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Deductive Reasoning

All ravens are black. 
This is a raven. 

Therefore it is black.
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Deductive Reasoning II

All ravens are black. 
This animal is not black. 

Therefore it is not a raven.
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Inductive Reasoning

This animal is black. 
This animal is a raven. 

Therefore all ravens are black.
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Inductive Reasoning II

Animal 1 is a black raven. 
Animal 2 is a black raven. 
Animal 3 is a black raven. 

 

Therefore all ravens are black.

⋮
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The problem of induction

■ How can we draw general conclusions based on individual observations? 
■ If a law always held in the past does this mean it must hold in the future? (Hume) 
‣ Logic says, such conclusions are invalid. 
‣ What does it mean to do science then? 

Karl Popper: 
■ We cannot prove hypotheses, but we can disprove them (deductive) 
■ Make hypotheses falsifiable, then attempt to find observations that contradict them. 
■ Hypotheses, which are easy to falsify, but where repeated attempts have not done 

so have a higher status. 

■ Occams razor: Everything else being equal, prefer simpler hypotheses. 
■ It is somewhat more difficult to say what falsification means in the presence of 

measurement uncertainties

6

Karl Popper  
(1902–1994)

source: Wikipedia
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The scientific method

Karl Popper: 
■ Find falsifiable hypotheses and try to disprove them 
Thomas Kuhn: 
■ Actual science works differently. 
■ Periods of continuity, then paradigm shift, not necessarily from better 

description of data 
Paul Feyerabend: 
■ Having one single scientific method would inhibit scientific progress 
■ “Anything goes” - Scientists should pursue any course that seems 

interesting to them 

■ If so: How to differentiate science and pseudoscience? 
■ Science has made definite progress in the past

7
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The scientific method II

■ No generally agreed upon definition of “scientific method” 
■ General properties of scientific inquiry: 
■ Governed by rational arguments 
■ Includes hypotheses that should be self consistent and are usually 

formulated in mathematical language 
■ Models/Theories should make testable predictions 
■ Observations can test or motivate hypothesis 
■ Cannot arbitrarily discard evidence 
■ Honesty in reasoning 
■ Discussion, peer review, criticism, adaptation of ideas 
■ Progress happens by some kind of consensus 

■ Not very satisfying. But no solution in this lecture.

8

e.g. There is No Scientific Method, Lee Smolin

https://bigthink.com/articles/there-is-no-scientific-method/
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Occam’s razor

■ Prefer simpler hypotheses to more complex ones 
■ "Entities are not to be multiplied without necessity” 
■ "Whenever possible, substitute constructions out of known entities for inferences to 

unknown entities.”- Bertrand Russell 
■ Often useful for guidance, but vague

9

Bayesian inference contains a form of Occam’s 
razor: 
■ Consider two hypotheses with 1 and 2 

unknown parameters, each with total probability 
 

■ Prior probability spread out across more 
dimensions in second case -> likelihood 
removes more of it 

■ Marginal for left hypothesis will be much higher 
afterwards

0.5
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Inductive Reasoning III

Animal 1 is a black raven. 
Animal 2 is a black raven. 
Animal 3 is a black raven. 

 

Therefore it becomes more plausible that all ravens are black.

⋮
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Probability as an extension of logic

Basic idea: 
■ Induction is not valid logical reasoning 
■ It it what we do in science 
■ Therefore scientific reasoning is not based on (Aristotelian) logic 

■ Understanding by Laplace, Bayes, Jeffreys 
■ Later also Cox, Jaynes and others

11

"Probability theory is 
nothing but common sense 
reduced to calculation.” - 
Pierre-Simon Laplace
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Cox Axioms

Axiom 1: 
Degrees of plausibility are represented by real numbers
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Meaning: 
■ P(A) is the plausibility of statement A 
■ P(A|B) is the plausibility of A assuming B 
■ P(A,B|C) are the plausibility of A AND B assuming C 
■ P(A)>P(B) means that A is more plausible than B
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Cox Axioms

Axiom 2: 
Qualitative correspondence with common sense

13

■ If P(A|C’)>P(A|C), then also P( |C’)<P( |C)Ā Ā
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Cox Axioms

Axiom 3: 
All reasoning must happen consistently

14

■ Logically equivalent statements are equally plausible 
■ If there are several ways to reason out a conclusion, they must all lead to the 

same result 
■ Information may not be ignored; all reasoning is nonideoligical
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Cox Axioms

1. Degrees of plausibility are represented by real numbers 
2. Qualitative correspondence with common sense  
3. All reasoning must happen consistently

15

This results in a class of equivalent solutions. One of them has the properties: 
– A true statement is represented by , a false statement is represented by  

–  (sum rule) 
–  (product rule) 

In this approach, probability theory extends logic. Inductive reasoning becomes Bayesian 
inference. 
We do not prove or disprove hypotheses, but change our state of knowledge about them.

P(A) = 1 P(A) = 0
P(A) + P(Ā) = 1
P(A, B) = P(A |B) ⋅ P(B)

Jaynes, 2003



Does a case of the hypothesis support the hypothesis?

(Hempels paradox)
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3.1 Error Propagation
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Evaluating Estimator Performance
Consistency: 
■ Does the estimate converge to the true value? 

 

Bias: 
■ Does the average of many measurements converge 

towards the true value? Otherwise: bias  
 

Efficiency: 
■ How small is the uncertainty for a given amount of data 

and how fast does it decrease with ? 
Robustness: 
■ Does the estimator still work if we are slightly wrong 

about the assumptions of the data (e.g. in the presence 
of rare outliers)?

lim
n→∞

̂θ = θ

b
E[ ̂θ] = θ

n
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The measured time on a stopwatch may be 
affected by the reaction time of the experimenter, 
giving a bias
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Minimum Variance Estimators

■ Variance and bias of an estimator are often a tradeoff 
‣ E.g. just guessing a single fixed value has 0 variance, but definitely a bias. 

■ One optimisation: Allow only unbiased estimators, then try to minimise 
variance. 

■ The result is called the minimum variance unbiased estimator (MVUE) 
■ Can be hard to find 
■ Often quite useful; sometime a lower variance can be a good tradeoff for some 

bias 
■ Subtracting the (estimated) bias of an estimator can transform it into an 

(approximately) unbiased one

19
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Reminder: Frequentist and Bayesian Uncertainties

■ Uncertainty: Standard deviation of estimator 
fluctuations when repeating experiment a 
number of times

20

Frequentist Bayesian

■ Uncertainty: Standard deviation of posterior 
probability distribution of parameter
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Ways to quote uncertainties

21

An uncertainty σ represents some kind of probability distribution 
(often a Gaussian, if not stated otherwise)

If no further information is given the interval x ± σ corresponds to a  
one standard deviation. In the Gaussian approximation this contains a 
probability of 68% ("1σ errors")
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Error propagation is simple and difficult

22

Frequentist Bayesian

■ We start with an unbiased estimator for . Now 
find an unbiased estimator for . Estimate the 
variance of the new estimator. 

But: 
■ Very difficult in practice. 

■ Would rather just use the estimator 

a
b

b̂ = f( ̂a)

■ We start with a probability distribution  for 
. Now transform this into a probability 

distribution for  with 
 

But: 
■ Can be very difficult to calculate 
■ The inverse may not have a simple analytical 

form

pa(a)
a

b
pb(b) = pa( f −1(b)) |Jb→a |

Assume we want to go from variable  to variable a b = f(a)

Easy conceptually, difficult to calculate  Usually much easier to approximate the result→
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Linear error propagation: Sometimes applicable …

23

Function sufficiently linear within ±σ: linear error propagation applicable 

■ We know that the transformation 
 does not change the 

speed of the variable 
■ We know that scaling  changes 

the variance by a factor  
■ This is true for both the distribution of 

the estimator and the posterior 

■ If  is a linear function, then  
■ If the function is close to linear in the 

places where it is of interest to us, the 
transformation can be approximated 

setting 

x → x + Δx

x → αx
α2

f σb = |α |σa

σb =
df
da

σa
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Linear error propagation: Sometimes not applicable …

24

In this situation linear error propagation is not applicable 

Left and right side 
transformed differently
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Linear error propagation (general case)

25

Consider a measurement of values xi and their covariances:

~x = (x1, x2, ..., xn) Vij = cov[xi , xj ]

Let y be a function of the xi: y = f (~x)

What is the variance of y?

Approach: Taylor expansion of y around      where ~µ µi = E [xi ]

In practice we estimate μi 
by measured value xi

V [y ] ⌘ �2
y = E [y2]� E [y ]2
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Linear error propagation formula

26

y(~x) ⇡ y(~µ) +
nX

i=1


@y

@xi

�

~x=~µ

(xi � µi )Taylor expansion:

E[y] is easy: E [y ] ⇡ y(~µ) as E [xi � µi ] = 0

E [y2(~x)] ⇡ y2(~µ) + 2y(~µ)
nX

i=1


@y

@xi

�

~x=~µ

E [xi � µi ]

+ E

2

4
 

nX

i=1


@y

@xi

�

~x=~µ

(xi � µi )

!0

@
nX

j=1


@y

@xj

�

~x=~µ

(xj � µj)

1

A

3

5

= y2(~µ) +
nX

i ,j=1


@y

@xi

@y

@xj

�

~x=~µ

Vij

E[y2]:

Thus: �2
y =

nX

i ,j=1


@y

@xi

@y

@xj

�

~x=~µ

Vij
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Matrix notation

27

Let vector A be given by ~A = ~ry , i.e., Aj =

✓
@y

@xj

◆

~x=~µ

Then:

y =
x1
x2

, A =

✓
1/x2

�x1/x22

◆
Example:

�2
y =

✓
1

x2
,� x1

x22

◆✓
�2
1 cov[x1, x2]

cov[x1, x2] �2
2

◆ 1
x2

� x1
x2
2

!

=

✓
1

x2
,� x1

x22

◆ �2
1

x2
� x1

x2
2
cov[x1, x2]

1
x2
cov[x1, x2]� x1

x2
2
�2
2

!
=

1

x22
�2
1 +

x21
x42

�2
2 � 2

x1
x32

cov[x1, x2]

!
�2
y

y2
=

�2
1

x21
+

�2
2

x22
� 2

cov[x1, x2]

x1x2
=

�2
y

y2
=

�2
1

x21
+

�2
2

x22
� 2

⇢�1�2

x1x2

�2
y =

nX

i ,j=1


@y

@xi

@y

@xj

�

~x=~µ

Vij = ATV A
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Linear error proportion: Examples

28

y = x1 + x2 ! �2
y = �2

1 + �2
2 + 2cov[x1, x2]

y = x1x2 !
�2
y

y2
=

�2
1

x21
+

�2
2

x22
+ 2

cov[x1, x2]

x1x2

y = xn !
�2
y

y2
= n2

�2
x

x2
i.e.

�y

y
= |n|�x

x

y = ax ! �2
y = a2�2

x i.e. �y = |a|�x

Sanity checks:
Average of fully correlated  
measurements:

y =
1

2
(x1 + x2) , �1 = �2 ⌘ �, ⇢ = 1  �y = �

Difference of fully correlated  
measurements:

y = x1 � x2, �1 = �2 ⌘ �, ⇢ = 1

 �2
y = 2�2 � 2�2 = 0

y = x1 � x2 ! �2
y = �2

1 + �2
2 � 2cov[x1, x2]

Adding variables means the 
absolute errors add in quadrature.

Multiplying variables means the 
relative errors add in quadrature.
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Concrete example: Momentum resolution in tracking

29

20 

Momentum resolution 

L 

generally in experiment measure pt 

multiple scattering 
term conts. in pt 

track uncertainty ≈ pt 

Charged particle moving in constant 
magnetic field:

pT/GeV = 0.3⇥ B/Tesla⇥ R/m

Measurements of space points yields 
Gaussian uncertainty for sagitta s  
which is related to pT as

R =
L2

8s
, pT = 0.3B

L2

8s

Momentum resolution:

Important features: 
‣ Relative momentum uncertainty proportional 

to momentum 
‣ Relative uncertainty prop. to uncertainty of 

coordinate measurement

✓
�pT

pT

◆2

= 0.0012 + (0.0005pT )
2

Example: 
ATLAS nominal resolution

track uncertaintymultiple scattering

�pT

pT
=

�s

s
=

8pT
0.3BL2

�s
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Linear error propagation for uncorrelated 
measurements

30

Special case: the xi are uncorrelated, i.e.,                  : Vij = �ij�
2
i

�2
y =

nX

i=1


@y

@xi

�2

~x=~µ

�2
i

These formulas are exact only for linear functions.  
Approximation breaks down if function is nonlinear over a region comparable 
in size to the σi.
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Example of Gaussian error propagation: 
Volume of a cylinder

31

 

Gaussian Error Propagation with SymPy
Klaus Reygers, 2020

In [1]: from sympy import * 
from IPython.display import display, Latex 

In [2]: def gaussian_error_propagation(f, vars): 
    """ 
    f: formula ﴾sympy expression﴿ 
    vars: list of independent variables and corresponding uncertainties  
    [﴾x1, sigma_x1﴿, ﴾x2, sigma_x2﴿, ...] 
    """ 
    sum = sympify("0") # empty sympy expression 
    for (x, sigma) in vars: 
        sum += diff(f, x)**2 * sigma**2  
    return sqrt(simplify(sum)) 

Show usage for a simple example: Volume of a cylinder with radius  and height :

In [3]: r, h, sigma_r, sigma_h = symbols('r, h, sigma_r, sigma_h', positive=True) 
V = pi * r**2 * h # volume of a cylinder 

In [4]: sigma_V = gaussian_error_propagation(V, [(r, sigma_r), (h, sigma_h)]) 
display(Latex(f"$V = {latex(V)}, \, \sigma_V = {latex(sigma_V)}$")) 

Plug in some numbers and print the calculated volume with its uncertaity:

In [5]: r_meas = 3 # cm 
sigma_r_meas = 0.1 # cm 
h_meas = 5 # cm 
sigma_h_meas = 0.1 # cm 

In [6]: central_value = V.subs([(r,r_meas), (h, h_meas)]).evalf() 
sigma = sigma_V.subs([(r, r_meas), (sigma_r, sigma_r_meas), (h, h_meas), (sigma_h, sigma_h_meas)]).eval
f() 
display(Latex(f"$$V = ({central_value:0.1f} \pm {sigma:.1f}) \, \mathrm{{cm}}^3$$")) 

[gaussian_error_propagation.ipynb]

[wikipedia]

https://nbviewer.jupyter.org/urls/www.physi.uni-heidelberg.de/~reygers/lectures/2020/smipp/Gaussian_error_propagation.ipynb
https://nbviewer.jupyter.org/urls/www.physi.uni-heidelberg.de/~reygers/lectures/2020/smipp/gaussian_error_propagation.ipynb
https://en.wikipedia.org/wiki/Cylinder
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Example of Gaussian error propagation: 
Volume of a cylinder (now for correlated r and h)

32

 

r = 3 cm, σr = 0.1 cm
h = 5 cm, σh = 0.1 cm
V = πr2h = 141.4 cm3

ρ σV

–1 6.6 cm3

0 9.8 cm3

1 12.3 cm3 

Uncertainty of the 
cylinder volume V 
depends on the 
correlation coefficient ρ:

Gaussian Error Propagation for Correlated Variables with SymPy
Klaus Reygers, 2020

In [2]: from sympy import * 
from IPython.display import display, Latex 

In [3]: def gaussian_error_propagation_corr(f, x, V): 
    """ 
    f: function f = f﴾x[0], x[1], ...﴿ 
    x: list of variables 
    V: covariance matrix ﴾python 2d list﴿ 
    """ 
    sum = sympify("0") # empty sympy expression 
    for i in range(len(x)): 
        for j in range(len(x)): 
            sum += diff(f, x[i]) * diff(f, x[j]) * V[i][j]  

    return sqrt(simplify(sum)) 

Show usage for a simple example: Volume of a cylinder with radius  and height :

In [4]: r, h, sigma_r, sigma_h = symbols('r, h, sigma_r, sigma_h', positive=True) 
rho = Symbol("rho", real=True) # correlation coefficient 
V = pi * r**2 * h # volume of a cylinder 

In [5]: vars = [r, h] 

cov_matrix = [[sigma_r**2, rho * sigma_r * sigma_h],  

              [rho * sigma_r * sigma_h, sigma_h**2]] 

Matrix(cov_matrix) 

In [6]: sigma_V = gaussian_error_propagation_corr(V, vars, cov_matrix) 

display(Latex(f"$V = {latex(V)}, \, \sigma_V = {latex(sigma_V)}$")) 

Plug in some numbers and print the calculated volume with its uncertaity:

In [7]: r_meas = 3 # cm 
sigma_r_meas = 0.1 # cm 
h_meas = 5 # cm 
sigma_h_meas = 0.1 # cm 

In [8]: central_value = V.subs([(r,r_meas), (h, h_meas)]).evalf() 

sigma = sigma_V.subs([(r, r_meas), (sigma_r, sigma_r_meas), (h, h_meas), (sigma_h, sigma_h_meas)]).eval

f() 

 

for rho_value in [1, 0, 1]: 
    sigma = sigma_V.subs([(r, r_meas), (sigma_r, sigma_r_meas), (h, h_meas), (sigma_h, sigma_h_meas), (

rho, rho_value)]).evalf() 

    display(Latex(f"$$ \\rho = {rho_value}: V = ({central_value:0.1f} \pm {sigma:.1f}) \, \mathrm{{cm}}
^3$$")) 

In [ ]:   

Out[5]:

[gaussian_error_propagation_correlated_variables.ipynb]

https://nbviewer.jupyter.org/urls/www.physi.uni-heidelberg.de/~reygers/lectures/2020/smipp/Gaussian_error_propagation.ipynb
https://nbviewer.jupyter.org/urls/www.physi.uni-heidelberg.de/~reygers/lectures/2020/smipp/gaussian_error_propagation_correlated_variables.ipynb
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Linear error propagation:  
Generalization from ℝn→ℝ to ℝn→ℝm

33

Generalization: Consider set of m functions:

~y(~x) = (y1(~x), y2(~x), ..., ym(~x))

cov[yk , yl ] ⌘ Ukl ⇡
nX

i ,j=1


@yk
@xi

@yl
@xj

�

~x=~µ

Vij

Then:

In matrix notation:

U = AV AT Aij =


@yi
@xj

�

~x=~µ
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Reduction of the standard deviation for repeated 
independent measurements

34

Consider the average of n independent observation xi:

x̄ =
1

n

nX

i=1

xi

Expectation values and variance of the measurements:

E [xi ] = µi V [xi ] = �2

Standard deviation of the mean:

V [x̄ ] =
1

n2

nX

i=1

�2
i =

1

n
�2 ! �x̄ =

�p
n

Standard deviation of the mean decreases as 1/√n
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Example: Photon energy measurements

35

The energy resolution of a γ-ray detector used to investigate a decaying nuclear 
isotope is 50 keV. 
‣ If only one photon is detected the energy of the decay is known to 50 keV 
‣ 100 collected decays: energy of the decay known to 5 keV 
‣ To reach 1 keV one needs to observe 2500 decays
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Averaging uncorrelated measurements

36

Consider two uncorrelated measurements:

Linear combination:

x1 ± �1, x2 ± �2

Now choose the weights such that  is minimal  
(under the condition w1 + w2 = 1):

σ2
y

y = w1x1 + w2x2 �2
y = w2

1�
2
1 + w2

2�
2
2

And for the uncertainty of y we obtain (linear error propagation):

1

�2
y
=

1

�2
1

+
1

�2
2

In general, for n uncorrelated measurements:

y =
nX

i=1

wixi , wi =
1/�2

iPn
j=1 1/�

2
j

,
1

�2
y
=

nX

j=1

1

�2
j

@

@wi
�2
y = 0 ! wi =

1/�2
i

1/�2
1 + 1/�2

2
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Example: Averaging uncorrelated measurements

37

pT of a particle in three subsystems of the ATLAS detector:

detector pT (GeV)

pixel detector 20 ± 2

semiconductor tracker 21 ± 1

transition radiation 
tracker 22 ± 4

�pT =


1

4GeV2
+

1

1GeV2
+

1

16GeV2

��1/2

= 0.87GeV

pT =
20 GeV
4 GeV2 +

21 GeV
1 GeV2 +

22 GeV
16 GeV2

1
4 GeV2 +

1
1 GeV2 +

1
16 GeV2

= 20.86GeV

Weighted average:

(20.86± 0.87) GeV
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Weighted average from Bayesian approach

38

→ same result as before

Consider two measurements x1 and x2 with Gaussian uncertainties �1 and �2. In a
Bayesian approach the probability distribution for the true value µ is given by

p(µ) / L(x1, x2|µ)⇡(µ)

Assuming a flat prior ⇡(µ) ⌘ 1 and independence of the two measurements one
obtains

p(µ) / L(x1|µ)L(x2|µ)
= G (x1;µ,�1)G (x2;µ,�2)

/ exp


�1

2

✓
(µ� x1)2

�2
1

+
(µ� x2)2

�2
2

◆�

The product of the two Gaussians gives a Gaussian with mean

µ = w1x1 + w2x2 where wi =
1/�2

i

1/�2
1 + 1/�2

2

and standard deviation
1

�2
=

1

�2
1

+
1

�2
2

In one case the resulting 
Gaussian comes from a 
product, in the other from a 
convolution - both give 
Gaussians again
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Monte Carlo error propagation

39

Example:  
Ratio of two Gaussian 
distributed quantities

Physics 509 25

Ratio of two Gaussians IV
x = 5 ± 1 and y = 5 ± 1

Error propagation:
R = 1 ± 0.28

Mean and RMS of R:
1.05 ± 0.33

Gaussian fit to peak:
1.01 ± 0.25

More non-Gaussian than first case, 
much better than second.

Rule of thumb: ratio of two 
Gaussians will be approximately 
Gaussian if fractional uncertainty 
is dominated by numerator, and 
denominator cannot be small 
compared to numerator.

x = 5± 1

y = 5± 1

Approach: draw values for x 
and y many times and fill 
histogram with ratios

Standard linear error prop.:
R = 1± 0.28

Mean and rms of histogram:
R = 1.05± 0.33

Rule of thumb: ratio of two Gaussians will be approximately Gaussian if fractional uncertainty is dominated by 
numerator, and denominator cannot be small compared to numerator 
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Classification of Uncertainties
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Classification of Errors/Uncertainties

1. Mistakes 
‣ The experimenter did something wrong

41

Nothing deep here. Distinction useful order thoughts

2. Statistical Uncertainties 
‣ Uncertainties in the result due to fluctuations which can be 

addressed by statistical methods.

3. Systematic Uncertainties 
‣ Uncertainties from any other sources
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Example for experimental mistakes

Superluminal neutrinos - OPERA 
experiment 
■ OPERA measures neutrinos produced at 

CERN 
■ September 2011: OPERA announced 

measurement of faster than light neutrinos 
■ 6 standard deviations of difference 
■ Turned out to be due to loose fiberoptic cable

42
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How to deal with mistakes?

Avoid! 
■ Concentration while performing experiment 
■ Good understanding of setup and measurement 

details 
■ Check of setup and measurement principle by 

independent observers 
■ Replication studies

43
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Examples for statistical uncertainties

■ Number of decays in radioactive material 
■ Detector signal of particle 
■ Variation of reaction time using stopwatch 
■ Atmospheric distortion 

– Usually not possible to correct 
– Usually possible to decrease by collecting more data

44

2. Statistical Uncertainties 
‣ Uncertainties in the result due to fluctuations 

which can be addressed by statistical 
methods.

VLT
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How to deal with statistical uncertainties?

■ Main part of this lecture 
■ Useful: When repeating measurement, statistical 

fluctuation usually independent 
■ This allows for simple mathematical description 
■ Usually: The more knowledge you have about the 

nature of the fluctuations, the better you can deal 
with them!

45
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3.2 Systematic Uncertainties
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Examples of systematic uncertainties

■ Borexino experiment searching for neutrino oscillations 
in Gran Sasso underground laboratory 

■ Balloon of scintillator liquid, light measured by 
photomultipliers 

■ Turned out to have a small leak, causing deformation - 
effect on measurement 

■ Other: 
■ Thermal expansion of equipment 
■ Pressure change in gas detectors 
■ Model assumptions (e.g. neglecting friction) 
■ Theory uncertainties (e.g. for subtracting backgrounds) 
■ Imperfect calibration, e.g. of a calorimeter

47

Borexino experiment
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How to deal with systematic uncertainties?

Generally: 
1. Find and understand all relevant systematic 

effects 
2. Correct them as far as possible 
3. Uncertainty in the size of the correction is then 

the systematic uncertainty

48

hubblesite.org

Systematic effect: Cause of some deviation from 
the correct result 
Systematic error: Size of the deviation 
Systematic uncertainty: Estimate of the deviation

R. Barlow
“Systematic Errors, Fact and  
Fiction,” hep-ex/0207026 

http://hubblesite.org
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How to deal with systematic uncertainties?

■ Different effects for different experiments - hard to give general approach 
■ Often systematic uncertainty main difficulty 
■ Much neglected in statistics literature 
■ In data analyses in high energy physics: statistical uncertainties often 

straightforward, systematics need most of the time 
■ Strongly helped by experience 
■ Studying examples helps 
■ Often hard to estimate effects precisely 

49



Statistical Methods in Particle Physics WS 2023/24 | K. Reygers, M. Völkl | 3. Uncertainty

Bayesian approach to systematic uncertainties

"Bayesians lose no sleep over 
systematics" (lecture S. Oser)

50

■ Systematic uncertainties usually do not independently fluctuate from measurement to measurement - 
hard do describe in frequentist terms 

■ Some systematics are Bayesian only - description of knowledge about system 

Quantity of interest: , prior knowledge: θ π(θ)

Likelihood depends parameter  ("nuisance parameter")ν

We simply treat  and  as an unknown parameters:θ ν

As we are only interested in , we marginalize by integrating over :θ ν

Prior knowledge on  often is the result of a calibration measurement.ν
P(✓) =

Z
P(✓, ⌫) d⌫

P(✓, ⌫|data) / L(data|✓, ⌫)⇡(✓, ⌫)
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Example 1: Efficiency correction

■ Want to calculate e.g. cross section, measure particle number 
■ , with  the efficiency  

■ Estimate  from (Monte Carlo) simulations 
‣ Uncertainty from binomial fluctuations 
‣ Uncertainty from how well the simulation describes the real world 

■ Bayesian: This results in some probability distribution ; from 
this we get , and we marginalize out  

■ Frequentist: Define repetition of experiment as repeating both the 
measurement of  and the simulation - now both effects can be 
considered as frequencies 
‣ This does not include the uncertainty in the simulation describing 

the real world 
■ Ask: Which detector effects are relevant? And how are they 

implemented in the MC code?

⟨n⟩meas = ⟨n⟩true ⋅ ϵ ϵ → ⟨n⟩true = ⟨n⟩meas/ϵ

ϵ

p(ϵ)
p(⟨n⟩true, ϵ) ϵ

n

51
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Example 2: Pendulum

1. Not a harmonic oscillator at finite amplitude 
2. Weight is not a point - angular momentum 
3. Buoyancy of weight in atmosphere 
4. Damping of oscillations by air 
5. Mass of the wire 
6. Elasticity of wire 
7. Increased effective weight by air being dragged along 

(non-dissipative)

52

The pendulum – Rich physics from a simple system, R. Nelson, M. Olsson

■ g ≈ (2π/T0)2 ⋅ L
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Example 2: Pendulum

■ Which effects are dominant? 
■ Calculate effects 
‣ Fully 
‣ Estimate via approximation 
‣ Just some maximum possible effect? 

■ Try to decrease effects 
‣ With a longer wire 
‣ With smaller amplitude 
‣ With denser material 
‣ In a vacuum

53

The pendulum – Rich physics from a simple system, R. Nelson, M. Olsson
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Speed of light measurements vs. year of publication

54
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Experimenter’s bias?

55

the investigator searches for the source or sources of such errors, and continues to 
search until she/he gets a result close to the accepted value.  

Then he/she stops!

Klein JR, Roodman, A. 2005,  
Annu. Rev. Nucl. Part. Sci. 55:141–63

Possible bias:

Do researchers unconsciously work towards a certain value?

Some amount of paranoia can be useful!
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Example 3: Thermal expansion

■ Measurement may be affected by thermal expansion 
■ Calibration at one temperature, measurement at another 
■ Similarly: Particle detector signals depend on temperature, 

atmospheric pressure etc. 

Possibility 1: We also have a temperature measurement 
■ Calculate effect from thermal expansion and correct for it 
■ Propagate uncertainty of temperature measurement and expansion 

coefficient 

Possibility 2: We do not have a temperature measurement 
■ Consider possible range of temperatures in experiment hall 

(summer, winter, open windows etc.) 
■ Propagate uncertainty to final result

56
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Example 4: Invariant mass background

■ Measurement of  

■ Background estimated from measuring  and 
 pairs 

■ How good is this estimate? 
■ Hard to list every contributing effect 
■ Instead try another estimate based on track 

rotations (TrkRot) 
■ If systematic effects are very different, the 

difference can tell us about systematic error

J/ψ → e+e−

e+e+

e−e−

57
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Handling discrete systematic uncertainties

Example: choice of model used to determine a correction R

58

With 1 preferred model and one other, quote R1 ± |R1 − R2 |

With 2 models of equal status, quote  
R1 + R2

2
± |R1 − R2 |

2

n equal models, quote  R̄ ± 1
n − 1

n

∑
i=1

(Ri − R)2 =
n

n − 1
(R2 − R2)

Two extreme models, quote  
R1 + R2

2
± |R1 − R2 |

12
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Example 5: Resistor

■ These have tolerances printed on them 
■ But better to measure them in addition, vastly 

decreases uncertainty

59
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Sanity / Consistency checks

Look for systematic effects by repeating the analysis with changes which should 
make no difference:

60

Data subsets 
Magnet up/down 
Different selection cuts 
Different histogram bin sizes and fit ranges 
Different Event Generator for efficiency calculation 
Look for impossibilities 

R. Barlow

If a check passes the test:  
move on and do not add the discrepancy to the systematic uncertainty 

If a check fails: try to identify the reason. Only as very last resort, add contribution 
to total systematic uncertainty. This might underestimate the real uncertainty.

“Systematic Errors, Fact and  
Fiction,” hep-ex/0207026 
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Blind analyses

■ The signal events, when the signal occurs in a well-defined region of the  
experiment’s phase space.  

■ The result, when the numerical answer can be separated from all other aspects 
of the analysis.  

■ The number of events in the data set, when the answer relies directly upon their 
count.  

■ A fraction of the entire data set. 

61

Avoid experimenter’s bias by hiding certain aspects of the data.
Things that can be hidden in the analysis:

Unblinded spectrum

Cts in Qββ±5 keV golden silver BEGe total
expected, w/o PSD 3.3 0.8 1.0 5.1
observed, w/o PSD 5 1 1 7
expected, w PSD 2.0 0.4 0.1 2.5
observed, w PSD 2 1 0 3

Spectrum agrees with flat background expectation, no hint for gamma-line at Qββ !

W. Maneschg (MPI-K) GERDA: Results Phase I - Outlook Phase II Mainz, March 25, 2014 12 / 1

Example: GERDA experiment 
‣ search for neutrinoless double beta 

decay 
‣ Signal: sharp peak  
‣ Background model fixed prior to 

unblinding of signal region energy (kev)→ no evidence for a signal

Klein JR, Roodman, A. 2005,  
Annu. Rev. Nucl. Part. Sci. 55:141–63
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Example 6:  massD0

■ Largest contribution found to be mass of kaons 
■ Take mass and uncertainty from literature (e.g. PDG) 
■ Propagate to D meson mass 
■ Here: Repeated analysis with different mass assumptions

62

Measurement of the mass of the D0 meson, BABAR Collaboration 
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Combination of systematic uncertainties

63

�2
tot = �2

1 + �2
2 + ... + �2

n

In most cases one tries to find independent sources of systematic 
uncertainties. These independent uncertainties are therefore 
added in quadrature: 

Often a few source dominate the systematic uncertainty 
→ No need to work to hard on precisely estimating the small 
uncertainties 

Systematic uncertainties are usually given as standard deviations 
(x ± σx), corresponding to a 68% probability.

Other meaning (e.g. maximum extent uncertainty) this should be 
explicitly stated.

1σ
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

to
t

σ
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Systematic uncertainties:  
Covariance matrix approach (I)

64

Consider two measurement x1 and x2 with with individual random uncertainties σ1,r 
and σ2,r and a common systematic uncertainty σs:

xi = xtrue +�xi ,r +�xs

Variance:

Covariance: cov[x1, x2] = hx1x2i � hx1ihx2i
= ...

= �2
s

h�xi ,ri = 0, h�xsi = 0,

h(�xi ,r)
2i = �2

i ,r, h(�xs)
2i = �2

s

V [xi ] = hx2i i � hxi i2

= h(xtrue +�xi ,r +�xs)
2i � hxtrue +�xi ,r +�xsi2

= h(�xi ,r +�xs)
2i

= �2
i ,r + �2

s
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Systematic uncertainties:  
Covariance matrix approach (II)

65

Covariance matrix for x1 and x2:

V =

✓
�2
1,r + �2

s �2
s

�2
s �2

2,r + �2
s

◆

This also works when the uncertainties are quoted as relative uncertainties:

�s = "x  V =

✓
�2
1,r + "2x21 "2x1x2
"2x1x2 �2

2,r + "2x21

◆
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Example: 
Transverse momentum spectrum of the Higgs boson

66

14 9 Results
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Figure 4: Higgs boson production cross section as a function of p
H
T , after applying the unfold-

ing procedure. Data points are shown, together with statistical and systematic uncertainties.
The vertical bars on the data points correspond to the sum in quadrature of the statistical and
systematic uncertainties. The model dependence uncertainty is also shown. The pink (and
back-slashed filling) and green (and slashed filling) lines and areas represent the SM theo-
retical estimates in which the acceptance of the dominant ggH contribution is modelled by
HRES and POWHEG V2, respectively. The subdominant component of the signal is denoted as
XH=VBF+VH and it is shown with the cross filled area separately. The bottom panel shows the
ratio of data and POWHEG V2 theoretical estimate to the HRES theoretical prediction.

To measure the inclusive cross section in the fiducial phase space, the differential measured
spectrum is integrated over p

H
T . In order to compute the contributions of the bin uncertain-

ties of the differential spectrum to the inclusive uncertainty, error propagation is performed
taking into account the covariance matrix of the six signal strengths. For the extrapolation of
this result to the fiducial phase space, the unfolding procedure is not needed, and the inclu-
sive measurement has only to be corrected for the fiducial phase space selection efficiency efid.
Dividing the measured number of events by the integrated luminosity and correcting for the
overall selection efficiency, which is estimated in simulation to be efid = 36.2%, the inclusive
fiducial sB, sfid, is computed to be:

sfid = 39 ± 8 (stat) ± 9 (syst) fb, (4)

in agreement within the uncertainties with the theoretical estimate of 48 ± 8 fb, computed inte-
grating the spectrum obtained with the POWHEG V2 program for the ggH process and includ-
ing the XH contribution.
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Figure 5: Correlation matrix among the p
H
T bins of the differential spectrum.

10 Summary
The cross section for Higgs boson production in pp collisions has been studied using the
H ! W+W� decay mode, followed by leptonic decays of the W bosons to an oppositely charged
electron-muon pair in the final state. Measurements have been performed using data from pp
collisions at a centre-of-mass energy of 8 TeV collected by the CMS experiment at the LHC and
corresponding to an integrated luminosity of 19.4 fb�1. The differential cross section has been
measured as a function of the Higgs boson transverse momentum in a fiducial phase space,
defined to match the experimental kinematic acceptance. An unfolding procedure has been
used to extrapolate the measured results to the fiducial phase space and to correct for the de-
tector effects. The measurements have been compared to SM theoretical estimations provided
by the HRES and POWHEG V2 generators, showing good agreement within the experimental
uncertainties. The inclusive production sB in the fiducial phase space has been measured to be
39 ± 8 (stat) ± 9 (syst) fb, consistent with the SM expectation.
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Weighted average of correlated data points

67

�̂ =
NX

i=1

wiyi

~y = (y1, y2, ..., yn)Consider n data points yi with covariance matrix V:

One can calculate a weighted average λ by minimizing

�2(�) = (~y � ~�)TV�1(~y � ~�)
~� := (�,�, ...,�)

One obtains (here without calculation):

Variance results from error propagation:

wi =

Pn
j=1(V

�1)i ,jPn
k,l=1(V

�1)k,l

�2
�̂
= ~wTV ~w =

nX

i ,j=1

wiVijwj

Minimizing the χ2 gives the best linear unbiased 
estimate (BLUE) → linear unbiased estimator with 
the lowest variance

‣ BLUE combination may be biased 
if uncertainties not known or are 
estimated from measured values  

‣ Improvement: iterative approach 
(rescaling uncertainties based on 
previous iteration)
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Special case:  
Weighted average of two correlated measurements 
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Consider two measurements with covariance matrix V (ρ = correlation coeff.):

Applying the formulas from the previous slide:

equivalently:
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Summary of systematic uncertainties

■ Large variety of effects - hard to give general recipes 
■ Systematics do not mean mistakes 
■ Typical approaches: 
‣ Decrease uncertainties (e.g. with ancillary measurements, improved setup …) 
‣ Estimate and correct effects 
‣ Compare different methods of the same analysis 
‣ Estimate magnitude of effect 

■ Quadratic sum means, dominant contributions should get the most attention 
‣ Often more important not to overlook a large effect rather than having a precise 

estimate of a smaller one 

■ A systematic effect that is not found becomes a mistake.
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3.3 Priors
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Proper and improper priors

■ Probability distributions must be normalised  
unnormalizable distributions are not allowed 

 

■ Often: Even if prior is not normalisable prior*likelihood is 
■ Mathematically convenient 
■ Non-normalizable priors are called improper priors 
■ Often simplifies calculation, occasionally leads to problems

→

p(x |m) ∼
p(m |x) p(x)

∫ p(m |x) p(x) dx

71

The precise value of the upper edge does 
not change the result much
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Informative and uninformative priors

■ Priors contain our information before analysing the data 
■ If they do, they are called informative 
■ If we try to find distributions that represent “no information”, these are called 

uninformative priors 
■ Intermediate case: We have some information, but not enough to fully constrain 

the prior (e.g. approximate scale of some parameter)

72

■ Intuitively we would say that more even 
distribution of probabilities represents less 
information 

■ This should certainly be true if our knowledge is 
symmetric in reordering the states 

■ Can we come up with a more general principle?
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Information content

■ Idea: Define information in some result 
‣ Unsurprising results contain less information, thus information must decrease with 

the probability of the result 

‣ Information should add linearly  
‣ The common probability of two independent events is the product 

 
■ This motivates the definition of the self information 

 

■ In information theory, often base 2 logarithms

I1,2 = I1 + I2

p(x, y) = p(x)p(y)

I(x) = log
1

p(x)
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The maximum entropy principle

■ How much information is contained in a distribution can be assessed by the 
expectation value of the information  

 

■ This is called the Shannon entropy or information entropy 

■ Now look for priors which maximise this quantity. These are called maximum 
entropy priors, MAXENT, PME, … 

■ Jaynes warns not to associate to much philosophical meaning here, in 
particular to the concept of “information”. 

■ For now, we just see what the result is

⟨I(x)⟩
S = − ∑

i

pi log pi

74

Claude Shannon (1916-2001)
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Maximum entropy example

■ We have some discrete values  and associated  

■ Chose  such that  is maximised while  

■ Can introduce Lagrange multipliers and set derivative of  
 to 0 

 

■ Thus all  must be equal!

n pn

pi S = − ∑
n

pn log pn ∑
i

pi = 1

−∑
n

pn log pn + λ (∑ pn − 1)
0 = − log pn − 1 + λ

pn
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Maximum entropy with known average

■ We assume that the  are integer values 

■ Our prior information is an average , but nothing more 

■ Additional constraint:  

■ Now look at derivatives of 

 

■  

■ So the  follow an exponential law 

n
m

∑
n

npn = m

−∑
n

pn log pn + λ (∑
n

pn − 1) + ϑ (∑
n

npn

N
− m)

0 = − log pn − 1 + λ + n
ϑ
N

pn pn ∼ exp(αn)
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Maximum Entropy for continuous distributions
■ To go to continuous case, increase density of states 
■ Result depends on how exactly this is done - no direct translation 

■ However, consider another distribution with  all equal 

■ Then  would still be maximised 

■ This can be generalised as  

■ Kullback-Leibler divergence / relative entropy 

■  tells us the distribution of the continuous limit of the  

■ If we know , the “uninformative” distribution without constraints, then we maximise  to get 
the corresponding distribution with constraints 

■ For constant : 

‣ Constraint on the mean   is exponential; Constraint on mean and variance   is Gaussian

qn

SSJ = − ∑
n

pn log(pn/qn)

Sc = − ∫ p(x) log
p(x)
m(x)

dx

m(x) qi

m(x) Sc

m(x)
→ p(x) → p(x)
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Scaling priors

■ If translation of a variable changes nothing in our knowledge, then  is 
constant 

 

■ If rescaling of the problem changes nothing in our knowledge, then  is the 
inverse of  

 

■ This gives a density that is constant in the logarithm 

p(x)

p(x) = p(x + Δx) ⟹ p(x) = const .

p(x)
x

p(x) =
1
α

p ( x
α ) ⟹ p(x) ∼

1
x

plog x(log x) = const .
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Jeffreys' prior

79

■ Jeffreys: Result should be the same independent of parametrisation 
■ Uncertainty depends on what can be extracted from data 
■ Thus prior should depend on likelihood, which has transformation properties

Jeffreys' prior (non-informative prior) for a model            of the measurement:

⇡(~✓) /
q
I (~✓) I (~✓) = det

"*
@ ln L(~x |~✓)

@✓i

@ ln L(~x |~✓)
@✓j

+#

determinant of the Fisher information matrix

invariant under re-parameterization expectation value evaluated by integrating 
over all possible results 

~x

PDF parameter Jeffreys' prior

Poissonian mean µ p(µ) ∝ 1/√µ

Gaussian mean  µ p(µ) ∝ 1

Examples:

L(~x |~✓)

Should our prior information 
depend on what measurement we 
do?
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Jeffreys' prior: Example

80

Exponential distribution:

Jeffreys' prior:

L(t | ⌧) = 1

⌧
e�t/⌧

d

d⌧
ln L(t|⌧) = �1

⌧
+

t

⌧ 2

E

"✓
t

⌧ 2
� 1

⌧

◆2
#
= E

"✓
t � ⌧

⌧ 2

◆2
#
=

1

⌧ 4
V [t] =

⌧ 2

⌧ 4
=

1

⌧ 2

 ⇡(⌧) / 1

⌧

⇡(⌧) /
p

I (⌧) =

vuutE

"✓
d

d⌧
ln L(t | ⌧)

◆2
#

(prior distribution)
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Conjugate priors - examples

■ Conjugate prior: 
posterior=prior*likelihood is from the 
same class of functions 

■ For ease of calculation 
■ A flat distribution is a special case of all 

‣ e.g. Gaussian with σ → ∞
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Likelihood Conjugate Prior

Binomial Beta

Poisson Gamma

Gaussian Gaussian

Exponential Gamma
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Summary priors

■ The problem of assigning priors is quite difficult 
■ Some approaches try to remove the discussion, giving rules for which 

distribution to take  objective Bayes 
■ In many practical applications the prior is obvious 
■ In some of the most interesting ones it is not

→
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