution.ipynb]

https://nbviewer.jupyter.org/urls/www.physi.uni-heidelberg.de/~reygers/lectures/2020/smipp/random_numbers_from_distribution.ipynb
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Example II: Uniform points on a sphere
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dp

d✓ d�
= k sin ✓ ⌘ f (�)g(✓)

dp

d⌦
=

dp

sin ✓ d✓ d�
= const ⌘ k

f (�) ⌘ dp

d�
= const =

1

2⇡
, 0  �  2⇡

g(✓) ⌘ dp

d✓
=

1

2
sin ✓, 0  ✓  ⇡

� = 2⇡r1

✓ = arccos(1� 2r2) [as G (✓) =
1

2
(1� cos ✓)]

Distributions for θ and φ:

Calculating the inverse of the cumulative distribution we obtain:

Upshot: φ and cos θ need to be distributed uniformly
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Random numbers from distributions: Acceptance-rejection method

■ Idea:  
‣ Create flat distribution in x,y 
‣ Use points below function value 
‣ X values are distributed like the distribution 

■ Algorithm 
‣ Generate random number x uniformly 

between a and b 
‣ Generate another number  
‣ For some number A larger than the maximum 

of the function: accept if  
‣ Repeat many times

y ∈ [0,1]

y < f(x)/A

10
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■ The efficiency of this algorithm can be quite 
small (e.g. long, small tails) 

■ Find another distribution  that is easy to 
sample, and where  is always larger 
than the target distribution for some  

■ This is called a majorant 

■ Now sample from  and accept points with 
the condition  

■ (Example:  is hard to 
sample from, but the majorant  is 
easy to sample)

pm
fm = αpm

α

pm
y < f(x)/fm(x)

sin2(c1x) exp(−c2x)
exp(−c2x)
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Random numbers from distributions: Acceptance-rejection method (II)
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■ Almost the same as accept-reject 
■ Instead of accepting point with probability 

, always accept, but with weight  

 
■ Comparison function does not need to be a 

majorant

f(x)/fm(x)

w = f(x)/fm(x)

12

Importance Sampling
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The curse of dimensionality
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https://en.wikipedia.org/wiki/Trapezoidal_rule

Trapezoidal rule in one dimension 
‣ accuracy improves as  with the number of points1/n2

Monte Carlo integration in d dimensions: 
‣ Averages, fractions from independent points all scale 

with  

‣  is accepted number of points

1/ n

n

Trapezoidal rule in d dimension: 
‣ accuracy improves as 1/n2/d with the number of points 
‣ for d > 4 the dependence on n is better for MC integration 
‣ (However, fraction of accepted points tend to lower a bit with 

higher dimensions)
For multidimensional integrals 
MC integration outperforms 
other numerical integration 
methods

same as in 1d case
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Metropolis-Hastings algorithm (1)

Bayesian inference often involves marginalization of a high-dimensional posterior 
distribution:

14

P(✓0|data) =
Z

P(✓0, ✓1, ..., ✓n|data) d✓1...d✓n

Typically, the integral cannot be solved in closed form. Moreover, repeated one-
dimensional integration becomes inefficient (“curse of dimensionality”).

Idea: sample distribution many times and consider only parameter of interest.

Method: Markov Chain Monte Carlo (MCMC)

A sequence of random numbers is a Markov chain if the probability of the next 
number only depends on the previous one:

f (xn+1|xn, xn�1, ..., x0) = f (xn+1|xn)

MCMC has revolutionized Bayesian analysis.
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Metropolis-Hastings algorithm (2)

15

Goal: sample from a distribution  known up to a normalization constant. f( ⃗x)

1. Generate candidate  according to proposal distribution  

2. Generate uniformly distributed random number  in [0, 1] and set 

	 	  

where 

	 	  

 is called the acceptance probability. 

⃗y q( ⃗y | ⃗xk)
r

⃗xk+1 = { ⃗y, if r ≤ α( ⃗xk, ⃗y)
⃗xk, otherwise

α( ⃗x, ⃗y) = min {1,
f( ⃗y) q( ⃗x | ⃗y)
f( ⃗x) q( ⃗y | ⃗x) }

α( ⃗x, ⃗y)

Take initial  with  and repeat the following steps many times:⃗x0 f( ⃗x0) > 0
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Metropolis-Hastings algorithm (3)
■ The algorithm generates a correlated sequence of points (not suited for many 

applications, but okay for marginalization) 
■ If a finite initial sequence of points is discarded, the remaining points can be 

shown to follow  

■ Not easy to figure out when the sequence has started to converge to  

■ The proposal function  can be almost anything. Often, a multi-
dimensional Gaussian is used. 

■ Often the proposal function is symmetric, i.e., . Then the 
acceptance probability reduces to 

	 	  

and a step to a higher  is always taken. 

■ Original Metropolis algorithm suggested symmetric proposal functions, 
Hastings modified original rules by using non-symmetric functions. 

f( ⃗x)
f( ⃗x)

q( ⃗y | ⃗x)

q( ⃗y | ⃗x) = q( ⃗x | ⃗y)

α( ⃗x, ⃗y) = min {1,
f( ⃗y)
f( ⃗x) }

f( ⃗y)

16
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Example

■ Each step only depends on the previous 
point

17
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Metropolis-Algorithm Example 2

■ Random-walk-like 
behaviour 

■ More time is spent in 
regions of high probability 

■ True distribution:

18
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MCMC marginals

■ With sampling, marginals become trivially easy: 
Just take the distribution of the coordinate 

■ Means and variances are estimated by the 
means and variances of the sampled points

19
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Properties of MCMCs

■ Next position depends on current one - samples 
are not uncorrelated 
‣ But after a few steps they essentially are 

■ As long as all parts of the distribution are reachable 
by the steps, the result will always converge to the 
true distribution 
‣ But this can take a long time 

■ If the algorithm starts at a point of very low 
probability, then these initial points take a long time 
to become unimportant for e.g. averages 
‣ Ignore some of the initial steps - the “burn-in” - for 

faster convergence

20
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A difficult example

■ Thin distributions can make it difficult for the 
walker to traverse the distribution 
‣ Small steps: many iterations to go around 
‣ Large steps: most steps lead out of the ring 

and are rejected 
■ Many types of MCMC algorithms are 

developed to deal with difficult distributions, 
high dimensions, improve convergence etc.
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The Gibbs-sampler

■ Useful if we can sample easily from the 
conditional probability (keeping all coordinates 
except for one fixed) 

‣ e.g.  

■ Start sampling from  - new value 
 

■ Now sample from  

■ Repeat for all variables, new position is  
‣ No rejected steps 
‣ Can move through distributions quickly 

■ Special case of the Metropolis-Hastings 
algorithm

p(xj |x1, x2, …, xj−1, xj+1, …xn)

p(x1 |x2, …xn)
x′ 1

p(x2 |x′ 1, x3, …xn)
⃗x′ 
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Event Generators

■ Imagine a likelihood for getting the measured detector signals based on a 
parameter of interest and a bunch of others: 
‣ Consider all possible processes; all possible angles in multiple scattering, all 

fluctuations in detector signal 
‣ Then integrate out all other variables 
‣ Not viable 

■ Instead simplify: 
‣ Tracking algorithms, detector signal reconstruction, track end event selections/

triggers 
‣ Results in efficiencies - would still need to integrate over all processes and 

detector signals to find them 
■ Sampling from physics events and detector responses makes this easier 

(“Monte Carlo” generators/simulations)

23
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Monte Carlo simulation I: 
Event generators (Pythia, Sherpa, …)

24

Examples: Pythia 
‣ Simulation of pp and e+e– collision 

on quark and gluon level 
‣ Hard and soft interactions, parton 

showers, fragmentation and particle 
decay 

‣ Many applications 
- Test underlying physics, e.g.,  

perturbative QCD 
- Calculate QCD background 

processes, e.g., in Higgs searches 
- Calculation of detector efficiencies
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Pythia 
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&ISTUP(MAXNUP),MOTHUP(2,MAXNUP),ICOLUP(2,MAXNUP),PUP(5,MAXNUP),

&VTIMUP(MAXNUP),SPINUP(MAXNUP)

3.5 Getting Started with the Simple Routines

Normally Pythia is expected to take care of the full event generation process. At times,

however, one may want to access the more simple underlying routines, which allow a large

flexibility to ‘do it yourself’. We therefore start with a few cases of this kind, at the same

time introducing some of the more frequently used utility routines.

As a first example, assume that you want to study the production of uu 2-jet systems

at 20 GeV energy. To do this, write a main program

IMPLICIT DOUBLE PRECISION(A-H, O-Z)

CALL PY2ENT(0,2,-2,20D0)

CALL PYLIST(1)

END

and run this program, linked together with Pythia. The routine PY2ENT is specifically

intended for storing two entries (partons or particles). The first argument (0) is a command

to perform fragmentation and decay directly after the entries have been stored, the second

and third that the two entries are u (2) and u (−2), and the last that the c.m. energy of

the pair is 20 GeV, in double precision. When this is run, the resulting event is stored in

the PYJETS common block. This information can then be read out by you. No output is

produced by PY2ENT itself, except for a title page which appears once for every Pythia

run.

Instead the second command, to PYLIST, provides a simple visible summary of the

information stored in PYJETS. The argument (1) indicates that the short version should be

used, which is suitable for viewing the listing directly on an 80-column terminal screen. It

might look as shown here.

Event listing (summary)

I particle/jet KS KF orig p_x p_y p_z E m

1 (u) A 12 2 0 0.000 0.000 10.000 10.000 0.006

2 (ubar) V 11 -2 0 0.000 0.000 -10.000 10.000 0.006

3 (string) 11 92 1 0.000 0.000 0.000 20.000 20.000

4 (rho+) 11 213 3 0.098 -0.154 2.710 2.856 0.885

5 (rho-) 11 -213 3 -0.227 0.145 6.538 6.590 0.781

6 pi+ 1 211 3 0.125 -0.266 0.097 0.339 0.140

7 (Sigma0) 11 3212 3 -0.254 0.034 -1.397 1.855 1.193

8 (K*+) 11 323 3 -0.124 0.709 -2.753 2.968 0.846

9 p~- 1 -2212 3 0.395 -0.614 -3.806 3.988 0.938

10 pi- 1 -211 3 -0.013 0.146 -1.389 1.403 0.140

11 pi+ 1 211 4 0.109 -0.456 2.164 2.218 0.140

– 48 –

Output: 
Four-vectors of of produced particles
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Monte Carlo simulation II: 
Detector simulation with GEANT

26

Example: 
electromagnetic shower

leadglass calorimeter

incident electron 
(red)

http://www.uni-muenster.de/Physik.KP/santo/thesis/diplom/kees

photons (blue)Calculation of detector response, 
reconstruction efficiencies, …

http://geant4.cern.ch/
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Monte Carlo simulation III: 
Treatment planning in radiation therapy

27D. Ondreka, GSI EPAC 2008, Genova 6

Rasterscan MethodRasterscan Method

Medical Requirements:
• High dose conformality
• Steep lateral fall-off
• Minimal treatment time

Treatment System:
• Lateral scanning with

fast scanning magnets
• Intensity control

Accelerator:
• Variation of energy,

focus and intensity
• High stability over spill
• High spill duty factor
• Spill interruptions

Intensity-Controlled Rasterscan Technique, Haberer et al., GSI, NIM A,1993

Source: GSI

Codes 
‣ GEANT 4 
‣ FLUKA 
‣ …
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