{
"cells": [
{
"attachments": {},
"cell_type": "markdown",
"metadata": {
"collapsed": false
},
"source": [
"# Calculate the Fourier coefficient $v_2$ from two-particle correlations "
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"import numpy as np\n",
"from itertools import combinations\n",
"import math as m"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {
"collapsed": false
},
"source": [
"## Read data"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"event, phi = np.loadtxt(\"dndphi_events.csv\", delimiter=',', skiprows=1, unpack=True)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {
"collapsed": false
},
"source": [
"## Define function that calculates $v_2$ for a given event\n",
"\n",
"One can use [``itertools.combinations``](https://docs.python.org/3/library/itertools.html#itertools.combinations) to get all pairs for a given 1d array."
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {
"collapsed": false
},
"source": [
"\n",
"The function we use here is\n",
"$$ c_n\\{2\\} \\equiv\\left\\langle\\left\\langle e^{i n\\left(\\varphi_1-\\varphi_2\\right)}\\right\\rangle\\right\\rangle=\\left\\langle v_n^2\\right\\rangle $$\n",
"whereas the ´v2´ will average over all pairs from $\\varphi$s and the main function will average over all evets\n",
"\n",
"\n",
"\n",
"Note that only the real part is kept, which $\\exp(i2 \\varphi)$ is now $\\cos(2 \\varphi)$\n",
""
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"def v2(phi_vals):\n",
" temp=combinations(phi_vals,2)\n",
" all=0\n",
" num=0\n",
" for i in temp:\n",
" all+=m.cos(2*(i[0]-i[1]))\n",
" num+=1\n",
" return all/num"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {
"collapsed": false
},
"source": [
"## Loop over all events and determine $v_2$ averaged over all events"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"v2: 0.1462940675740694\n"
]
}
],
"source": [
"v2val = np.array([]) # array with v2 values for each event, can use numpy.append() to append a value\n",
"\n",
"nevt = 100\n",
"for i in range(nevt):\n",
" phi_vals = phi[event == i]\n",
" v2val=np.append(v2val,v2(phi_vals))\n",
"print('v2:',m.sqrt(sum(v2val)/nevt))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"argv": [
"/usr/bin/python3",
"-m",
"ipykernel",
"--HistoryManager.enabled=False",
"--matplotlib=inline",
"-c",
"%config InlineBackend.figure_formats = set(['retina'])\nimport matplotlib; matplotlib.rcParams['figure.figsize'] = (12, 7)",
"-f",
"{connection_file}"
],
"display_name": "Python 3 (system-wide)",
"env": {},
"language": "python",
"metadata": {
"cocalc": {
"description": "Python 3 programming language",
"priority": 100,
"url": "https://www.python.org/"
}
},
"name": "python3",
"resource_dir": "/ext/jupyter/kernels/python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.12"
},
"orig_nbformat": 4
},
"nbformat": 4,
"nbformat_minor": 4
}