Introduction to Accelerator Physics

Yuri A. Litvinov y.litvinov@gsi.de

Heidelberg WS 2022/23 Physikalisches Institut der Universität Heidelberg

Lecture Dates

https://uebungen.physik.uni-heidelberg.de/vorlesung/20222/1611/lecture

Date	Торіс		
19.10.2022	Introduction and basic definitions		
26.10.2022	Accelerating structures		
02.11.2022	Accelerator Components		
09.11.2022	Optics with magnets (1)		
16.11.2022	Optics with magnets (2)		
23.11.2022	Equations of motion		
30.11.2022	Phase ellipses and magneto-optical system / Transverse beam dynamics		
07.12.2022	Transverse beam dynamics, beam stability / Longitudinal beam dynamics		
14.12.2023	Phase space and beam cooling (Invitation)		
11.01.2023	Space charge and beam-beam dynamics		
18.01.2023	Physics at Storage Rings		
25.01.2023	Physics at Colliders		
01.02.2023	New accelerator technologies		
08.02.2023	Student seminar		
15.02.2023	reserve		
22.02.2023	reserve		

Wednesdays, 14:15-16:00

Summary of last lecture

Geometric optics thin lense thick lense

Beam Properties Emittance Beam profile Beam waist

Transformation of beam ellipses

6. Rotations

Positive rotation – clockwise in the s-direction

Coupling of x & y planes (not wanted in most cases)

Rotation by angle (α)

$$\mathbf{R}(\alpha) = \begin{bmatrix} \cos \alpha & 0 & \sin \alpha & 0 & 0 \\ 0 & \cos \alpha & 0 & \sin \alpha & 0 & 0 \\ -\sin \alpha & 0 & \cos \alpha & 0 & 0 & 0 \\ 0 & -\sin \alpha & 0 & \cos \alpha & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

6. Rotations

Positive rotation – clockwise in the s-direction

Coupling of x & y planes (not wanted in most cases)

```
Rotation by angle (\alpha)
```


Tilted magnets (dipoles, quadrupoles, sextupoles, ...

6. Beam Rotator

- Quadrupole tilted by angle (α)

$$\mathbf{R} = R(-\alpha)R_QR(\alpha)$$

- Vertical beam deflector (90°)

Upwards:

Downwards:

$$\mathbf{R} = R(+90^{\circ})R_DR(-90^{\circ})$$
$$\mathbf{R} = R(-90^{\circ})R_DR(+90^{\circ})$$

concentrated uniform field in the center of a long solenoid. The field outside is weaker and the lines representing the magnetic field are further apart.

Detailed discussion - Hinterberger

Define:

2

$$K = \frac{B_s}{2(B\rho)_0} \qquad C = \cos(KL) = \cos(\alpha/2)$$
$$S = \sin(KL) = -\sin(\alpha/2)$$

Reminder:

6. Rotations

Positive rotation – clockwise in the s-direction

Coupling of x & y planes (not wanted in most cases)

Rotation by angle (α)

$$\mathbf{R}(\alpha) = \begin{bmatrix} \cos \alpha & 0 & \sin \alpha & 0 & 0 \\ 0 & \cos \alpha & 0 & \sin \alpha & 0 & 0 \\ -\sin \alpha & 0 & \cos \alpha & 0 & 0 & 0 \\ 0 & -\sin \alpha & 0 & \cos \alpha & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{R}(\alpha/2)\mathbf{R} = \begin{bmatrix} C & S/K & 0 & 0 & 0 & 0 \\ -KS & C & 0 & 0 & 0 & 0 \\ 0 & 0 & C & S/K & 0 & 0 \\ 0 & 0 & -KS & C & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & L/\gamma^2 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Focusing in both planes Focusing in independend from the direction of *B*_s

Positive particle flying in the direction of $B_{s:}$ Rotation counter-clockwise

Major parameters
$$K = \frac{B_s}{2(B\rho_0)} \quad \frac{\alpha}{2} = -KL$$

$$\left|\frac{\alpha}{2}\right| = \frac{\pi}{2} \Rightarrow C = 0$$
 $\left|\frac{\alpha}{2}\right| = \pi \Rightarrow S = 0$

$$\mathbf{R}(\alpha/\mathbf{2})\mathbf{R} = \begin{bmatrix} C & S/K & 0 & 0 & 0 & 0 \\ -KS & C & 0 & 0 & 0 & 0 \\ 0 & 0 & C & S/K & 0 & 0 \\ 0 & 0 & -KS & C & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & L/\gamma^2 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

2. Transfer matrix

(linear approximation)

Abbildung	radial	axial
Punkt-zu-Punkt	$R_{12} = (x x') = 0$	$R_{34} = (y y') = 0$
Punkt-zu-Parallel	$R_{22} = (x' x') = 0$	$R_{44} = (y' y') = 0$
Parallel-zu-Punkt	$R_{11} = (x x) = 0$	$R_{33} = (y y) = 0$
Parallel-zu-Parallel	$R_{21} = (x' x) = 0$	$R_{43} = (y' y) = 0$
Orts dispersion = 0	$R_{16} = (x \delta) = 0$	
Winkeldispersion $= 0$	$R_{26} = (x' \delta) = 0$	

From Hinterberger

9.3 Double telescope

Two quadrupole triplets

9.3 Double telescope

Four quadrupole magnets

9.3 Double telescope

Six quadrupole magnets

Accelerator

repetitive structures of telescopes

9.4 Beam analysator / Monochromator

Dispersion

5. Edge focusing

Derivations - Hinterberger

9.4 Beam analysator / Monochromator

 $\rho_0 = 1 \text{ m}$ $\Delta x_E = 1 \text{ mm}$ $|D_x/M_x| = 4 \text{ m} = 4(\text{mm/promille})$ $\delta_{\text{FWHM}} = 2.5 \cdot 10^{-4} = 1/4000 ,$ $A_{\text{FWHM}} = 4000 .$

$$\delta_{\rm FWHM} = |M_x \Delta x_{\rm E} / D_x|$$

Slits define the momentum spread

9.7 Achromactic System

Second-order achromatic system

9.7 Velocity Filter / Wien filter

Topic: Superheavy elements

10. Electrostatic Elements

Lenses, deflectors, drifts, accelerator sections

- Very similar description as for magnetic elements

Details – see Hinterberger

11.2 Hill's equations (linear approximation)

$$\begin{aligned} \frac{\mathrm{d}^2 x}{\mathrm{d}s^2} + k_x(s)x &= \frac{1}{\rho_0(s)}\frac{\Delta p}{p_0},\\ \frac{\mathrm{d}^2 y}{\mathrm{d}s^2} + k_y(s)y &= 0. \end{aligned} \tag{1}$$
First we assume $\frac{\Delta p}{p} = 0$ - no dispersion
Monochromatic/monoenergetic beam
Result: Oscillation along the reference orbit \vec{s} with variable amplitude $a\sqrt{\beta(s)}$
Wave number: $1/\beta(s)$

11.2 Twiss matrix

Formal solution of 1

Motion of a particle obviously depends on the start values [x(s), x'(s), y(s), y'(s)] at a given sLet us assume motion in one plane only [y(s), y'(s)]

- Special matrix

$$M = R(s + C)$$

11.2 Twiss matrix

- General form

$$M = \begin{bmatrix} \cos(\mu) + \alpha \sin(\mu) & \beta \sin(\mu) \\ -\gamma \sin(\mu) & \cos(\mu) - \alpha \sin(\mu) \end{bmatrix}$$
$$\bigcup_{det(M) = 1}$$

11.2 Twiss matrix

- General form

$$M = \cos(\mu) \times \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + \sin(\mu) \times \begin{bmatrix} \alpha & \beta \\ -\gamma & -\alpha \end{bmatrix}$$
$$I \qquad \qquad J$$
$$\alpha, \ \beta, \ \gamma \quad \text{-Twiss parameters}$$

(

11.2 Twiss matrix

$$\det(M) = 1 \quad \Rightarrow \quad$$

$$\det(J) = \beta \gamma - \alpha^2 = 1; \quad J^2 = J \times J = -I$$

- Stability criterion

For many turnns N

$$M^{N} = (I \cdot \cos(\mu) + J \cdot \sin(\mu))^{N} =$$
$$= I \cdot \cos(N\mu) + J \sin(N\mu)$$

Similar to Moivre formula:

$$(\cos(\mu) + i\sin(\mu))^N = \cos(N\mu) + i\sin(N\mu)$$

- Stability criterion
 - For many turnns N

- Twiss parameters

Assume Tr(M)<2

$$\cos(\mu) = \frac{1}{2}Tr(M) = \frac{1}{2}(M_{11} + M_{22})$$
$$\sin(\mu) = sign(M_{12})\sqrt{(1 - \cos^2(\mu))}$$
$$\beta = \frac{M_{12}}{\sin(\mu)}$$
$$\alpha = \frac{M_{11} - M_{22}}{2\sin(\mu)}$$
$$\gamma = -\frac{M_{21}}{\sin(\mu)}$$

- Twiss parameters

Since Matrix M depends on the starting values, Twiss parameters are functions of s

Optical functions, Betatron functions, Amplitude functions, Lattice functions

Goal: describe machine!

 $\mu-{\rm independent}$ of s, machine parameter defined by matrix M to 2π

Phase advance of $\beta(s)$ per revolution

11.3 Solution of Hill's equations

$$y'' + k_y(s)y = 0$$

(6.24) in Hinterberger

$$y(s) = a\sqrt{\beta(s)}\cos[\Psi(s) + \Psi_0] \quad (2)$$

 $a, \ \Psi_0 \qquad$ are defined for each particle, which are the amplitude and the phase of oscillations, respectively

$$a\sqrt{eta(s)}$$
 Variable

/ariable amplitude along
$$\,ec{s}\,$$

$$\frac{d\Psi}{ds} = \frac{1}{\beta(s)}$$

Variable wave number (
$$\lambda(s)=2\pieta(s)$$
 - wavelength)

11.4 Phase shift / phase advance

$$\mu = \int_{s}^{s+C} \frac{d\bar{s}}{\beta(\bar{s})} = \oint \frac{d\bar{s}}{\beta(\bar{s})}$$

Number of betatron oscillations per revolution, betatron tune

$$Q = \frac{\mu}{2\pi} = \frac{1}{2\pi} \oint \frac{d\bar{s}}{\beta(\bar{s})}$$

11.4 Phase shift / phase advance

If $\Delta \Psi = 0$

Particle moves always on the same orbit

!!! RESONANCE !!!

Disturbances will be multiplied

!!! Instability !!!

11.4 Phase shift / phase advance

 μ – independent of *s*, machine parameter defined by matrix *M* to 2π Phase advance of $\beta(s)$ per revolution

$$\mu = \int_{s}^{s+C} \frac{d\bar{s}}{\beta(\bar{s})} = \oint \frac{d\bar{s}}{\beta(\bar{s})}$$

Number of betatron oscillations per revolution, betatron tune

$$Q = \frac{\mu}{2\pi} = \frac{1}{2\pi} \oint \frac{d\bar{s}}{\beta(\bar{s})}$$

If $\Delta \Psi = 0$

Particle moves always on the same orbit

!!! RESONANCE !!!

Disturbances will be multiplied

!!! Instability !!!

11.5 Courant-Snyder Invariant

$$y(s) = a\sqrt{\beta(s)}\cos[\Psi(s) + \Psi_0] \quad (2)$$
What is a?

After lengthy and tedious mathematical efforts one can rewrite (

as:

$$\frac{y^2}{\beta} + \frac{(\alpha y + \beta y')^2}{\beta} = a^2 = \epsilon$$

Courant-Snyder Invariant

11.5 Courant-Snyder Invariant

$$\frac{y^2}{\beta} + \frac{(\alpha y + \beta y')^2}{\beta} = a^2 = \epsilon$$

$$\gamma y^2 + 2\alpha y y' + \beta y'^2 = a^2 = \epsilon$$

11.5 Courant-Snyder Invariant

Revolution number

11.5 Courant-Snyder Invariant

- 1. A particle with coordinates (y,y') propagates along a changing ellipse
- 2. The area of the ellipse is constant and is defined by *a*
- 3. The shape of the ellipse is defined by the machine itself via $\alpha(s)$, $\beta(s)$, $\gamma(s)$ functions (machine ellipse)
- 4. Plotting (y,y') after each revolution gives an ellipse
- 5. All particles with smaller **a** are enclosed in the ellipse

8. Beam Properties

Phase ellipse

Density distribution in (x,x') plane ho(x,x') can typically presented with an ellipse

$$\sigma_x = \begin{pmatrix} \sigma_{11} & \sigma_{12} \\ \sigma_{21} & \sigma_{22} \end{pmatrix} = \begin{pmatrix} \sigma_{11} & \sigma_{12} \\ \sigma_{12} & \sigma_{22} \end{pmatrix} \qquad \begin{array}{c} \sigma_{12} = \sigma_{21} \\ \det(\sigma_x) > 0 \end{array}$$

Phase ellipse:

Vector from origin to ellipse boundary

8. Beam Properties

Emittance

1
$$\det(\sigma_x) = \sigma_{22}x_1^2 - 2\sigma_{12}x_1x_2 + \sigma_{11}x_2^2 = \epsilon_x^2$$

Area of the ellipse
Emittance: $E_x = \pi \epsilon_x = \pi \sqrt{\det(\sigma_x)} = \pi \sqrt{\sigma_{11}\sigma_{22} - \sigma_{12}^2}$
1 $[mm] \cdot [mrad] = 1 \cdot 10^{-6} [m] \cdot [rad]$

Often this is emittance

Maximal values:

$$x_{\max} = \sqrt{\sigma_{11}} \qquad x'_{\max} = \sqrt{\sigma_{22}}$$

11.6 Beam ellipse & machine ellipse

Machine ellipse

Defined by the machine (lattice, ion-optical settings, apertures) Beam ellipse

Can be very different from machine ellipse (e.g. injection)

11.6 Beam ellipse & machine ellipse

$$\sigma = \begin{pmatrix} \sigma_{11} & \sigma_{12} \\ \sigma_{12} & \sigma_{22} \end{pmatrix} = \epsilon_x \begin{pmatrix} \beta_x & -\alpha_x \\ -\alpha_x & \gamma_x \end{pmatrix} = \begin{pmatrix} \epsilon_x \beta_x & -\epsilon_x \alpha_x \\ -\epsilon_x \alpha_x & \epsilon_x \gamma_x \end{pmatrix}$$

$$\sqrt{\epsilon_x \beta_x} \quad \text{Maximal spatial extension}$$

$$\sqrt{\epsilon_x \gamma_x} \quad \text{Maximal angular extension}$$

11.7 RMS Emittance

Definition:

$$\epsilon_x^{1\sigma} = \sqrt{\langle x^2 \rangle \, \langle x'^2 \rangle - \langle xx' \rangle^2}$$

$$\epsilon_y^{1\sigma} = \sqrt{\langle y^2 \rangle \langle {y'}^2 \rangle - \langle yy' \rangle^2}$$

Expressed in Twiss parameteres

$$\epsilon_x^{1\sigma} = \frac{1}{N} \sum_i \epsilon_{x,i} = \frac{1}{N} \sum_i \gamma_x x_i^2 + 2\alpha_x x_i x_i' + \beta_x x_i'^2$$

$$\epsilon_y^{1\sigma} = \frac{1}{N} \sum_i \epsilon_{y,i} = \frac{1}{N} \sum_i \gamma_y y_i^2 + 2\alpha_y y_i y_i' + \beta_y y_i'^2$$

Machine parameters

8. Beam Properties

Beam Envelope

Beam envelope (RMS envelope)

$$x_{\max}(s) = \sqrt{\sigma_{11}(s)}$$

Beam waist ("Strahltaille") / focus

 $r_{12} < 0 \qquad \qquad r_{12} > 0$

11.9 Machine Acceptance

Maximum beam emittance which can be transmitted through the machine

$$\epsilon_{\max} = \frac{x_{\max}^2}{\beta}$$

Acceptance/Admittance
$$A = \pi \epsilon_{\max}$$

11.8 Machine ellipse

Ellipses defined by α , β , γ functions are nothing else than eigenellipses

 σ_e of matrix *M* at easch *s*!

Gordon, M.M.: Orbit properties of the isochronous cyclotron ring with radial sectors, Annals of Physics ${\bf 3}$ (1968) 571

$$\sigma_e = M \sigma_e M^T$$
$$\sigma_e(s+C) = \sigma_e(s)$$

Eigenellipses are defined at each s via Twiss matrix

$$\sigma_{\rm e}(s) = \epsilon \begin{pmatrix} \beta(s) & -\alpha(s) \\ -\alpha(s) & \gamma(s) \end{pmatrix}$$

11.8 Transformation of Twiss parameters

$$R = \begin{pmatrix} C & S \\ C' & S' \end{pmatrix} \qquad \sigma = R\sigma_0 R^{\mathrm{T}}$$
$$\begin{pmatrix} \beta & -\alpha \\ -\alpha & \gamma \end{pmatrix} = R \begin{pmatrix} \beta_0 & -\alpha_0 \\ -\alpha_0 & \gamma_0 \end{pmatrix} R^{\mathrm{T}}$$
$$\begin{pmatrix} \beta \\ \alpha \\ \gamma \end{pmatrix} = \begin{pmatrix} C^2 & -2SC & S^2 \\ -CC' & SC' + S'C & -SS' \\ C'^2 & -2S'C' & S'^2 \end{pmatrix} \begin{pmatrix} \beta_0 \\ \alpha_0 \\ \gamma_0 \end{pmatrix}$$

In general:

 $\beta(s) = \beta_0 - 2\alpha_0 s + \gamma_0 s^2$

Typical example (HESR at FAIR)

 $\beta_x(m), \beta_y(m)$

TT.J Matching beam and machine

11.9 Matching beam and machine

