Statistical Methods in Particle Physics

3. Uncertainty

Heidelberg University, WS 2023/24
Klaus Reygers, Martin Völkl (lectures)
Ulrich Schmidt, (tutorials)

Deductive Reasoning

All ravens are black.
This is a raven.

Therefore it is black.

Deductive Reasoning II

> | All ravens are black. |
| :--- |
| This animal is not black. |
| Therefore it is not a raven. |

Inductive Reasoning

This animal is black.
This animal is a raven.

Therefore all ravens are black.

Inductive Reasoning II

Animal 1 is a black raven.
Animal 2 is a black raven.
Animal 3 is a black raven.
\vdots

Therefore all ravens are black.

The problem of induction

- How can we draw general conclusions based on individual observations?
- If a law always held in the past does this mean it must hold in the future? (Hume)
- Logic says, such conclusions are invalid.
-What does it mean to do science then?

Karl Popper:

- We cannot prove hypotheses, but we can disprove them (deductive)

source: Wikipedia

Karl Popper
(1902-1994)

- Make hypotheses falsifiable, then attempt to find observations that contradict them.
- Hypotheses, which are easy to falsify, but where repeated attempts have not done so have a higher status.
- Occams razor: Everything else being equal, prefer simpler hypotheses.
- It is somewhat more difficult to say what falsification means in the presence of measurement uncertainties

The scientific method

Karl Popper:

- Find falsifiable hypotheses and try to disprove them

Thomas Kuhn:

- Actual science works differently.
- Periods of continuity, then paradigm shift, not necessarily from better description of data

Paul Feyerabend:

- Having one single scientific method would inhibit scientific progress
- "Anything goes" - Scientists should pursue any course that seems interesting to them
- If so: How to differentiate science and pseudoscience?
- Science has made definite progress in the past

The scientific method II

- No generally agreed upon definition of "scientific method"
- General properties of scientific inquiry:
- Governed by rational arguments
- Includes hypotheses that should be self consistent and are usually formulated in mathematical language
- Models/Theories should make testable predictions
- Observations can test or motivate hypothesis
- Cannot arbitrarily discard evidence
- Honesty in reasoning
- Discussion, peer review, criticism, adaptation of ideas
- Progress happens by some kind of consensus
- Not very satisfying. But no solution in this lecture.

Occam's razor

- Prefer simpler hypotheses to more complex ones
- "Entities are not to be multiplied without necessity"
- "Whenever possible, substitute constructions out of known entities for inferences to unknown entities."- Bertrand Russell
- Often useful for guidance, but vague

Bayesian inference contains a form of Occam's razor:

- Consider two hypotheses with 1 and 2 unknown parameters, each with total probability 0.5
- Prior probability spread out across more dimensions in second case -> likelihood removes more of it
- Marginal for left hypothesis will be much higher

 afterwards

Inductive Reasoning III

Animal 1 is a black raven.
Animal 2 is a black raven.
Animal 3 is a black raven.
!

Therefore it becomes more plausible that all ravens are black.

Probability as an extension of logic

Basic idea:

- Induction is not valid logical reasoning
- It it what we do in science
- Therefore scientific reasoning is not based on (Aristotelian) logic
- Understanding by Laplace, Bayes, Jeffreys
- Later also Cox, Jaynes and others
"Probability theory is nothing but common sense reduced to calculation." -Pierre-Simon Laplace

Cox Axioms

Axiom 1:

Degrees of plausibility are represented by real numbers

Meaning:

- $P(A)$ is the plausibility of statement A
- $P(A \mid B)$ is the plausibility of A assuming B
- $P(A, B \mid C)$ are the plausibility of A AND B assuming C
- $P(A)>P(B)$ means that A is more plausible than B

Cox Axioms

Axiom 2:
 Qualitative correspondence with common sense

- If $\mathrm{P}\left(\mathrm{A} \mid \mathrm{C}^{\prime}\right)>\mathrm{P}(\mathrm{A} \mid \mathrm{C})$, then also $\mathrm{P}\left(\bar{A} \mid \mathrm{C}^{\prime}\right)<\mathrm{P}(\bar{A} \mid \mathrm{C})$

Cox Axioms

Axiom 3:

All reasoning must happen consistently

- Logically equivalent statements are equally plausible
- If there are several ways to reason out a conclusion, they must all lead to the same result
- Information may not be ignored; all reasoning is nonideoligical

Cox Axioms

1. Degrees of plausibility are represented by real numbers

2. Qualitative correspondence with common sense
3. All reasoning must happen consistently

This results in a class of equivalent solutions. One of them has the properties:

- A true statement is represented by $P(A)=1$, a false statement is represented by $P(A)=0$
$-P(A)+P(\bar{A})=1$ (sum rule)
- $P(A, B)=P(A \mid B) \cdot P(B)$ (product rule)

In this approach, probability theory extends logic. Inductive reasoning becomes Bayesian inference.
We do not prove or disprove hypotheses, but change our state of knowledge about them.

Does a case of the hypothesis support the hypothesis?
(Hempels paradox)

3.1 Error Propagation

Evaluating Estimator Performance

Consistency:

- Does the estimate converge to the true value?

$$
\lim _{n \rightarrow \infty} \hat{\theta}=\theta
$$

Bias:

- Does the average of many measurements converge towards the true value? Otherwise: bias b

$$
E[\hat{\theta}]=\theta
$$

Efficiency:

- How small is the uncertainty for a given amount of data and how fast does it decrease with n ?

Robustness:

The measured time on a stopwatch may be affected by the reaction time of the experimenter, giving a bias

- Does the estimator still work if we are slightly wrong about the assumptions of the data (e.g. in the presence of rare outliers)?

Minimum Variance Estimators

- Variance and bias of an estimator are often a tradeoff
- E.g. just guessing a single fixed value has 0 variance, but definitely a bias.
- One optimisation: Allow only unbiased estimators, then try to minimise variance.
- The result is called the minimum variance unbiased estimator (MVUE)
- Can be hard to find
- Often quite useful; sometime a lower variance can be a good tradeoff for some bias
- Subtracting the (estimated) bias of an estimator can transform it into an (approximately) unbiased one

Reminder: Frequentist and Bayesian Uncertainties

Frequentist

- Uncertainty: Standard deviation of estimator fluctuations when repeating experiment a number of times

Bayesian

- Uncertainty: Standard deviation of posterior probability distribution of parameter

Ways to quote uncertainties

$$
\begin{aligned}
& t=(34.5 \pm 0.7) 10^{-3} \mathrm{~s} \\
& t=34.510^{-3} \mathrm{~s} \pm 2 \% \\
& x=10.3_{-0.3}^{+0.7} \\
& m_{e}=(0.51099906 \pm 0.00000015) \mathrm{MeV} / c^{2} \\
& m_{e}=0.51099906(15) \mathrm{MeV} / c^{2} \\
& m_{e}=9.109389710^{-31} \mathrm{~kg} \pm 0.3 p p m
\end{aligned}
$$

An uncertainty o represents some kind of probability distribution (often a Gaussian, if not stated otherwise)

If no further information is given the interval $x \pm \sigma$ corresponds to a one standard deviation. In the Gaussian approximation this contains a probability of 68% ("1 σ errors")

Error propagation is simple and difficult

Assume we want to go from variable a to variable $b=f(a)$

Frequentist

- We start with an unbiased estimator for a. Now find an unbiased estimator for b. Estimate the variance of the new estimator.

Bayesian

- We start with a probability distribution $p_{a}(a)$ for a. Now transform this into a probability distribution for b with

$$
p_{b}(b)=p_{a}\left(f^{-1}(b)\right)\left|J_{b \rightarrow a}\right|
$$

But:

- Very difficult in practice.
- Would rather just use the estimator $\hat{b}=f(\hat{a})$

But:

- Can be very difficult to calculate
- The inverse may not have a simple analytical form

Easy conceptually, difficult to calculate \rightarrow Usually much easier to approximate the result

Linear error propagation: Sometimes applicable ...

- We know that the transformation $x \rightarrow x+\Delta x$ does not change the speed of the variable
- We know that scaling $x \rightarrow \alpha x$ changes the variance by a factor α^{2}
- This is true for both the distribution of the estimator and the posterior
- If f is a linear function, then $\sigma_{b}=|\alpha| \sigma_{a}$
- If the function is close to linear in the places where it is of interest to us, the transformation can be approximated setting $\sigma_{b}=\left|\frac{\mathrm{d} f}{\mathrm{~d} a}\right| \sigma_{a}$

Function sufficiently linear within ± 0 : linear error propagation applicable

Linear error propagation: Sometimes not applicable ...

In this situation linear error propagation is not applicable

Linear error propagation (general case)

Consider a measurement of values x_{i} and their covariances:

$$
\vec{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \quad V_{i j}=\operatorname{cov}\left[x_{i}, x_{j}\right]
$$

Let y be a function of the $x: \quad y=f(\vec{x})$

What is the variance of y ?
Approach: Taylor expansion of y around $\vec{\mu}$ where $\mu_{i}=E\left[x_{i}\right]$

In practice we estimate μ_{i}
by measured value x_{i}

$$
V[y] \equiv \sigma_{y}^{2}=E\left[y^{2}\right]-E[y]^{2}
$$

Linear error propagation formula

Taylor expansion: $\quad y(\vec{x}) \approx y(\vec{\mu})+\sum_{i=1}^{n}\left[\frac{\partial y}{\partial x_{i}}\right]_{\vec{x}=\vec{\mu}}\left(x_{i}-\mu_{i}\right)$
$E[y]$ is easy:

$$
E[y] \approx y(\vec{\mu}) \quad \text { as } \quad E\left[x_{i}-\mu_{i}\right]=0
$$

$E\left[y^{2}\right]: \quad E\left[y^{2}(\vec{x})\right] \approx y^{2}(\vec{\mu})+2 y(\vec{\mu}) \sum_{i=1}^{n}\left[\frac{\partial y}{\partial x_{i}}\right]_{\vec{x}=\vec{\mu}} E\left[x_{i}-\mu_{i}\right]$

$$
\begin{aligned}
& +E\left[\left(\sum_{i=1}^{n}\left[\frac{\partial y}{\partial x_{i}}\right]_{\vec{x}=\vec{\mu}}\left(x_{i}-\mu_{i}\right)\right)\left(\sum_{j=1}^{n}\left[\frac{\partial y}{\partial x_{j}}\right]_{\vec{x}=\vec{\mu}}\left(x_{j}-\mu_{j}\right)\right)\right] \\
= & y^{2}(\vec{\mu})+\sum_{i, j=1}^{n}\left[\frac{\partial y}{\partial x_{i}} \frac{\partial y}{\partial x_{j}}\right]_{\vec{x}=\vec{\mu}} V_{i j}
\end{aligned}
$$

Thus:

$$
\sigma_{y}^{2}=\sum_{i, j=1}^{n}\left[\frac{\partial y}{\partial x_{i}} \frac{\partial y}{\partial x_{j}}\right]_{\vec{x}=\vec{\mu}} V_{i j}
$$

Matrix notation

Let vector A be given by

$$
\vec{A}=\vec{\nabla} y, \quad \text { i.e., } A_{j}=\left(\frac{\partial y}{\partial x_{j}}\right)_{\vec{x}=\vec{\mu}}
$$

Then:

$$
\sigma_{y}^{2}=\sum_{i, j=1}^{n}\left[\frac{\partial y}{\partial x_{i}} \frac{\partial y}{\partial x_{j}}\right]_{\vec{x}=\vec{\mu}} V_{i j}=A^{\top} V A
$$

Example: $\quad y=\frac{x_{1}}{x_{2}}, \quad A=\binom{1 / x_{2}}{-x_{1} / x_{2}^{2}}$

$$
\begin{aligned}
\sigma_{y}^{2} & =\left(\frac{1}{x_{2}},-\frac{x_{1}}{x_{2}^{2}}\right)\left(\begin{array}{cc}
\sigma_{1}^{2} & \operatorname{cov}\left[x_{1}, x_{2}\right] \\
\operatorname{cov}\left[x_{1}, x_{2}\right] & \sigma_{2}^{2}
\end{array}\right)\binom{\frac{1}{x_{2}}}{-\frac{x_{1}}{x_{2}^{2}}} \\
& =\left(\frac{1}{x_{2}},-\frac{x_{1}}{x_{2}^{2}}\right)\binom{\frac{\sigma_{1}^{2}}{x_{2}}-\frac{x_{1}}{x_{2}^{2}} \operatorname{cov}\left[x_{1}, x_{2}\right]}{\frac{1}{x_{2}} \operatorname{cov}\left[x_{1}, x_{2}\right]-\frac{x_{1}}{x_{2}^{2}} \sigma_{2}^{2}}=\frac{1}{x_{2}^{2}} \sigma_{1}^{2}+\frac{x_{1}^{2}}{x_{2}^{4}} \sigma_{2}^{2}-2 \frac{x_{1}}{x_{2}^{3}} \operatorname{cov}\left[x_{1}, x_{2}\right] \\
& \rightarrow \frac{\sigma_{y}^{2}}{y^{2}}=\frac{\sigma_{1}^{2}}{x_{1}^{2}}+\frac{\sigma_{2}^{2}}{x_{2}^{2}}-2 \frac{\operatorname{cov}\left[x_{1}, x_{2}\right]}{x_{1} x_{2}}=\frac{\sigma_{y}^{2}}{y^{2}}=\frac{\sigma_{1}^{2}}{x_{1}^{2}}+\frac{\sigma_{2}^{2}}{x_{2}^{2}}-2 \frac{\rho \sigma_{1} \sigma_{2}}{x_{1} x_{2}}
\end{aligned}
$$

Linear error proportion: Examples

$$
\begin{aligned}
& y=a x \quad \rightarrow \quad \sigma_{y}^{2}=a^{2} \sigma_{x}^{2} \quad \text { i.e. } \sigma_{y}=|a| \sigma_{x} \\
& y=x^{n} \quad \rightarrow \quad \frac{\sigma_{y}^{2}}{y^{2}}=n^{2} \frac{\sigma_{x}^{2}}{x^{2}} \quad \text { i.e. } \frac{\sigma_{y}}{y}=|n| \frac{\sigma_{x}}{x} \\
& y=x_{1}+x_{2} \quad \rightarrow \quad \sigma_{y}^{2}=\sigma_{1}^{2}+\sigma_{2}^{2}+2 \operatorname{cov}\left[x_{1}, x_{2}\right] \\
& y=x_{1}-x_{2} \quad \rightarrow \quad \sigma_{y}^{2}=\sigma_{1}^{2}+\sigma_{2}^{2}-2 \operatorname{cov}\left[x_{1}, x_{2}\right] \\
& y=x_{1} x_{2} \quad \rightarrow \quad \frac{\sigma_{y}^{2}}{y^{2}}=\frac{\sigma_{1}^{2}}{x_{1}^{2}}+\frac{\sigma_{2}^{2}}{x_{2}^{2}}+2 \frac{\operatorname{cov}\left[x_{1}, x_{2}\right]}{x_{1} x_{2}}
\end{aligned}
$$

Adding variables means the absolute errors add in quadrature.

Multiplying variables means the relative errors add in quadrature.

Sanity checks:
Average of fully correlated measurements:

$$
\begin{aligned}
& y=\frac{1}{2}\left(x_{1}+x_{2}\right), \sigma_{1}=\sigma_{2} \equiv \sigma, \rho=1 \quad \rightsquigarrow \quad \sigma_{y}=\sigma \\
& y=x_{1}-x_{2}, \sigma_{1}=\sigma_{2} \equiv \sigma, \rho=1 \\
& \rightsquigarrow \quad \sigma_{y}^{2}=2 \sigma^{2}-2 \sigma^{2}=0
\end{aligned}
$$

Concrete example: Momentum resolution in tracking

Charged particle moving in constant magnetic field:

$$
p_{T} / \mathrm{GeV}=0.3 \times B / \text { Tesla } \times R / \mathrm{m}
$$

Measurements of space points yields Gaussian uncertainty for sagitta s which is related to p_{T} as

$$
R=\frac{L^{2}}{8 s}, \quad p_{T}=0.3 B \frac{L^{2}}{8 s}
$$

Momentum resolution: $\quad \frac{\sigma_{P_{T}}}{p_{T}}=\frac{\sigma_{s}}{s}=\frac{8 p_{T}}{0.3 B L^{2}} \sigma_{s}$

Important features:

- Relative momentum uncertainty proportional to momentum
- Relative uncertainty prop. to uncertainty of coordinate measurement

Example:
ATLAS nominal resolution

$$
\left(\frac{\sigma_{p_{T}}}{p_{T}}\right)^{2}=\bigsqcup^{0.001^{2}}+\left(0.0005 p_{T}\right)^{2}
$$

Linear error propagation for uncorrelated measurements

Special case: the x_{i} are uncorrelated, i.e., $\quad V_{i j}=\delta_{i j} \sigma_{i}^{2}$

$$
\sigma_{y}^{2}=\sum_{i=1}^{n}\left[\frac{\partial y}{\partial x_{i}}\right]_{\vec{x}=\vec{\mu}}^{2} \sigma_{i}^{2}
$$

These formulas are exact only for linear functions.
Approximation breaks down if function is nonlinear over a region comparable in size to the σ.

Example of Gaussian error propagation: Volume of a cylinder
 ```from sympy import * \\ from IPython.display import display, Latex```
 ```def gaussian_error_propagation(f, vars): \\ "|" \\ f: formula (sympy expression) \\ vars: list of independent variables and corresponding uncertainties \\ [(x1, sigma_x1), (x2, sigma_x2), ...] \\ "|" \\ sum = sympify("0") # empty sympy expression \\ for (x, sigma) in vars: \\ sum += diff(f, x)**2 * sigma**2 \\ return sqrt(simplify(sum))```

Show usage for a simple example: Volume of a cylinder with radius r and height h :

```
r, h, sigma_r, sigma_h = symbols('r, h, sigma_r, sigma_h', positive=True)
V = pi * r**2 * h # volume of a cylinder
```

```
sigma_V = gaussian_error_propagation(V, [(r, sigma_r), (h, sigma_h)])
```


$V=\pi h r^{2}, \sigma_{V}=\pi r \sqrt{4 h^{2} \sigma_{r}^{2}+r^{2} \sigma_{h}^{2}}$

Example of Gaussian error propagation:

Volume of a cylinder (now for correlated r and h)

```
def gaussian_error_propagation_corr(f, x, V):
    """
    f: function f = f(x[0], x[1], ...)
    x: list of variables
    V: covariance matrix (python 2d list)
    """
    sum = sympify("0") # empty sympy expression
    for i in range(len(x)):
        for j in range(len(x)):
            sum += diff(f, x[i]) * diff(f, x[j]) * V[i][j]
    return sqrt(simplify(sum))
```

Show usage for a simple example: Volume of a cylinder with radius r and height h :

```
r, h, sigma_r, sigma_h = symbols('r, h, sigma_r, sigma_h', positive=True
rho = Symbol("rho", real=True) # correlation coefficient
V = pi * r**2 * h # volume of a cylinder
```

```
vars = [r, h]
cov_matrix = [[sigma_r**2, rho * sigma_r * sigma_h],
    [rho * sigma_r * sigma_h, sigma_h**2]]
```

Matrix(cov_matrix)
$\left[\begin{array}{cc}\sigma_{r}^{2} & \rho \sigma_{h} \sigma_{r} \\ \rho \sigma_{h} \sigma_{r} & \sigma_{h}^{2}\end{array}\right]$

$$
r=3 \mathrm{~cm}, \sigma_{r}=0.1 \mathrm{~cm}
$$

$$
h=5 \mathrm{~cm}, \sigma_{h}=0.1 \mathrm{~cm}
$$

$$
V=\pi r^{2} h=141.4 \mathrm{~cm}^{3}
$$

Uncertainty of the
cylinder volume V depends on the correlation coefficient ρ :

ρ	σv
-1	$6.6 \mathrm{~cm}^{3}$
0	$9.8 \mathrm{~cm}^{3}$
1	$12.3 \mathrm{~cm}^{3}$

```
sigma_V = gaussian_error_propagation_corr(V, vars, cov_matrix)
display(Latex(f"$V = {latex(V)}, \, \sigma_V = {latex(sigma_V)}$"))
```

$V=\pi h r^{2}, \sigma_{V}=\pi r \sqrt{4 h^{2} \sigma_{r}^{2}+4 h r \rho \sigma_{h} \sigma_{r}+r^{2} \sigma_{h}^{2}} \quad$ [gaussian error propagation correlated variables.ipynb]

Linear error propagation:
 Generalization from $\mathbb{R}^{n} \rightarrow \mathbb{R}$ to $\mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$

Generalization: Consider set of m functions:

$$
\vec{y}(\vec{x})=\left(y_{1}(\vec{x}), y_{2}(\vec{x}), \ldots, y_{m}(\vec{x})\right)
$$

Then:

$$
\operatorname{cov}\left[y_{k}, y_{l}\right] \equiv U_{k l} \approx \sum_{i, j=1}^{n}\left[\frac{\partial y_{k}}{\partial x_{i}} \frac{\partial y_{l}}{\partial x_{j}}\right]_{\vec{x}=\vec{\mu}} V_{i j}
$$

In matrix notation:

$$
U=A V A^{\top} \quad A_{i j}=\left[\frac{\partial y_{i}}{\partial x_{j}}\right]_{\vec{x}=\vec{\mu}}
$$

Reduction of the standard deviation for repeated independent measurements

Consider the average of n independent observation x_{i} :

$$
\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i}
$$

Expectation values and variance of the measurements:

$$
E\left[x_{i}\right]=\mu_{i} \quad V\left[x_{i}\right]=\sigma^{2}
$$

Standard deviation of the mean:

$$
V[\bar{x}]=\frac{1}{n^{2}} \sum_{i=1}^{n} \sigma_{i}^{2}=\frac{1}{n} \sigma^{2} \quad \rightarrow \quad \sigma_{\bar{x}}=\frac{\sigma}{\sqrt{n}}
$$

Standard deviation of the mean decreases as $1 / \sqrt{ } n$

Example: Photon energy measurements

The energy resolution of a γ-ray detector used to investigate a decaying nuclear isotope is 50 keV .

- If only one photon is detected the energy of the decay is known to 50 keV
- 100 collected decays: energy of the decay known to 5 keV
- To reach 1 keV one needs to observe 2500 decays

Averaging uncorrelated measurements

Consider two uncorrelated measurements: $\quad x_{1} \pm \sigma_{1}, x_{2} \pm \sigma_{2}$
Linear combination:

$$
y=w_{1} x_{1}+w_{2} x_{2} \quad \sigma_{y}^{2}=w_{1}^{2} \sigma_{1}^{2}+w_{2}^{2} \sigma_{2}^{2}
$$

Now choose the weights such that σ_{y}^{2} is minimal
(under the condition $w_{1}+w_{2}=1$):

$$
\frac{\partial}{\partial w_{i}} \sigma_{y}^{2}=0 \quad \rightarrow \quad w_{i}=\frac{1 / \sigma_{i}^{2}}{1 / \sigma_{1}^{2}+1 / \sigma_{2}^{2}}
$$

And for the uncertainty of y we obtain (linear error propagation):

$$
\frac{1}{\sigma_{y}^{2}}=\frac{1}{\sigma_{1}^{2}}+\frac{1}{\sigma_{2}^{2}}
$$

In general, for n uncorrelated measurements:

$$
y=\sum_{i=1}^{n} w_{i} x_{i}, \quad w_{i}=\frac{1 / \sigma_{i}^{2}}{\sum_{j=1}^{n} 1 / \sigma_{j}^{2}}, \quad \frac{1}{\sigma_{y}^{2}}=\sum_{j=1}^{n} \frac{1}{\sigma_{j}^{2}}
$$

Example: Averaging uncorrelated measurements

$р_{T}$ of a particle in three subsystems of the ATLAS detector:

detector	$p_{T}(\mathrm{GeV})$
pixel detector	20 ± 2
semiconductor tracker	21 ± 1
transition radiation tracker	22 ± 4

Weighted average:

$$
(20.86 \pm 0.87) \mathrm{GeV}
$$

$$
\begin{aligned}
p_{T} & =\frac{\frac{20 \mathrm{GeV}}{4 \mathrm{GeV}^{2}}+\frac{21 \mathrm{GeV}}{1 \mathrm{GeV}^{2}}+\frac{22 \mathrm{GeV}}{16 \mathrm{GeV}^{2}}}{\frac{1}{4 \mathrm{GeV}^{2}}+\frac{1}{1 \mathrm{GeV}^{2}}+\frac{1}{16 \mathrm{GeV}^{2}}} \\
& =20.86 \mathrm{GeV}
\end{aligned}
$$

$$
\begin{aligned}
\sigma_{p_{T}} & =\left[\frac{1}{4 \mathrm{GeV}^{2}}+\frac{1}{1 \mathrm{GeV}^{2}}+\frac{1}{16 \mathrm{GeV}^{2}}\right]^{-1 / 2} \\
& =0.87 \mathrm{GeV}
\end{aligned}
$$

Weighted average from Bayesian approach

Consider two measurements x_{1} and x_{2} with Gaussian uncertainties σ_{1} and σ_{2}. In a Bayesian approach the probability distribution for the true value μ is given by

$$
p(\mu) \propto L\left(x_{1}, x_{2} \mid \mu\right) \pi(\mu)
$$

Assuming a flat prior $\pi(\mu) \equiv 1$ and independence of the two measurements one obtains

$$
\begin{aligned}
p(\mu) & \propto L\left(x_{1} \mid \mu\right) L\left(x_{2} \mid \mu\right) \\
& =G\left(x_{1} ; \mu, \sigma_{1}\right) G\left(x_{2} ; \mu, \sigma_{2}\right) \\
& \propto \exp \left[-\frac{1}{2}\left(\frac{\left(\mu-x_{1}\right)^{2}}{\sigma_{1}^{2}}+\frac{\left(\mu-x_{2}\right)^{2}}{\sigma_{2}^{2}}\right)\right]
\end{aligned}
$$

The product of the two Gaussians gives a Gaussian with mean

$$
\mu=w_{1} x_{1}+w_{2} x_{2} \quad \text { where } w_{i}=\frac{1 / \sigma_{i}^{2}}{1 / \sigma_{1}^{2}+1 / \sigma_{2}^{2}}
$$

and standard deviation

$$
\frac{1}{\sigma^{2}}=\frac{1}{\sigma_{1}^{2}}+\frac{1}{\sigma_{2}^{2}} \quad \rightarrow \text { same result as before }
$$

Monte Carlo error propagation

Example:

Ratio of two Gaussian distributed quantities

$$
\begin{aligned}
& x=5 \pm 1 \\
& y=5 \pm 1
\end{aligned}
$$

Approach: draw values for x and y many times and fill histogram with ratios

Standard linear error prop.:

$$
R=1 \pm 0.28
$$

Mean and rms of histogram:

$$
R=1.05 \pm 0.33
$$

Rule of thumb: ratio of two Gaussians will be approximately Gaussian if fractional uncertainty is dominated by numerator, and denominator cannot be small compared to numerator

Classification of Uncertainties

Classification of Errors/Uncertainties

1. Mistakes

The experimenter did something wrong

2. Statistical Uncertainties

Uncertainties in the result due to fluctuations which can be addressed by statistical methods.
3. Systematic Uncertainties

Uncertainties from any other sources

Nothing deep here. Distinction useful order thoughts

Example for experimental mistakes

1. Mistakes

The experimenter did something wrong

Superluminal neutrinos - OPERA experiment

- OPERA measures neutrinos produced at CERN
- September 2011: OPERA announced measurement of faster than light neutrinos
- 6 standard deviations of difference
- Turned out to be due to loose fiberoptic cable

How to deal with mistakes?

Avoid!

- Concentration while performing experiment
- Good understanding of setup and measurement details
- Check of setup and measurement principle by independent observers
- Replication studies

Examples for statistical uncertainties

2. Statistical Uncertainties

- Uncertainties in the result due to fluctuations which can be addressed by statistical methods.
- Number of decays in radioactive material
- Detector signal of particle
- Variation of reaction time using stopwatch
- Atmospheric distortion
- Usually not possible to correct
- Usually possible to decrease by collecting more data

How to deal with statistical uncertainties?

- Main part of this lecture
- Useful: When repeating measurement, statistical fluctuation usually independent
- This allows for simple mathematical description
- Usually: The more knowledge you have about the nature of the fluctuations, the better you can deal with them!

3.2 Systematic Uncertainties

Examples of systematic uncertainties

- Borexino experiment searching for neutrino oscillations in Gran Sasso underground laboratory
- Balloon of scintillator liquid, light measured by photomultipliers
- Turned out to have a small leak, causing deformation effect on measurement
- Other:
- Thermal expansion of equipment
- Pressure change in gas detectors
- Model assumptions (e.g. neglecting friction)
- Theory uncertainties (e.g. for subtracting backgrounds)
- Imperfect calibration, e.g. of a calorimeter

Borexino experiment

How to deal with systematic uncertainties?

Systematic effect: Cause of some deviation from the correct result

Systematic error: Size of the deviation
Systematic uncertainty: Estimate of the deviation
R. Barlow
"Systematic Errors, Fact and
Fiction," hep-ex/0207026

Generally:

1. Find and understand all relevant systematic effects
2. Correct them as far as possible
3. Uncertainty in the size of the correction is then the systematic uncertainty

How to deal with systematic uncertainties?

- Different effects for different experiments - hard to give general approach
- Often systematic uncertainty main difficulty
- Much neglected in statistics literature
- In data analyses in high energy physics: statistical uncertainties often straightforward, systematics need most of the time
- Strongly helped by experience
- Studying examples helps
- Often hard to estimate effects precisely

Bayesian approach to systematic uncertainties

- Systematic uncertainties usually do not independently fluctuate from measurement to measurement hard do describe in frequentist terms
- Some systematics are Bayesian only - description of knowledge about system

Quantity of interest: θ, prior knowledge: $\pi(\theta)$
Likelihood depends parameter $\boldsymbol{\nu}$ ("nuisance parameter")
We simply treat θ and ν as an unknown parameters:

$$
P(\theta, \nu \mid \text { data }) \propto L(\text { data } \mid \theta, \nu) \pi(\theta, \nu)
$$

"Bayesians lose no sleep over systematics" (lecture S. Oser)

As we are only interested in θ, we marginalize by integrating over ν :

$$
P(\theta)=\int P(\theta, \nu) d \nu
$$

Prior knowledge on ν often is the result of a calibration measurement.

Example 1: Efficiency correction

- Want to calculate e.g. cross section, measure particle number
- $\langle n\rangle_{\text {meas }}=\langle n\rangle_{\text {true }} \cdot \epsilon$, with ϵ the efficiency $\rightarrow\langle n\rangle_{\text {true }}=\langle n\rangle_{\text {meas }} / \epsilon$
- Estimate ϵ from (Monte Carlo) simulations
- Uncertainty from binomial fluctuations
- Uncertainty from how well the simulation describes the real world
- Bayesian: This results in some probability distribution $p(\epsilon)$; from this we get $p\left(\langle n\rangle_{\text {true }}, \epsilon\right)$, and we marginalize out ϵ
- Frequentist: Define repetition of experiment as repeating both the measurement of n and the simulation - now both effects can be considered as frequencies

- This does not include the uncertainty in the simulation describing the real world
- Ask: Which detector effects are relevant? And how are they implemented in the MC code?

Example 2: Pendulum

- $g \approx\left(2 \pi / T_{0}\right)^{2} \cdot L$

1. Not a harmonic oscillator at finite amplitude
2. Weight is not a point - angular momentum
3. Buoyancy of weight in atmosphere
4. Damping of oscillations by air
5. Mass of the wire
6. Elasticity of wire
7. Increased effective weight by air being dragged along (non-dissipative)

Example 2: Pendulum

- Which effects are dominant?
- Calculate effects
- Fully
- Estimate via approximation
- Just some maximum possible effect?
- Try to decrease effects
- With a longer wire
- With smaller amplitude
- With denser material
- In a vacuum

Speed of light measurements vs. year of publication

Klein JR, Roodman A. 2005.
Annu. Rev. Nucl. Part. Sci. 55:141-63

Experimenter's bias?

Do researchers unconsciously work towards a certain value?

Possible bias:
the investigator searches for the source or sources of such errors, and continues to search until she/he gets a result close to the accepted value.

Example 3: Thermal expansion

- Measurement may be affected by thermal expansion
- Calibration at one temperature, measurement at another
- Similarly: Particle detector signals depend on temperature, atmospheric pressure etc.

Possibility 1: We also have a temperature measurement

- Calculate effect from thermal expansion and correct for it

- Propagate uncertainty of temperature measurement and expansion coefficient

Possibility 2: We do not have a temperature measurement

- Consider possible range of temperatures in experiment hall (summer, winter, open windows etc.)
- Propagate uncertainty to final result

Example 4: Invariant mass background

- Measurement of $\mathrm{J} / \psi \rightarrow e^{+} e^{-}$
- Background estimated from measuring $e^{+} e^{+}$and $e^{-} e^{-}$pairs
- How good is this estimate?
- Hard to list every contributing effect
- Instead try another estimate based on track rotations (TrkRot)
- If systematic effects are very different, the difference can tell us about systematic error

Inclusive J / ψ production in pp collisions at $\sqrt{s}=2.76 \mathrm{TeV}$, ALICE Collaboration

Handling discrete systematic uncertainties

Example: choice of model used to determine a correction R

With 1 preferred model and one other, quote $R_{1} \pm\left|R_{1}-R_{2}\right|$
With 2 models of equal status, quote $\frac{R_{1}+R_{2}}{2} \pm \frac{\left|R_{1}-R_{2}\right|}{\sqrt{2}}$
n equal models, quote $\bar{R} \pm \sqrt{\frac{1}{n-1} \sum_{i=1}^{n}\left(R_{i}-\bar{R}\right)^{2}}=\sqrt{\frac{n}{n-1}\left(\overline{R^{2}}-\bar{R}^{2}\right)}$

Two extreme models, quote $\frac{R_{1}+R_{2}}{2} \pm \frac{\left|R_{1}-R_{2}\right|}{\sqrt{12}}$

Example 5: Resistor

- These have tolerances printed on them
- But better to measure them in addition, vastly decreases uncertainty

Sanity / Consistency checks

Look for systematic effects by repeating the analysis with changes which should make no difference:

Data subsets
Magnet up/down
Different selection cuts
Different histogram bin sizes and fit ranges
Different Event Generator for efficiency calculation
Look for impossibilities

If a check passes the test:
move on and do not add the discrepancy to the systematic uncertainty
If a check fails: try to identify the reason. Only as very last resort, add contribution to total systematic uncertainty. This might underestimate the real uncertainty.

Blind analyses

Avoid experimenter's bias by hiding certain aspects of the data.

Things that can be hidden in the analysis:

- The signal events, when the signal occurs in a well-defined region of the experiment's phase space.
- The result, when the numerical answer can be separated from all other aspects of the analysis.
- The number of events in the data set, when the answer relies directly upon their count.
- A fraction of the entire data set.

Example: GERDA experiment

- search for neutrinoless double beta decay
- Signal: sharp peak
- Background model fixed prior to unblinding of signal region

Example 6: D^{0} mass

- Largest contribution found to be mass of kaons
- Take mass and uncertainty from literature (e.g. PDG)
- Propagate to D meson mass
- Here: Repeated analysis with different mass assumptions

Combination of systematic uncertainties

Systematic uncertainties are usually given as standard deviations $\left(x \pm \sigma_{x}\right)$, corresponding to a 68\% probability.

Other meaning (e.g. maximum extent uncertainty) this should be explicitly stated.

In most cases one tries to find independent sources of systematic uncertainties. These independent uncertainties are therefore added in quadrature:

$$
\sigma_{\mathrm{tot}}^{2}=\sigma_{1}^{2}+\sigma_{2}^{2}+\ldots+\sigma_{n}^{2}
$$

Often a few source dominate the systematic uncertainty

\rightarrow No need to work to hard on precisely estimating the small uncertainties

Systematic uncertainties:

Covariance matrix approach (I)

Consider two measurement x_{1} and x_{2} with with individual random uncertainties $\sigma_{1, r}$ and $\sigma_{2, r}$ and a common systematic uncertainty σ_{s} :

$$
x_{i}=x_{\text {true }}+\Delta x_{i, r}+\Delta x_{\mathrm{s}}
$$

$$
\begin{aligned}
& \left\langle\Delta x_{i, r}\right\rangle=0, \quad\left\langle\Delta x_{s}\right\rangle=0, \\
& \left\langle\left(\Delta x_{i, r}\right)^{2}\right\rangle=\sigma_{i, r}^{2}, \quad\left\langle\left(\Delta x_{s}\right)^{2}\right\rangle=\sigma_{s}^{2}
\end{aligned}
$$

Variance:

$$
\begin{aligned}
V\left[x_{i}\right] & =\left\langle x_{i}^{2}\right\rangle-\left\langle x_{i}\right\rangle^{2} \\
& =\left\langle\left(x_{\text {true }}+\Delta x_{i, r}+\Delta x_{s}\right)^{2}\right\rangle-\left\langle x_{\text {true }}+\Delta x_{i, r}+\Delta x_{s}\right\rangle^{2} \\
& =\left\langle\left(\Delta x_{i, r}+\Delta x_{s}\right)^{2}\right\rangle \\
& =\sigma_{i, r}^{2}+\sigma_{s}^{2}
\end{aligned}
$$

Covariance:

$$
\begin{aligned}
\operatorname{cov}\left[x_{1}, x_{2}\right] & =\left\langle x_{1} x_{2}\right\rangle-\left\langle x_{1}\right\rangle\left\langle x_{2}\right\rangle \\
& =\ldots \\
& =\sigma_{s}^{2}
\end{aligned}
$$

Systematic uncertainties:
 Covariance matrix approach (II)

Covariance matrix for x_{1} and x_{2} :

$$
V=\left(\begin{array}{cc}
\sigma_{1, r}^{2}+\sigma_{s}^{2} & \sigma_{s}^{2} \\
\sigma_{s}^{2} & \sigma_{2, r}^{2}+\sigma_{s}^{2}
\end{array}\right)
$$

This also works when the uncertainties are quoted as relative uncertainties:

$$
\sigma_{s}=\varepsilon x \quad \rightsquigarrow \quad V=\left(\begin{array}{cc}
\sigma_{1, r}^{2}+\varepsilon^{2} x_{1}^{2} & \varepsilon^{2} x_{1} x_{2} \\
\varepsilon^{2} x_{1} x_{2} & \sigma_{2, r}^{2}+\varepsilon^{2} x_{1}^{2}
\end{array}\right)
$$

Example:

Transverse momentum spectrum of the Higgs boson

Correlation matrix of the p_{T} bins:

Weighted average of correlated data points

Consider n data points y_{i} with covariance matrix $V: \quad \vec{y}=\left(y_{1}, y_{2}, \ldots, y_{n}\right)$
One can calculate a weighted average λ by minimizing

$$
\chi^{2}(\lambda)=(\vec{y}-\vec{\lambda})^{\top} V^{-1}(\vec{y}-\vec{\lambda})
$$

One obtains (here without calculation):

$$
\hat{\lambda}=\sum_{i=1}^{N} w_{i} y_{i} \quad w_{i}=\frac{\sum_{j=1}^{n}\left(V^{-1}\right)_{i, j}}{\sum_{k, l=1}^{n}\left(V^{-1}\right)_{k, l}}
$$

Variance results from error propagation:

$$
\sigma_{\hat{\lambda}}^{2}=\vec{w}^{\top} V \vec{w}=\sum_{i, j=1}^{n} w_{i} V_{i j} w_{j}
$$

Minimizing the χ^{2} gives the best linear unbiased

- BLUE combination may be biased if uncertainties not known or are estimated from measured values
- Improvement: iterative approach (rescaling uncertainties based on previous iteration) estimate (BLUE) \rightarrow linear unbiased estimator with the lowest variance

Special case:

Weighted average of two correlated measurements

Consider two measurements with covariance matrix V ($\rho=$ correlation coeff.):

$$
y_{1}, y_{2} \quad V=\left(\begin{array}{cc}
\sigma_{1}^{2} & \rho \sigma_{1} \sigma_{2} \\
\rho \sigma_{1} \sigma_{2} & \sigma_{2}^{2}
\end{array}\right)
$$

Applying the formulas from the previous slide:

$$
\begin{array}{ll}
V^{-1}=\frac{1}{1-\rho^{2}}\left(\begin{array}{cc}
\frac{1}{\sigma_{1}^{2}} & \frac{-\rho}{\sigma_{1} \sigma_{2}} \\
\frac{-\rho}{\sigma_{1} \sigma_{2}} & \frac{1}{\sigma_{2}^{2}}
\end{array}\right) & \hat{\lambda}=w y_{1}+(1-w) y_{2} \\
w=\frac{\sigma_{2}^{2}-\rho \sigma_{1} \sigma_{2}}{\sigma_{1}^{2}+\sigma_{2}^{2}-2 \rho \sigma_{1} \sigma_{2}} & V[\hat{\lambda}]=\sigma^{2}=\frac{\left(1-\rho^{2}\right) \sigma_{1}^{2} \sigma_{2}^{2}}{\sigma_{1}^{2}+\sigma_{2}^{2}-2 \rho \sigma_{1} \sigma_{2}} \\
\text { equivalently: } \\
& \frac{1}{\sigma^{2}}=\frac{1}{1-\rho^{2}}\left[\frac{1}{\sigma_{1}^{2}}+\frac{1}{\sigma_{2}^{2}}-\frac{2 \rho}{\sigma_{1} \sigma_{2}}\right]
\end{array}
$$

Summary of systematic uncertainties

- Large variety of effects - hard to give general recipes
- Systematics do not mean mistakes
- Typical approaches:
- Decrease uncertainties (e.g. with ancillary measurements, improved setup ...)
- Estimate and correct effects
- Compare different methods of the same analysis
- Estimate magnitude of effect
- Quadratic sum means, dominant contributions should get the most attention
- Often more important not to overlook a large effect rather than having a precise estimate of a smaller one
- A systematic effect that is not found becomes a mistake.

3.3 Priors

Proper and improper priors

- Probability distributions must be normalised \rightarrow unnormalizable distributions are not allowed

$$
p(x \mid m) \sim \frac{p(m \mid x) p(x)}{\int p(m \mid x) p(x) \mathrm{d} x}
$$

- Often: Even if prior is not normalisable prior*likelihood is
- Mathematically convenient
- Non-normalizable priors are called improper priors
- Often simplifies calculation, occasionally leads to problems

The precise value of the upper edge does not change the result much

Informative and uninformative priors

- Priors contain our information before analysing the data
- If they do, they are called informative
- If we try to find distributions that represent "no information", these are called uninformative priors
- Intermediate case: We have some information, but not enough to fully constrain the prior (e.g. approximate scale of some parameter)
- Intuitively we would say that more even distribution of probabilities represents less information
- This should certainly be true if our knowledge is symmetric in reordering the states
- Can we come up with a more general principle?

Information content

- Idea: Define information in some result
- Unsurprising results contain less information, thus information must decrease with the probability of the result
- Information should add linearly $I_{1,2}=I_{1}+I_{2}$
- The common probability of two independent events is the product $p(x, y)=p(x) p(y)$
- This motivates the definition of the self information

$$
I(x)=\log \frac{1}{p(x)}
$$

- In information theory, often base 2 logarithms

The maximum entropy principle

- How much information is contained in a distribution can be assessed by the expectation value of the information $\langle I(x)\rangle$

$$
S=-\sum_{i} p_{i} \log p_{i}
$$

- This is called the Shannon entropy or information entropy
- Now look for priors which maximise this quantity. These are called maximum entropy priors, MAXENT, PME, ...
- Jaynes warns not to associate to much philosophical meaning here, in particular to the concept of "information".

Claude Shannon (1916-2001)

- For now, we just see what the result is

Maximum entropy example

- We have some discrete values n and associated p_{n}
. Chose p_{i} such that $S=-\sum_{n} p_{n} \log p_{n}$ is maximised while $\sum_{i} p_{i}=1$
- Can introduce Lagrange multipliers and set derivative of
$-\sum_{n} p_{n} \log p_{n}+\lambda\left(\sum p_{n}-1\right)$ to 0

$$
0=-\log p_{n}-1+\lambda
$$

- Thus all p_{n} must be equal!

Maximum entropy with known average

- We assume that the n are integer values
- Our prior information is an average m, but nothing more . Additional constraint: $\sum_{n} n p_{n}=m$
- Now look at derivatives of
$-\sum_{n} p_{n} \log p_{n}+\lambda\left(\sum_{n} p_{n}-1\right)+\vartheta\left(\sum_{n} \frac{n p_{n}}{N}-m\right)$
$0=-\log p_{n}-1+\lambda+n \frac{\vartheta}{N}$
- So the p_{n} follow an exponential law $p_{n} \sim \exp (\alpha n)$

Maximum Entropy for continuous distributions

- To go to continuous case, increase density of states
- Result depends on how exactly this is done - no direct translation
- However, consider another distribution with q_{n} all equal
- Then $S_{S J}=-\sum_{n} p_{n} \log \left(p_{n} / q_{n}\right)$ would still be maximised
- This can be generalised as $S_{c}=-\int p(x) \log \frac{p(x)}{m(x)} \mathrm{d} x$
- Kullback-Leibler divergence / relative entropy
- $m(x)$ tells us the distribution of the continuous limit of the q_{i}
- If we know $m(x)$, the "uninformative" distribution without constraints, then we maximise S_{c} to get the corresponding distribution with constraints
- For constant $m(x)$:
- Constraint on the mean $\rightarrow p(x)$ is exponential; Constraint on mean and variance $\rightarrow p(x)$ is Gaussian

Scaling priors

- If translation of a variable changes nothing in our knowledge, then $p(x)$ is constant

$$
p(x)=p(x+\Delta x) \Longrightarrow p(x)=\text { const } .
$$

- If rescaling of the problem changes nothing in our knowledge, then $p(x)$ is the inverse of x

$$
p(x)=\frac{1}{\alpha} p\left(\frac{x}{\alpha}\right) \Longrightarrow p(x) \sim \frac{1}{x}
$$

- This gives a density that is constant in the logarithm

$$
p_{\log x}(\log x)=\text { const }
$$

Jeffreys' prior

- Jeffreys: Result should be the same independent of parametrisation
- Uncertainty depends on what can be extracted from data
- Thus prior should depend on likelihood, which has transformation properties Jeffreys' prior (non-informative prior) for a model $L(\vec{x} \mid \vec{\theta})$ of the measurement:

expectation value evaluated by int $\overrightarrow{\text { egrating }}$ over all possible results

Examples:

Should our prior information depend on what measurement we do?

PDF parameter	Jeffreys' prior
Poissonian mean μ	$p(\mu) \propto 1 / \sqrt{ } \mu$
Gaussian mean μ	$p(\mu) \propto 1$

Jeffreys' prior: Example

Exponential distribution:

$$
L(t \mid \tau)=\frac{1}{\tau} e^{-t / \tau}
$$

Jeffreys' prior: $\quad \pi(\tau) \propto \sqrt{I(\tau)}=\sqrt{E\left[\left(\frac{d}{d \tau} \ln L(t \mid \tau)\right)^{2}\right]}$

$$
\begin{aligned}
& \frac{d}{d \tau} \ln L(t \mid \tau)=-\frac{1}{\tau}+\frac{t}{\tau^{2}} \\
& E\left[\left(\frac{t}{\tau^{2}}-\frac{1}{\tau}\right)^{2}\right]=E\left[\left(\frac{t-\tau}{\tau^{2}}\right)^{2}\right]=\frac{1}{\tau^{4}} V[t]=\frac{\tau^{2}}{\tau^{4}}=\frac{1}{\tau^{2}}
\end{aligned}
$$

$$
\rightsquigarrow \quad \pi(\tau) \propto \frac{1}{\tau} \quad \text { (prior distribution) }
$$

Conjugate priors - examples

- Conjugate prior: posterior=prior*likelihood is from the same class of functions
- For ease of calculation
- A flat distribution is a special case of all
- e.g. Gaussian with $\sigma \rightarrow \infty$

Likelihood	Conjugate Prior
Binomial	Beta
Poisson	Gamma
Gaussian	Gaussian
Exponential	Gamma

Summary priors

- The problem of assigning priors is quite difficult
- Some approaches try to remove the discussion, giving rules for which distribution to take \rightarrow objective Bayes
- In many practical applications the prior is obvious
- In some of the most interesting ones it is not

