{ "cells": [ { "attachments": {}, "cell_type": "markdown", "metadata": { "collapsed": false }, "source": [ "# Calculate the Fourier coefficient $v_2$ from two-particle correlations " ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [], "source": [ "import numpy as np\n", "from itertools import combinations\n", "import math as m" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": { "collapsed": false }, "source": [ "## Read data" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [], "source": [ "event, phi = np.loadtxt(\"dndphi_events.csv\", delimiter=',', skiprows=1, unpack=True)" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": { "collapsed": false }, "source": [ "## Define function that calculates $v_2$ for a given event\n", "\n", "One can use [``itertools.combinations``](https://docs.python.org/3/library/itertools.html#itertools.combinations) to get all pairs for a given 1d array." ] }, { "attachments": {}, "cell_type": "markdown", "metadata": { "collapsed": false }, "source": [ "\n", "The function we use here is\n", "$$ c_n\\{2\\} \\equiv\\left\\langle\\left\\langle e^{i n\\left(\\varphi_1-\\varphi_2\\right)}\\right\\rangle\\right\\rangle=\\left\\langle v_n^2\\right\\rangle $$\n", "whereas the ´v2´ will average over all pairs from $\\varphi$s and the main function will average over all evets\n", "\n", "\n", "\n", "Note that only the real part is kept, which $\\exp(i2 \\varphi)$ is now $\\cos(2 \\varphi)$\n", "" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [], "source": [ "def v2(phi_vals):\n", " temp=combinations(phi_vals,2)\n", " all=0\n", " num=0\n", " for i in temp:\n", " all+=m.cos(2*(i[0]-i[1]))\n", " num+=1\n", " return all/num" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": { "collapsed": false }, "source": [ "## Loop over all events and determine $v_2$ averaged over all events" ] }, { "cell_type": "code", "execution_count": 20, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "v2: 0.1462940675740694\n" ] } ], "source": [ "v2val = np.array([]) # array with v2 values for each event, can use numpy.append() to append a value\n", "\n", "nevt = 100\n", "for i in range(nevt):\n", " phi_vals = phi[event == i]\n", " v2val=np.append(v2val,v2(phi_vals))\n", "print('v2:',m.sqrt(sum(v2val)/nevt))" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "argv": [ "/usr/bin/python3", "-m", "ipykernel", "--HistoryManager.enabled=False", "--matplotlib=inline", "-c", "%config InlineBackend.figure_formats = set(['retina'])\nimport matplotlib; matplotlib.rcParams['figure.figsize'] = (12, 7)", "-f", "{connection_file}" ], "display_name": "Python 3 (system-wide)", "env": {}, "language": "python", "metadata": { "cocalc": { "description": "Python 3 programming language", "priority": 100, "url": "https://www.python.org/" } }, "name": "python3", "resource_dir": "/ext/jupyter/kernels/python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.12" }, "orig_nbformat": 4 }, "nbformat": 4, "nbformat_minor": 4 }