Introduction to Accelerator Physics

Yuri A. Litvinov y.litvinov@gsi.de

Heidelberg WS 2022/23 Physikalisches Institut der Universität Heidelberg

Lecture Dates

https://uebungen.physik.uni-heidelberg.de/vorlesung/20222/1611/lecture

Date	Торіс		
19.10.2022	Introduction and basic definitions		
26.10.2022	Accelerating structures		
02.11.2022	Accelerator Components		
09.11.2022	Optics with magnets (1)		
16.11.2022	Optics with magnets (2)		
23.11.2022	Equations of motion		
30.11.2022	Phase ellipses and magneto-optical system / Transverse beam dynamics		
07.12.2022	Transverse beam dynamics, beam stability / Longitudinal beam dynamics		
14.12.2023	Phase space and beam cooling (Invitation)		
11.01.2023	Space charge and beam-beam dynamics		
18.01.2023	Physics at Storage Rings		
25.01.2023	Physics at Colliders		
01.02.2023	New accelerator technologies		
08.02.2023	Student seminar		
15.02.2023	reserve		
22.02.2023	reserve		

Wednesdays, 14:15-16:00

Summary of last lecture

Relative coordinates of each particle can be described with a six-dimensional vector

radial orbit deviation $\mathbf{x}(s) = \begin{pmatrix} x \\ y \\ y' \\ l \end{pmatrix} = \begin{pmatrix} \text{radial of bit deviation} \\ \text{radial direction deviation} \\ \text{axial orbit deviation} \\ \text{axial direction deviation} \\ \text{longitudinal deviation} \end{pmatrix}$ longitudinal momentum deviation

Since $x, x', y, y', l, \delta l$ are small \implies units are [mm], [mrad], [promil] 1 mrad = 1 mm/1 m

Linear approximation: x and y planes can be treated independently

dr Х

Us

Summary of the lecture

Curvilinear coordinate system

Transfer / transport / R-matrix

Equation of motion with/without dispersion (Hill equations)

Solution of equation of motion with/without dispersion

Transfer Matrix for

Drift Qudrupole magnet Dipole magnet (sector, weak and strong focusing)

Edge focusing

$$x'' + k_x x = h\delta$$
$$y'' + k_y y = 0$$

4. Solution of the Equation of Motion

Characteristic solutions for transverse motion (drift, quadrupole, dipole)

 $k_x(s) > 0 \& k_y(s) > 0$ $k_x(s) = k_y(s) = 0$ $k_x(s) < 0 \& k_y(s) < 0$ $C_x(s) = \cos(\sqrt{k_x s})$ $C_x(s) = \cosh(\sqrt{|k_x|s})$ $C_x(s) = 0$ $S_x(s) = \frac{\sin(\sqrt{k_x}s)}{\sqrt{k}}$ $S_x(s) = \frac{\sinh(\sqrt{|k_x|s})}{\sqrt{|k_x|}}$ $S_x(s) = s$ $d_x(s) = \frac{h}{|k_x|} [\cosh(\sqrt{|k_x|}s) - 1]$ $d_x(s) = \frac{h}{k_x} [1 - \cos(\sqrt{k_x}s)]$ $d_x(s) = 0$ $C_y(s) = \cosh(\sqrt{|k_y|s})$ $C_u(s) = \cos(\sqrt{k_u}s)$ $C_{u}(s) = 1$ $S_y(s) = \frac{\sinh(\sqrt{|k_y|s})}{\sqrt{|k_y|s}}$ $S_y(s) = \frac{\sin(\sqrt{k_y s})}{\sqrt{k_y}}$ $S_u(s) = s$ $\cosh(x) = \frac{1}{2}(e^x + e^{-x})$ $\sinh(x) = \frac{1}{2}(e^x - e^{-x})$ periodic Lecture 6

Transfer matrix (drfit, QPs, dipole)

$$\begin{aligned} & \operatorname{Transfer \ matrix} / \operatorname{transport \ matrix} / \operatorname{R-matrix} \\ \vec{x}(s) &= \mathbf{R}(s)\vec{x}(0) \\ & det(\mathbf{R}) = 1 \quad \text{(Liouville's theorem)} \\ & \text{Accelerator structure:} \quad \mathbf{R} = \prod_{i} R_{i} \\ & \mathbf{R}_{\mathbf{x}} = \begin{bmatrix} (x|x) & (x|x') & 0 & 0 & 0 & (x|\delta) \\ (x'|x) & (x'|x') & 0 & 0 & 0 & (x'|\delta) \\ 0 & 0 & (y|y) & (y|y') & 0 & 0 \\ 0 & 0 & (y'|y) & (y'|y') & 0 & 0 \\ (l|x) & (l|x') & 0 & 0 & (l|l) & (l|\delta) \\ 0 & 0 & 0 & 0 & 0 & (\delta|\delta) \end{bmatrix} \end{aligned}$$

HELMHOLTZ RESEARCH FOR GRAND CHALLENGES

GSI

4. Solution of the Equation of Motion

Characteristic solutions for longitudinal motion

The corresponding Transfer matrix elements:

$$R_{51}(s) = (l|x_0) = -\int_0^s h(\bar{s}C_x(\bar{s})d\bar{s}$$
$$R_{52}(s) = (l|x'_0) = -\int_0^s h(\bar{s}S_x(\bar{s})d\bar{s}$$
$$R_{55}(s) = (l|l_0) = 1$$
$$R_{56}(s) = (l|\delta) = -\int_0^s h(\bar{s}d_x(\bar{s})d\bar{s} + s/\gamma^2)$$

For drifts, quadrupoles, (sextupoles, octupoles) h=0

$$R_{51}(s) = (l|x_0) = 0$$

$$R_{52}(s) = (l|x'_0) = 0$$

$$R_{55}(s) = (l|l_0) = 1$$

$$R_{56}(s) = (l|\delta) = +s/\gamma^2$$

4. Transfer matrix

G 5]

2. Transfer matrix

(linear approximation)

Abbildung	radial	axial
Punkt-zu-Punkt	$R_{12} = (x x') = 0$	$R_{34} = (y y') = 0$
Punkt-zu-Parallel	$R_{22} = (x' x') = 0$	$R_{44} = (y' y') = 0$
Parallel-zu-Punkt	$R_{11} = (x x) = 0$	$R_{33} = (y y) = 0$
Parallel-zu-Parallel	$R_{21} = (x' x) = 0$	$R_{43} = (y' y) = 0$
Orts dispersion = 0	$R_{16} = (x \delta) = 0$	
Winkeldispersion $= 0$	$R_{26} = (x' \delta) = 0$	

From Hinterberger

Thin lense approximation

Thin lense approximation

Point-2-Point Image

(optics)

Convex lense

Matrix representation

Thin lense approximation

Point-2-Point Image

$$\begin{aligned} R_{12} &= (x|x') = 0\\ \mathbf{R}_{\mathbf{x}} &= \begin{bmatrix} 1 & b\\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0\\ -\frac{1}{f} & 1 \end{bmatrix} \begin{bmatrix} 1 & g\\ 0 & 1 \end{bmatrix} = \begin{bmatrix} -\frac{b}{g} & 0\\ -\frac{1}{f} & -\frac{g}{b} \end{bmatrix}\\ & \text{Drift} & \text{Lense} & \text{Drift} \\ & \text{Amplification / "Vergröserung" / "Maßstab"} & R_{21} = (x'|x) = -\frac{1}{f}\\ & R_{11} &= (x|x_0) = M = \frac{B}{G} = -\frac{b}{g} & \text{Focal length} \\ & R_{22} &= (x'|x'_0) = M^{-1} = -\frac{g}{b} \end{aligned}$$

Scaling of transformation (amplification)

Thin lense approximation

Thick lense

Additional drift, principal planes (H), gaps (z)

Thick lense

Assuming a focusing (defocusing) system, we can solve the inverse problem

Any focusing/defocusing element can be represented as a combination of corresponding thin lense and drifts

1) Radially focusing QP

2) Sector magnet

$$z_1 = z_2 = \rho_0 \tan(\alpha/2)$$

Complete matrix: edge – magnet-edge

4. Solution of the Equation of Motion

Characteristic solutions for transverse motion (drift, quadrupole, dipole)

 $k_x(s) > 0 \& k_y(s) > 0$ $k_x(s) = k_y(s) = 0$ $k_x(s) < 0 \& k_y(s) < 0$ $C_x(s) = \cos(\sqrt{k_x s})$ $C_x(s) = \cosh(\sqrt{|k_x|s})$ $C_x(s) = 0$ $S_x(s) = \frac{\sin(\sqrt{k_x}s)}{\sqrt{k}}$ $S_x(s) = \frac{\sinh(\sqrt{|k_x|s})}{\sqrt{|k_x|}}$ $S_x(s) = s$ $d_x(s) = \frac{h}{|k_x|} [\cosh(\sqrt{|k_x|}s) - 1]$ $d_x(s) = \frac{h}{k_x} [1 - \cos(\sqrt{k_x}s)]$ $d_x(s) = 0$ $C_y(s) = \cosh(\sqrt{|k_y|s})$ $C_u(s) = \cos(\sqrt{k_u}s)$ $C_{u}(s) = 1$ $S_y(s) = \frac{\sinh(\sqrt{|k_y|s})}{\sqrt{|k_y|s}}$ $S_y(s) = \frac{\sin(\sqrt{k_y s})}{\sqrt{k_y}}$ $S_u(s) = s$ $\cosh(x) = \frac{1}{2}(e^x + e^{-x})$ $\sinh(x) = \frac{1}{2}(e^x - e^{-x})$ periodic Lecture 6

4. Transfer matrix

Radially focusing and axially de-focusing quadrupole: $k_x = k$ and $k_y = -k$

$$\mathbf{R} = \begin{bmatrix} \cos(\sqrt{k}L) & \frac{\sin(\sqrt{k}L)}{\sqrt{k}} & 0 & 0 & 0 & 0 \\ -\sqrt{k}\sin(\sqrt{k}L) & \cos(\sqrt{k}L) & 0 & 0 & 0 & 0 \\ 0 & 0 & \cosh(\sqrt{k}L) & \frac{\sinh(\sqrt{k}L)}{\sqrt{k}} & 0 & 0 \\ 0 & 0 & \sqrt{k}\sinh(\sqrt{k}L) & \cosh(\sqrt{k}L) & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & L/\gamma^2 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Radially de-focusing and axially focusing quadrupole: $k_x = -k$ and $k_y = k$

$$\mathbf{R} = \begin{bmatrix} \cosh(\sqrt{k}L) & \frac{\sinh(\sqrt{k}L)}{\sqrt{k}} & 0 & 0 & 0 \\ \sqrt{k}\sinh(\sqrt{k}L) & \cosh(\sqrt{k}L) & 0 & 0 & 0 \\ 0 & 0 & \cos(\sqrt{k}L) & \frac{\sin(\sqrt{k}L)}{\sqrt{k}} & 0 & 0 \\ 0 & 0 & -\sqrt{k}\sin(\sqrt{k}L) & \cos(\sqrt{k}L) & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & L/\gamma^2 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

4. Transfer matrix

- Homogeneous dipole (n=0), sector magnet

Orbit (particle traveling on the inner or outter trajectory relative to the reference orbit) and velocity (velocity spread) effects

Phase ellipse

Up to now we considered a single particle Now we shall consider a bunch of particles

The same principle:

$$\vec{x}(s) = R(s)\vec{x}(0)$$

Superposition of single particles

Density distribution along s

$$\rho(\vec{x}) = \rho(x, x', y, y', l, \delta)$$

Phase ellipse

Density distribution in (x,x') plane ho(x,x') can typically presented with an ellipse

$$\sigma_x = \begin{pmatrix} \sigma_{11} & \sigma_{12} \\ \sigma_{21} & \sigma_{22} \end{pmatrix} = \begin{pmatrix} \sigma_{11} & \sigma_{12} \\ \sigma_{12} & \sigma_{22} \end{pmatrix} \qquad \begin{array}{c} \sigma_{12} = \sigma_{21} \\ \det(\sigma_x) > 0 \end{array}$$

Vector from origin to ellipse boundary

Emittance

1
$$\det(\sigma_x) = \sigma_{22}x_1^2 - 2\sigma_{12}x_1x_2 + \sigma_{11}x_2^2 = \epsilon_x^2$$

Area of the ellipse
Emittance: $E_x = \pi \epsilon_x = \pi \sqrt{\det(\sigma_x)} = \pi \sqrt{\sigma_{11}\sigma_{22} - \sigma_{12}^2}$
1 $[mm] \cdot [mrad] = 1 \cdot 10^{-6} [m] \cdot [rad]$

Often this is emittance

Maximal values:

$$x_{\max} = \sqrt{\sigma_{11}} \qquad x'_{\max} = \sqrt{\sigma_{22}}$$

Emittance

Most commonly assumed density distribution in phase-space ellipse is a 2D Gaussian

HELMHOLTZ

In reality, the distribution is not Gaussian (scattering, collimators, walls ...)

Beam Envelope

Beam profile – 1D projection of the density distribution

Beam Envelope

Beam envelope (RMS envelope)

$$x_{\max}(s) = \sqrt{\sigma_{11}(s)}$$

Beam waist ("Strahltaille") / focus

 $r_{12} < 0 \qquad \qquad r_{12} > 0$

8. Beam Properties Transformation of phase ellipses

$$\sigma_x(s) = R_x(s)\sigma_x(0)R_x^T(s)$$

Derivation Hinterberger

Drift

8. Beam Properties Transformation of phase ellipses

$$\begin{array}{lll} \text{Drift} & \text{Start with upright ellipse} & \sigma_{12} = \sigma_{21} = 0 \\ & & \sigma_x(L) = \begin{bmatrix} 1 & L \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \sigma_{11}(0) & 0 \\ 0 & \sigma_{22}(0) \end{bmatrix} \begin{bmatrix} 1 & 0 \\ L & 1 \end{bmatrix} = \\ & & = \begin{bmatrix} \sigma_{11}(0) + L^2 \sigma_{22}(0) & L \sigma_{22}(0) \\ & & L \sigma_{22}(0) & & \sigma_{22}(0) \end{bmatrix}$$

Dependent on the sign of L – rotating ellipse in the clockwise/anticlockwise direction

8. Beam Properties Transformation of phase ellipses

Thin lense Start with upright ellipse
$$\sigma_{12} = \sigma_{21} = 0$$

 $\sigma_x(1/f_x) = \begin{bmatrix} 1 & 0 \\ -\frac{1}{f_x} & 1 \end{bmatrix} \begin{bmatrix} \sigma_{11}(0) & 0 \\ 0 & \sigma_{22}(0) \end{bmatrix} \begin{bmatrix} 1 & -\frac{1}{f_x} \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} \sigma_{11}(0) & -\sigma_{11}(0)/f_x \\ -\sigma_{11}(0)/f_x & \sigma_{22}(0) + \sigma_{11}(0)/f_x^2 \end{bmatrix}$

Dependent on the sign of L – rotating ellipse in the clockwise/anticlockwise direction $\int_{A} \frac{1}{x^2}$

8. Beam Properties Phase space in multi dimensions / Phase space ellipsoid

$$\begin{pmatrix} \sigma_{11} & \sigma_{12} & \sigma_{13} & \sigma_{14} & \sigma_{15} & \sigma_{16} \\ \sigma_{12} & \sigma_{22} & \sigma_{23} & \sigma_{24} & \sigma_{25} & \sigma_{26} \\ \sigma_{13} & \sigma_{23} & \sigma_{33} & \sigma_{34} & \sigma_{35} & \sigma_{36} \\ \sigma_{14} & \sigma_{24} & \sigma_{34} & \sigma_{44} & \sigma_{45} & \sigma_{46} \\ \sigma_{15} & \sigma_{25} & \sigma_{35} & \sigma_{45} & \sigma_{55} & \sigma_{56} \\ \sigma_{16} & \sigma_{26} & \sigma_{36} & \sigma_{46} & \sigma_{56} & \sigma_{66} \end{pmatrix}$$

 $V = \frac{16}{3}\pi\sqrt{\det(\sigma)}$

$$\sigma_{ii} = \overline{(x_i - \overline{x_i})^2}$$

$$= \int \int \int \int \int \int \int (x_i - \overline{x_i})^2 \rho(\mathbf{x}) dx_1 dx_2 dx_3 dx_4 dx_5 dx_6 ,$$

$$\sigma_{ij} = \overline{(x_i - \overline{x_i})(x_j - \overline{x_j})}$$

$$= \int \int \int \int \int \int \int (x_i - \overline{x_i})(x_j - \overline{x_j}) \rho(\mathbf{x}) dx_1 dx_2 dx_3 dx_4 dx_5 dx_6 .$$

Momentum deviation

Ellipsoid

8. Second Order Ion Optics

Multipole expansion:

$$B_{x}(x, y, s) = \frac{\partial \Phi}{\partial x} = A_{11}y + A_{12}xy + \cdots,$$

$$B_{y}(x, y, s) = \frac{\partial \Phi}{\partial y} = A_{10} + A_{11}x + \frac{1}{2!} \left(A_{12}x^{2} + A_{30}y^{2}\right) + \cdots$$

$$B_{s}(x, y, s) = \frac{1}{1 + hx} \frac{\partial \Phi}{\partial s} = \frac{1}{1 + hx} \left(A'_{10}y + A'_{11}xy + \cdots\right).$$

Much more complicated equations of motion Transfer matrix elements ... etc

For details see Berz, Hinterberger

8. Higher-Order Ion Optics

The MAD-X Program (Methodical Accelerator Design) Version 5.02.05 **User's Reference Manual**

Hans Grote Frank Schmidt Laurent Deniau Ghislain Roy (editor)

MAX_MULT_ORD (optional parameter, default = 11)

9. Ion Optical Systems

FODO Cell