Introduction to Accelerator Physics

Yuri A. Litvinov y.litvinov@gsi.de

Heidelberg WS 2022/23 Physikalisches Institut der Universität Heidelberg

Lecture Dates

https://uebungen.physik.uni-heidelberg.de/vorlesung/20222/1611/lecture

Date	Торіс
19.10.2022	Introduction and basic definitions
26.10.2022	Accelerating structures
02.11.2022	Accelerator Components
09.11.2022	Optics with magnets (1)
16.11.2022	Optics with magnets (2)
23.11.2022	Equations of motion
30.11.2022	Phase ellipses and magneto-optical system / Transverse beam dynamics
07.12.2022	Transverse beam dynamics, beam stability / Longitudinal beam dynamics
14.12.2023	Phase space and beam cooling (Invitation)
11.01.2023	Space charge and beam-beam dynamics
18.01.2023	Physics at Storage Rings
25.01.2023	Physics at Colliders
01.02.2023	New accelerator technologies
08.02.2023	Student seminar
15.02.2023	reserve
22.02.2023	reserve

Wednesdays, 14:15-16:00

"Leistungskontrolle"

Accelerator Physics Related Applications

- Particle cancer therapie
- Cosmic rays
- Accelerator Mass Spectrometry
- Accelerator Driven System
- Energy recovery accelerator
- Superheavy elements
- Strongest magnetic field
- Tokamak
- Photon facility
- Isotopes for medicine

HELMHOLT

- Crystalline beams

2 Accelerator Types

Wideröe structure

Wideröe structure

Wideröe structure

Drift tubes (Wideröe structure):

Radio-Frequency Quadrupole (RFQ)

1970 Kapinskiy & Teplyakov

 \checkmark Length $l=1-3~{
m m}$

Sine-like shaped electrodes in z-direction

When x-min : y = max and the other way around

Field gradient in longitudinal z-direction

Magnetische Quadrupole J. Blewett, PR 88 (1952) 1197 Elektrische Quadrupole L. Teng, RSI 25 (1954) 264

HF-Quadrupol W. Paul et. Al., Z. Physik 140 (1955)

RFQ I. Kapchinski, V. Teplyakov Prib. Tekh. Eksp. 4 (1979) 17

RFQ mit Vane-Elektroden (aktuelle Bauweise)

RFQ (3)

Properties:

- Transverse focusing
- Adiabatic longitudinal focusing
- About 100% effciency (!)

Typical operation regime

 $E_{p,HI} \approx 10 \text{ keV/u} \rightarrow 0.5 - 2 \text{ MeV/u}$

Continuous or pulsed operation

Numerous applications. Most frequently used as first-stage low-energy accelerations structure

RFQ (4)

Summary from the last lecture

Acceleration of ions and electrons

Force
$$\vec{F} = \dot{\vec{p}} = q \cdot \vec{E}$$
 $\vec{E} = -\vec{\nabla}V$ Potential difference
How to produce large potentials? Cockroft and Walton Generator
Dynamitron®
Marx Generator
Van de Graaf Accelerator
Tandem Accelerator \vec{E} (beam) ~ 10⁻¹
electrostatic
 $p = QRB$
Strong Focusing
Linear Linear Linear Cyclotron / Microtron \vec{E} (beam) ~ 10⁻¹
SLAC
S-DALINAC
MAMI
UNILAC
RIKEN
Circular Circular Circular

GS)

Cavities/Waveguides

Rectangular and circular waveguides

 $\vec{\nabla}^2 \vec{H} = \frac{1}{c^2} \frac{\partial^2}{\partial t^2} \vec{H}$

From Maxwell equations:

Å

$$\vec{\nabla}^2 \vec{E} = \frac{1}{c^2} \frac{\partial^2}{\partial t^2} \vec{E}$$

Assuming periodic dependency

$$\vec{E} = \vec{E}(\vec{r})e^{i(\omega t - k_z z)} \qquad \vec{H} = \vec{H}(\vec{r})e^{i(\omega t - k_z z)}$$
Wave number
$$k_z = \frac{\omega_z}{c}$$
Lecture 2

Cavities/Waveguides

$$\left(\vec{\nabla}^2 - \frac{\partial^2}{\partial z^2}\right)\vec{E} + \left(\frac{\omega^2}{c^2} - k_z^2\right)\vec{E} = 0$$

$$\left(\vec{\nabla}^2 - \frac{\partial^2}{\partial z^2}\right)\vec{H} + \left(\frac{\omega^2}{c^2} - k_z^2\right)\vec{H} = 0$$

Solution from boundary conditions:

 $\vec{E}_{||} = 0$ parallel to conduction walls

 $\vec{H}_{\perp} = 0$ orthogonal to conduction walls

- small-field components producing Eddy currents
- Field components in z-direction
- E-waves $E_z \neq 0$ $H_z = 0$ TM (Transverse H) H-waves $E_z = 0$ $H_z \neq 0$ TE (Transverse E)

Cavities/Waveguides

$$TE_{mn}\left(TM_{mn}\right)$$

where

m – number of zero-crossings in x/r direction n – number of zero crossings in y/ ϕ direction

Repeat from PEP3

 k_z is smaller than $k=\omega/c$ (free EM wave) k_c – critical wave number

$$k_c^2 + k_z^2 = k^2 = \omega^2 / c^2$$

Brioullin (Dispersion) diagram

if
$$\omega/c < k_c$$
 >> k_z - Im
-phase velocity: $v_{ph} = \frac{\omega}{k_z} = c \frac{1}{\sqrt{1 - k_c^2/k^2}} > c$

-group velocity:

 $v_g = \frac{d\omega}{dk_z} = \frac{c^2 k_z}{\omega} = c\sqrt{1 - k_c^2/k^2} << c$

Waveguide with Iris-holes

To cope with $v_{ph}>c$ iris holes can be used (interference filter)

Example, SLAC structure

$$v_{ph} \approx c \quad k_z = \frac{2\pi}{3d} \quad \lambda_z = 3d$$

For P=10 MW >> E~10 MV/m

Waveguide with Iris-holes

Stanford Linear Accelerator Center

NATIONAL

ACCELERATO

Linac Coherent Light Source I & II

Resonator Cavities

Standing wave – superposition of direct and reflected waves

Resonance condition:

q=0 (TM mode only) $\Rightarrow \lambda_z = \infty, \,\, k_z = 0 \,\,$ field is independent of z

Resonator Cavities

Resonant frequency for a given q:
$$\omega = c \sqrt{k_z^2 + k_c^2}$$

Resonance frequency:
$$\nu = \frac{2.40483c}{2\pi a}$$

Single resonator / Einzelresonator

Single resonator

7

Accelerator

Alvarez Structure

A series of single resonators without separation walls

Thin holders (also cooling water)

Each drift tube is aligned separately

Typical resonance frequencies 100-200 MHz

Alvarez Structure

S

Lecture 2

HELMHOLTZ RESEARCH FOR GRAND CHALLENGES

Ring Accelerators

Most efficient use of cavities

Cyclotron (Classic)

$$\omega = \frac{Q}{\gamma m} B = const$$

If $\gamma pprox 1$ non-relativistic approximation

Revolution frequency

D-shaped electrodes

$$\nu_c = \frac{1}{2\pi} \frac{Q}{m} B \qquad \qquad \nu_c \,\, \text{~~5-20 MHz}$$

Example: B=1 T $V_C(p) = 15.2$ MHz $V_C(d) = 7.6$ MHz

Energy gain $\Delta E = Q U_0 Cos(\psi)$ ($\psi = 0$ is for $\ \Delta E = max$)

730

Longabel

Cyclotron

Cyclotron (Classic)

Problem: ω is not constant and gets smaller with larger radius

- Relativistic mass
- Reduction of magnetic field B away from center

Synchrocyclotron – modulated frequency of the HF

$$\nu_{HF} = \frac{1}{2} \frac{Q}{m} \frac{B(R)}{\gamma(R)}$$

Higher energies Low "duty cycle"

Isochronous cyclotron

Increase magnetic field with increasing radius Challenge – defocusing force

Strong Focusing Principle

1938 Thomas1950 Christophilos1952 Courant, Livingston and Snyder

Revolutionary discovery!

The combination of a focusing and defocusing lenses of same size and same refractive index $1/f_1 = -1/f_2$ have an overall focusing effect

Isochron-Cyclotron

HELMHOLTZ

RESEARCH FOR

T - Tall (valley) B – Berg (hill)

Cyclotron

Lawrence cyclotron

Medical purpose cyclotron

Microtron

Additional slide 1: Facility at RIKEN

Multiple cyclotrons in sequence

Additional slide 2: S-DALLINAC

Electron accelerator in TU Darmstadt

Synchrotron

p = QRB If R-fixed $\Rightarrow \ p \propto B$ synchrotron

Motion is desribed relative to the *reference particle*

Oscillations in transverse direction – *betatron oscillations* Oscillations in logitudinal direction – *synchrotron oscillations*

Field Index

For a particle deviating from a reference orbit: $F_c = \gamma m \frac{v^2}{R} - \frac{e}{c} v B_y(R)$ If a small deviation x: $r = R + x = R\left(1 + \frac{x}{R}\right)$ $\frac{1}{r} \approx \frac{1}{R} \left(1 - \frac{x}{R} \right)$ Taylor expansion: $B_y(r) \approx B_y(R) + \frac{\partial B_y(R)}{\partial x} \cdot x \equiv B_y(R) \cdot \left(1 - n \cdot \frac{x}{R}\right)$ $n \equiv -\frac{R}{B_u(R)} \frac{\partial \overline{B_y(R)}}{\partial x}$ Field Index: Lecture 3

Synchrotron (1)

Before discovery of the *strong focusing principle*

Constant gradient synchrotron (CG-Synchrotron) or weak focusing synchrotron

0 < n < 1 (Weak focusing pronciple)

Up to 1991 Synchro-phasotron in Dubna Magnets were huge due to huge apertures needed

Synchrotron (2)

1952 Courant, Livingston and Snyder

alternating gradient synchrotron or strongly focusing synchrotron

Example from Hinterberger **Combined-function synchrotron** 1 focusing magnet, n=-22.26 Е ELSA M= 1 defocusing magnet, n=+23.26 60, SM Separated-function synchrotron °,0, Synchrotron M – dipole magnets Q – quadrupole magnets S – sextupole magnets ... Linac SR

Lecture 3

10 m

Synchrotron (3)

Acceleration

Synchronous ramping of the magnetic field

Synchrotron (5): Phase Focusing

Phase $\varphi = 0$ corresponds to $\Delta E = 0$

Synchrotron (6): Phase Focusing

h – stable regions along the circumference

Faraday law

$$U_{ind} = \oint \mathbf{E} d\mathbf{s} = -\frac{d}{dt} \int \mathbf{B} d\mathbf{A}$$

Abb. 2.7: Schematische Darstellung eines Betatrons

0 < n < 1

Acceleration field B_a Guiding field B_g

 $p(t) = qB_g(t)r$

Electrons have initial momentum

Summary from the last lecture

Acceleration of ions and electrons

Force
$$\vec{F} = \dot{\vec{p}} = q \cdot \vec{E}$$
 $\vec{E} = -\vec{\nabla}V$ Potential difference
How to produce large potentials? Cockroft and Walton Generator
Dynamitron®
Marx Generator
Van de Graaf Accelerator
Tandem Accelerator
 $p = QRB$
Strong Focusing
Linear
SLAC
S-DALINAC
MAMI
UNILAC
RIKEN
Circular
Circular
 $\vec{F} = \vec{P} \cdot \vec{P$

GS)

3 lon sources

G

Photo: GSI Darmstadt

Echo

Production of electrons

Photos: Wikipedia

Edison emission (thermal) Field emission – microscopes Photo-emission

> HELMHOLTZ RESEARCH FOR GRAND CHALLENGES

Ionization possibilities

Ionization possibilities

Electron-impact ionization

If energy is increased $E_{e^-} \Rightarrow$ higher ionization degree \Rightarrow highly charged ions (HCI)

Ionization Energies

Source

Source Examples

High-voltage ion sources platform

Surface Ionization / Contact Ionization

Surface Ionization / Contact Ionization

Surface Ionization / Contact Ionization

T = 1000 - 2500 K ionisation probability Cs Rh W e surface with Pr = 5.25 0,0 6 0,001

Laser Ionization / Resonant Ionization

Laser Ionization / Resonant Ionization

Production of highly charged ions

Calculated ionization potentials for all charge states

EBIT/S (electron beam ion trap/source)

EB/T/S (electron beam ion trap/source)

The ionization process

Sequential electron impact ionization in an electron beam ion trap

Competing processes: recombination

N Charge exchange with restgas neutral atoms Ne⁹⁺ Solution: vacuum 10⁻¹³ Torr (1000 atoms/cm³)

capture of free electrons

radiative recombination (RR)

solution: raising electron beam energy

Production of highly charged ions

Bohr criterion: Largest ionization cross section at v/c \approx v_k/c = α Z

Uranium: $v_K / c \approx 0.67 - E_{KIN} \approx 330 \text{ MeV/u}$

Production of highly-charged ions at GSI

3

Production of highly charged ions

Radioacive Ion Beam Facilities

Production and separation of radionuclides

Proton-induced reactions (e.g. ISOLDE, ISAC)

Production Yields of ISOL Produced Radionuclides

Figure 2.6: The production yields of di?erent radioactive nuclides in the rare earth element region produced by a 1 GeV proton beam impinging on a tantalum foil target [Bjø1986].

The ISOLDE facility at CERN

The ISOLDE targets

E. Kugler, Hyp. Int. 129, 23-42 (2000).

Ionization techniques:

- Surface ionization
- Plasma ionization
- Resonant laser ionization

http://isolde.web.cern.ch/isolde

The ISOLDE targets

The ISOLDE neutron converter target

Converter target for high-energy-proton driven ISOL facility

The ISOLDE neutron converter target

Target flange

Proton beam -

Valve

Heating connections

Target container

Neutron converter

Prize: ~35 000 € (350 000 Yuan) in use for about 1 week

The ISOLDE target handling

The ISOLDE target handling

In-flight production of radionuclides

Production Cross-Sections for Tin-Isotopes

Production & Separation of Exotic Nuclei

Primary beams @ 400-1000 MeV/u Highly-Charged Ions (0, 1, 2 ... bound electrons) In-Flight separation within ~ 150 ns Cocktail or mono-isotopic beams

Production & Separation of Exotic Nuclei

Production of Antiprotons

 $T_p > 6m_p$

Collection of Antiprotons

Collection of Antiprotons

Summary of the lecture

1) Synchroton and Betatron

2) Production of ion and electron beams electron sources ionization processes electron-impact ionization surface ionization resonant laser ionization production of highly charged ions production of radionuclides production of antiprotons

3) Magents

dipole magnets quadrupole magnets (QP) sextupole magnets

superconducting magnets

