
Free-electron lasers

Peter Schmüser
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Abstract
The synchrotron radiation of relativistic electrons in undulator magnets and the
low-gain Free-Electron Laser (FEL) are discussed in some detail. The high-
gain FEL based on the principle of Self Amplified Spontaneous Emission is
treated on a qualitative level.

1 Introduction
The Free-Electron Laser (FEL) principle has been known since the early 1970’s but for many years
FEL’s have played a marginal role in comparison with conventional lasers. Only in recent years it has
become clear that these devices have the potential of becoming exceedingly powerful light sources in
the vacuum-ultraviolet (VUV) and X ray regime. In my talk I will first deal with undulator radiation
since it is intimitely related to FEL radiation, then explain the low-gain FEL and finally treat the high-
gain FEL based on the principle of Self Amplified Spontaneous Emission (SASE). SASE-FEL’s are
frequently considered as the fourth generation of accelerator-based light sources. In contrast to existing
synchrotron radiation light sources which are mostly storage rings the FEL requirements on the electron
beam quality in terms of low transverse emittance and small energy spread are so demanding that only
linear accelerators can be used to provide the drive beam.

In my one-hour talk it was not possible to go much into mathematical details. The high-gain FEL
is therefore treated only qualitatively. For a thorough presentation of SASE FEL’s I refer to the book
“The Physics of Free Electron Lasers” by Saldin, Schneidmiller and Yurkov and to the lectures by J.
Rossbach at the CERN Accelerator School on Synchrotron Radiation.

1.1 Electron accelerators as light sources
In the bending magnets of a high-energy circular accelerator the relativistic electrons emit synchrotron
radiation. For a Lorentz factor1 γ = W/(mec

2) � 1 the radiation is emitted almost tangentially to the
circular orbit. The frequency spectrum is continuous and extends from zero to frequencies beyond the
“critical frequency”

ωc =
3cγ3

2R
(1)

where R is the radius of curvature in the bending magnet. The radiation power is

Prad =
e2c

6πε0
γ4

R2
. (2)

In modern synchrotron light sources the radiation used for research is produced in wiggler or undu-
lator magnets which are periodic arrangements of many short dipole magnets of alternating polarity.
The electrons move on a wavelike orbit through such a magnet (Fig. 1) but the overall deflection of the
beam is zero. Undulator radiation is far more useful than bending-magnet radiation because it is nearly
monochromatic and concentrated in a narrow angular cone with an opening angle of about ±1/γ. The
wavelength can be estimated from the following consideration. Call λu the period of the magnet ar-
rangement. In a coordinate system moving with the average speed of the beam, the relativistic length
contraction reduces the period to λ∗u = λu/γ, and the electrons oscillate at a correspondingly higher

1The total relativistic energy of the electron is denoted by W since in this article the letter E is reserved for electric fields.
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Fig. 1: Schematic representation of undulator radiation. For simplicity the alternating magnetic field and the
cosine-like electron orbit have been drawn in the same plane.

frequency ω∗ = 2πc/λ∗u = γ 2πc/λu and emit dipole radiation. If one Lorentz-transforms this radiation
into the laboratory system one gets for the light wavelength λ` ≈ λ∗u/γ = λu/γ

2; for example, for a
Lorentz factor γ = 1000 (an electron energy of 511 MeV) the radiation wavelength is a million times
shorter than the undulator period. Moreover, the wavelength can be easily varied by changing the particle
energy.

It is interesting to note that the total energy radiated by a relativistic electron in an undulator is the same
as that in a bending magnet of equal magnetic length, however, the intensity is concentrated in a narrow
spectral range. Different electrons radiate independently in bending magnets as well as in undulators,
hence the total power produced by a bunch of N electrons is simply N times the radiation power of one
electron.

1.2 Free-electron and conventional lasers
The next big improvement is given by the Free-Electron Laser. The main component is again an undulator
magnet but by means of a clever mechanism (explained below) one forces a large number of electrons
to emit their radiation coherently. Like undulator radiation, the FEL radiation is almost monochromatic
and well collimated but the power will be N times higher if one manages to achieve full coherence in the
bunch.

A conventional laser (Fig. 2) consists of three basic components: the laser medium with at least 3 energy
levels, an energy pump which creates a population inversion, and an optical resonator. The electrons are
bound to atomic, molecular or solid-state levels, so one may call this a “bound-electron” laser in contrast
to the free-electron laser where the electrons move in vacuum. In an FEL (Fig. 3 ) the role of the active
laser medium and the energy pump are both taken over by the relativistic electron beam. An optical
cavity is no longer possible for wavelengths below 100 nm, because the reflectivity of metals and other
mirror coatings drops quickly to zero at normal incidence. Here one has to rely on the principle of Self
Amplified Spontaneous Emission (SASE) where the laser gain is achieved in a single passage of a very
long undulator magnet. The schematic setup of a SASE FEL is shown in Fig. 4. One big advantage of an
FEL in comparison with a conventional laser is the free tunability of the wavelength by simply changing
the electron energy.
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Fig. 2: Scheme of a conventional laser (“bound-electron” laser).

Fig. 3: Principle of free-electron laser. For visible or infrared light an optical resonator can be used. In the
ultraviolet and X ray region one has to rely on the mechanism of Self Amplified Spontaneous Emission where the
laser gain is achieved in a single passage of a very long undulator.

2 Undulator radiation
2.1 Magnetic field of undulator
The motion of an electron in an undulator magnet is shown schematically in Fig. 5. The undulator axis
is along the direction of the beam (z direction), the magnetic field points in the y direction (vertical).
The period of the magnet arrangement λu is in the order of 25 mm. For simplicity we assume that the
horizontal width of the pole shoes is larger than λu, then the x dependence of the field can be neglected.
The field on the axis is approximately harmonic

By(0, 0, z) = B0 cos(kuz) with ku = 2π/λu (3)

In vacuum we have ~∇ × ~B = 0, hence the magnetic field can be written as the gradient of a scalar
magnetic potential

~B = ∇φ .
The potential φ fulfills the Laplace equation

∇2φ = 0 .
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Fig. 4: Schematic of the SASE FEL at the TESLA Test Facility.
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Fig. 5: Schematic view of an undulator magnet with alternating polarity of the magnetic field and of the cosine-like
trajectory of the electrons. The distance between two equal poles is called the undulator period λu.

Making the ansatz

φ(y, z) = f(y) cos(kuz) ⇒ d2f

dy2
− k2

uf = 0

we get for the general solution

f(y) = c1 sinh(kuy) + c2 cosh(kuy) ,

By(y, z) =
∂φ

∂y
= ku(c1 cosh(kuy) + c2 sinh(kuy)) cos(kuz) .

The vertical field component By is symmetric with respect to the plane y = 0 hence c2 = 0, and
moreover kuc1 = B0. So the potential is

φ(x, y, z) =
B0

ku
sinh(kuy) cos(kuz) . (4)
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For y 6= 0 the magnetic field has also a longitudinal component Bz .

Bx = 0
By = B0 cosh(kuy) cos(kuz) (5)

Bz = −B0 sinh(kuy) sin(kuz) .

In the following we restrict ourselves to the symmetry plane y = 0.

2.2 Electron Motion in an Undulator
2.2.1 Trajectory in first order
We call W = Ekin + mec

2 = γmec
2 the total relativistic energy of the electron. The transverse

acceleration by the Lorentz force is
γme~̇v = −e~v × ~B . (6)

This results in two coupled equations

ẍ =
e

γme
By ż z̈ = − e

γme
Byẋ (7)

which are solved iteratively. To obtain the first-order solution we observe that vz = ż ≈ v = β c = const
and vx � vz . Then z̈ ≈ 0 and

x(t) ≈ − eB0

γmeβck2
u

cos(kuβct) , z(t) ≈ βct . (8)

The electron travels on a cosine-like trajectory

x(z) = −A cos(kuz) with A =
eB0

γmeβck2
u

.

The maximum divergence angle is

θmax ≈
[
dx

dz

]
max

=
eB0

γmeβcku
=
K

βγ

Here we have introduced the undulator parameter

K =
eB0

mecku
=
eB0λu

2πmec
. (9)

Synchrotron radiation of relativistic electrons is emitted inside a cone with opening angle 1/γ. If the
particle trajectory stays within this cone one speaks of an undulator magnet (Fig. 6):
Undulator: θmax ≤ 1/γ ⇒ K ≤ 1 .
If the trajectory extends beyond the cone the magnet is called a wiggler:
Wiggler: K > 1 .
The special feature of an undulator is that the radiated field of an electron interferes with itself along the
magnet axis. The consequence is, as we shall see, that the radiation is nearly monochromatic.

2.2.2 Motion in second order
Due to the cosine-trajectory the z component of the velocity is not constant. It is given by

vz =
√
v2 − v2

x ≈ c

(
1− 1

2γ2
(1 + γ2v2

x/c
2)
)
.
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2. Physical Processes in a Free Electron Laser

B
1/γ
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Figure 2.1.: Emission of radiation in an undulator.

In the TTF undulator, the deviation from the straight orbit is only 10µm. Syn-
chrotron radiation is emitted by relativistic electrons in a cone with opening angle
1/γ. In an undulator, the the maximum angle of the particle velocity with respect to
the undulator axis α = arctan(vx/vz) is always smaller than the opening angle of the
radiation, therefore the radiation field may add coherently. In a wiggler, αmax > 1/γ,
and a broad radiation cone with lower intensity on the axis is emitted. The condition
for an undulator can be rewritten for vz ≈ c:

1

γ
> arctan

vxmax

vz
≈ vxmax

vz
≈ Kc

γc

=⇒ K < 1 (2.10)

Consider two photons emitted by a single electron at the points A and B, which
are one half undulator period apart (figure 2.1):

AB =
λu
2

(2.11)

If the phase of the radiation wave advances by π between A and B, the electromag-
netic field of the radiation adds coherently2. The light moves on a straight line AB
that is slightly shorter than the sinusoidal electron trajectory ÃB:

λ

2c
=
ÃB

v
− AB

c
(2.12)

2 Photons radiated by different electrons will however usually be incoherent.

22

Fig. 6: Schematic view of undulator radiation .

We insert for vx = ẋ(t) the first-order solution, then the average z velocity is

v̄z = c

(
1− 1

2γ2
(1 +K2/2)

)
≡ β̄c (10)

It should be noted that the z velocity oscillates about the average2

ż(t) = β̄c+
cK2

4γ2
cos(2ωut) with ωu = β̄cku .

The trajectory in second order reads

x(t) = − cK

γωu
cos(ωut) , z(t) = β̄ct+

cK2

8γ2ωu
sin(2ωut) . (11)

2.2.3 Lorentz transformation into a moving coordinate system
Consider a coordinate system (x∗, y∗, z∗) moving with the average z velocity of the electrons:

v̄z = β̄c, γ̄ ≈ γ = W/(mec
2) .

The Lorentz transformation reads

t∗ = γ̄(t− β̄z/c) = γ̄t(1− β̄2) ≈ t/γ

x∗ = x = − cK

γωu
cos(ωut)

z∗ = γ̄(z − β̄ct) ≈ cK2

8γωu
sin(2ωut)

The electron orbit in the moving system is:

x∗(t∗) = − cK

γωu
cos(ω∗t∗) , z∗(t∗) =

cK2

8γωu
sin(2ω∗t∗) (12)

with ω∗ = γωu. Note that ωut = ω∗t∗. This is mainly a transverse harmonic oscillation with the
frequency ω∗ = γωu. Superimposed is a small longitudinal oscillation which will be ignored here, it
leads to higher harmonics in the radiation. The motion is plotted in Fig. 7. In the moving system the
electron emits dipole radiation with the frequency ω∗ = γωu and the wavelength λ∗u = λu/γ.

2This oscillation leads to odd higher harmonics of the undulator radiation, see for example the book by K. Wille. In a helical
undulator the z velocity is constant.
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Fig. 7: Oscillation of the electron in the moving coordinate system.

Fig. 8: Radiation characteristics in the laboratory system of an oscillating dipole moving at speeds close to c.

2.2.4 Transformation of radiation into laboratory system
The radiation characteristics of an oscillating dipole moving at relativistic speed is depicted in Fig. 8.
Within increasing Lorentz factor γ the radiation becomes more and more concentrated in the forward
direction. We are interested in the light wavelength in the laboratory system as a function of the angle θ
with respect to the beam axis. The Lorentz transformation of the photon energy reads

~ω∗ = γ̄~ω`(1− β̄ cos θ)

⇒ λ` =
2πc
ω`

=
2πcγ̄
ω∗

(1− β̄ cos θ) = λu(1− β̄ cos θ)

Using γ̄ ≈ γ, β̄ =
(
1− 1

2γ2 (1 +K2/2)
)

and cos θ ≈ 1 − θ2/2 we obtain for the wavelength of
undulator radiation

λ` =
λu

2γ2
(1 +K2/2 + γ2θ2) . (13)

2.3 Line shape of undulator radiation
An electron passing an undulator with Nu periods produces a wavetrain with Nu oscillations (Fig. 9).
The electric field of the light wave is written as

E`(t) =
{
E0e

iω`t if− T/2 < t < T/2
0 otherwise

The time duration of the wave train is T = Nuλ`/c. Due to its finite length, this wave train is not
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Finite wave train 
(here with 10 periods) 
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0

0.5
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ω0

Spectral intensity for a wave train 
 with Nu = 100 periods

Fig. 9: A finite wavetrain.

monochromatic but contains a frequency spectrum which is obtained by Fourier transformation

A(ω) =
1√
2π

∫ +∞

−∞
E`(t)e−iωtdt =

E0√
2π

∫ +T/2

−T/2
ei(ω`−ω)tdt

=
2E0√

2π
· sin(∆ωT/2)

∆ω
with ∆ω = ω − ω` .

The spectral intensity is

I(ω) ∝
(

sin ξ
ξ

)2

with ξ = ∆ωT/2 =
πNu(ω − ω`)

ω`
.

It has a maximum at ω = ω` and a width proportional to 1/Nu. The line shape for a wave train with 100
oscillations is shown in Fig. 10. The spectral resolution is

∆λ/λ = 1/Nu

and amounts to 1% in the present example.

Finite wave train 
(here with 10 periods) 

0.96 0.98 1 1.02 1.04
0

0.5

1

I( )ω

ω

ω0

Spectral intensity for a wave train 
 with Nu = 100 periods

Fig. 10: Normalized spectral intensity distribution of undulator radiation in a magnet with Nu = 100 periods.

3 Low-gain FEL
3.1 Energy transfer from electron beam to light wave
We consider the case of “seeding”, where the initial light wave with wavelength λ` is provided by an
external source such as an optical laser. The schematic setup of a low-gain FEL is shown in Fig. 11.

The light wave is co-propagating with the relativistic electron beam and is described by a plane electro-
magnetic wave

Ex(z, t) = E0 cos(k`z − ω`t+ ψ0) with k` = ω`/c = 2π/λ` .
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Fig. 11: Principle of low-gain FEL with optical resonator.

Obviously the light wave, travelling with speed c along the z axis, slips with respect to the electrons
whose average speed in z direction is

v̄z = c

(
1− 1

2γ2
(1 +K2/2)

)
< c .

The question is then: how can there be a continuous energy transfer from the electron beam to the light
wave? The electron energy W = γmec

2 changes in the time interval dt by

dW = ~v · ~Fdt = −evx(t)Ex(t)dt .

The x component of the electron velocity vx and the electric vectorEx of the light wave must point in the
same direction to get an energy transfer from the electron to the light wave. To determine the condition
for energy transfer along the entire trajectory we compute the electron and light travel times for a half
period of the undulator:

tel = λu/(2v̄z), tlight = λu/(2c) .

Figure 12 illustrates that after a half period vx and Ex are still parallel if the phase of the light wave has
slipped by π, i.e.

ω`(tel − tlight) = π .

(Remark: also 3π, 5π . . . are possible, leading to higher harmonics of the radiation). This condition
allows to compute the light wavelength:

λ` =
λu

2γ2

(
1 +

K2

2

)
which is identical with the wavelength of undulator radition (in forward direction).

3.1.1 Quantitative treatment
The energy transfer from an electron to the light wave is

dW

dt
= −evx(t)Ex(t)

= −ecK
γ

sin(kuz)E0 cos(k`z − ω`t+ ψ0)

9
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Fig. 12: Condition for energy transfer from electron to light wave.

= −ecKE0

2γ
[sin((k` + ku)z − ω`t+ ψ0)− sin((k` − ku)z − ω`t+ ψ0)]

We consider the first term. The argument of the sine function is called the ponderomotive phase:

ψ ≡ (k` + ku)z − ω`t+ ψ0 = (k` + ku)β̄ct− ω`t+ ψ0 . (14)

There will be a continuous energy transfer from the electron to the light wave if ψ is constant (indepen-
dent of time) and in the range 0 < ψ < π, the optimum value being ψ = ψ0 = π/2. The condition
ψ = const can be fulfilled only for a certain wavelength.

ψ = const ⇔ dψ

dt
= (k` + ku)v̄z − k`c = 0 . (15)

Insertion of v̄z permits to compute the light wavelength:

λ` =
λu

2γ2

(
1 +

K2

2

)
. (16)

The condition for resonant energy transfer all along the undulator therefore yields exactly the same light
wavelength as is observed in undulator radiation at θ = 0. This is the reason why the spontaneous undu-
lator radiation can serve as a “seed radiation” in the SASE FEL.

Now we look at the second term. Here the phase of the sine function cannot be kept constant since from

(k` − ku)β̄ct− ω`t+ ψ0 = const

we would get
k`(1− β̄) = −kuβ̄ ⇒ k` = 2π/λ` < 0

which of course is unphysical. Hence the second sine function oscillates rapidly and averages to zero.

3.2 The pendulum equation
We assume “seeding” by an external light source with wavelength λ`. The resonant energy Wr =
γr mec

2 is defined by the equation

λ` =
λu

2γ2
r

(
1 +

K2

2

)
. (17)

Let the electron gamma factor be slightly larger, γ > γr, and call η = (γ − γr)/γr the relative energy
deviation. We assume

0 < η =
γ − γr

γr
� 1 .

10
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Fig. 13: Phase space curves of a mathematical pendulum.

The energy deviation ηγr mec
2 and the ponderomotive phase ψ will both change due to the interaction

with the radiation field. The low-gain FEL is defined by the condition that the electric field amplitude
grows slowly such that E0 ≈ const during one passage of the undulator.

The time derivative of the ponderomotive phase is no longer zero for γ > γr :

ψ̇ = kuc− k`c
1 +K2/2

2γ2
.

We subtract 0 = kuc− k`c (1 +K2/2)/(2γ2
r ), see Eq. (16), and get

dψ

dt
=
k`c

2

(
1 +

K2

2

)(
1
γ2

r

− 1
γ2

)
.

From this follows
dψ

dt
≈ 2kucη ≡ ω′ (ω′ � kuc) . (18)

The time derivative of η is
dη

dt
= − eE0K

2mecγ2
r

sinψ . (19)

Combining Eqs. (18) and (19) we arrive at the so-called “Pendulum Equation” of the low-gain FEL

ψ̈ + Ω2 sinψ = 0 with Ω2 = eE0Kku/(meγ
2
r ) . (20)

3.3 Phase space representation
There is a complete analogy with the motion of a mathematical pendulum (Fig. 13). At small amplitude
we get a harmonic oscillation. With increasing angular momentum the motion becomes unharmonic. At
very large angular momentum one gets a rotation (unbounded motion). The phase space trajecory for an
electron in an FEL can be easily constructed by writing the coupled differential equations (18) and (19)
as difference equations and solving these in small time steps. The trajectories for 20 electrons of different
initial phases ψ0 are shown in Fig. 14 for γ = γr and γ > γr. In the first case the net energy transfer is
zero since there are as many electrons which supply energy to the light wave as there are which remove
energy from the wave. For γ > γr, however, the phase space picture clearly shows that there is a net
energy transfer from the electron beam to the light wave. This will be computed in the next section.
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Fig. 14: Phase space trajectories for 20 electrons of different initial phases ψ0. Left picture: γ = γr. The electrons
with ψ0 < 0 withdraw energy from the light wave while those with ψ0 > 0 supply energy to the light wave.
Obviously the net energy transfer is zero for γ = γr. Right picture: γ > γr. One can easily see that the net energy
transfer is positive.

3.4 Computation of the FEL gain, Madey theorem
The energy (per unit volume) of the light wave is

Wlight =
ε0
2
E2

0 .

The energy increase and relative gain caused by one electron are

∆Wlight = −mec
2γr∆η G1 =

∆Wlight

Wlight
= −2mec

2γr

ε0E2
0

∆η .

Here ∆η is the change of the relative energy deviation of the electron upon passing the undulator. We
use Eq. (18) to compute this change:

∆η =
∆ψ̇
2kuc

.

Summing over all electrons in the bunch (ne per unit volume) the total gain becomes

G = −mecγrne

ε0E2
0ku

· < ∆ψ̇ > . (21)

Here < ∆ψ̇ > denotes the change of the time derivative of the ponderomotive phase, averaged over all
electrons. Hence it is this quantity we have to compute.

3.4.1 Phase change in undulator
We multiply the pendulum equation ψ̈ + Ω2 sinψ = 0 with 2ψ̇ and integrate over time

ψ̇2 − 2Ω2 cosψ = const ⇒ ψ̇(t)2 = ψ̇2
0 + 2Ω2[cosψ(t)− cosψ0] .

From Eq. (18)
ψ̇0 = ψ̇(0) = 2c ku η ≡ ω′

we obtain then
ψ̇(t) = ω′

√
1 + 2(Ω/ω′)2[cosψ(t)− cosψ0] . (22)
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For a weak laser field one finds (Ω/ω′)2 � 1, so we expand the square root up to second order
√

1 + x = 1 + x/2− x2/8 . . .

and get

ψ̇(t) = ω′ +
Ω2

ω′
[cosψ(t)− cosψ0]−

Ω4

2ω′3
[cosψ(t)− cosψ0]2 . (23)

This equation is solved iteratively.

Zeroth order: ψ̇0 = ω′, ∆ψ̇0 = 0.

First order: the phase ψ(t) in first order is obtained by integrating ψ̇0:

ψ1(t) = ψ0 + ψ̇0 · t = ψ0 + ω′t .

We insert this in Eq. (23) to get ψ̇ in first order

ψ̇1(t) = ω′ + (Ω2/ω′)[cos(ψ0 + ω′t)− cosψ0] . (24)

The flight time through the undulator is T , so the change of ψ̇1 when the electron passes the undulator is

∆ψ̇1 = (Ω2/ω′)[cos(ψ0 + ω′T )− cosψ0] .

According to Eq. (21) the gain is obtained by averaging ∆ψ̇ over all particles in the bunch which means
that one has to average over all initial phases ψ0. The result is

< ∆ψ̇1 >= 0 . (25)

The FEL gain is zero in first order. The physical reason is the nearly symmetric initial phase space dis-
tribution.

Second order: Equation (24)) is integrated to get ψ in second order:

ψ2(t) = ψ0 + ω′ · t︸ ︷︷ ︸
ψ1(t)

+ (Ω/ω′)2[sin(ψ0 + ω′t)− sinψ0 − ω′t cosψ0]︸ ︷︷ ︸
δψ2(t)

(26)

This is inserted in Eq. (23) to compute ψ̇ at t = T in second order

ψ̇2(T ) = ω′ + (Ω2/ω′)[cos(ψ0 + ω′T + δψ2)− cosψ0]
− Ω4/(2ω′3)[cos(ψ0 + ω′T + δψ2)− cosψ0]2 (27)

δψ2 � 1 ⇒ cos(ψ0 + ω′T + δψ2) ≈ cos(ψ0 + ω′T )− δψ2 sin(ψ0 + ω′T )

cos(ψ0 + ω′T + δψ2) ≈ cos(ψ0 + ω′T )
− (Ω/ω′)2 sin(ψ0 + ω′T )[sin(ψ0 + ω′T )− sinψ0 − ω′T cosψ0]

Averaging over all start phases ψ0 yields
< cos(ψ0 + ω′T + δψ2) >= (1/2)(1− cos(ω′T )− ω′T sin(ω′T )).
From this we get

< ∆ψ̇2 >= −(Ω4/ω′3)[1− cos(ω′T )− (ω′T/2) sin(ω′T )] .
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Fig. 15: The normalized lineshape curve of undulator radiation and the gain curve (arbitrary units) of the low-gain
FEL as a function of ξ = πNu (ω − ω`)/ω`.

Remembering that T = Nuλu/c is the flight time through the undulator and ξ = ω′T/2 one obtains

< ∆ψ̇2 > = −Ω4

ω′3
[1− cos(2ξ)− ξ sin(2ξ)]

=
N3

uλ
3
uΩ4

8c3
· d
dξ

(
sin ξ
ξ

)2

The FEL gain function (21) is hence

G(ξ) = −π e
2K2N3

uλ
2
u ne

4ε0mec2γ3
r

· d
dξ

(
sin2 ξ

ξ2

)
(28)

We have proven the Madey Theorem which states that the FEL gain curve is given by the negative
derivative of the line-shape curve of undulator radiation. This is shown in Fig. 15.

4 High-gain FEL
4.1 General principle
The essential feature of the high-gain FEL is that a large number of electrons radiate coherently. In that
case, the intensity of the radiation field grows quadratically with the number of particles: IN = N2 I1. If
it were possible to concentrate all electrons of a bunch into a region which is far smaller than wavelength
of the radiation then theseN particles would radiate like a “point macroparticle” with chargeQ = −Ne,
see Fig. 16. The big problem is, however, that this concentration of some 109 electrons into a tiny volume
is totally unfeasible, rather even the shortest particle bunches are much longer than the FEL wavelength.
The way out of this dilemma is given by the process of micro-bunching which is based on the following
principle: those electrons which lose energy to the light wave travel on a cosine trajectory of larger
amplitude than the electrons which gain energy from the light wave The result is a modulation of the
longitudinal velocity which eventually leads to a concentration of the electrons in slices which are shorter
than λ` . The result of a numerical simulation of this process is shown in Fig. 17. The particles within a
micro-bunch radiate coherently. The resulting strong radiation field enhances the micro-bunching even
further. The result is a “collective instability”, leading to an exponential growth of the radiation power.
The ultimate power is P ∝ N2

c where Nc is the number of particles in a coherence region. A typical
value is

Nc ≈ 106 ⇒ PFEL = 106Pundulator .
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490



Fig. 16: Radiation from a point-like macroparticle
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Fig. 17: Numerical simulation of microbunching. (Courtesy S. Reiche).

4.2 Approximate analytical treatment and experimental results
An approximate analytic description of the high-gain FEL requires the self-consistent solution of the
coupled pendulum equations and the inhomogeneous wave equation for the electromagnetic field of the
light wave. In the one-dimensional FEL theory the dependencies on the transverse coordinates x, y are
disregarded. The wave equation for the radiation field Ex reads

∂2Ex

∂z2
− 1
c2
∂2Ex

∂t2
= µ0

∂jx
∂t

where the current density ~j is generated by the electron bunch moving on its cosine-like trajectory. In
addition, one has to consider the longitudinal space charge field Ez which is generated by the gradually
evolving periodic charge density modulation. After a lot of tedious mathematical steps and several
simplifying assumptions one arrives at a third-order differential equation for the amplitude of the electric
field of the light wave:

d3Ẽx

dz3
− 4ikuη

d2Ẽx

dz2
+ (k2

p − 4k2
uη

2)
dẼx

dz
− iΓ3Ẽx(z) = 0 . (29)
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Fig. 18: Observation of microbunching at the 60 µm FEL Firefly.

Here we have introduced the gain parameter Γ and a parameter kp

Γ =
(
µ0K

2e2kune

4γ3me

) 1
3

, kp =

√
4γ2cΓ3

ωK2
(30)

and assumed that the electron beam has negligible energy spread.

This third-order differential equation can be solved analytically. For the case γ = γr one obtains

Ẽx(z) = A1 exp (−iΓz) +A2 exp

(
i+
√

3
2

Γz

)
+A3 exp

(
i−
√

3
2

Γz

)
. (31)

The second term exhibits exponential growth as a function of the position z in the undulator. The electric
field grows exponentially as exp(

√
3

2 Γz), the power grows as exp(
√

3Γz). The gain parameter Γ is
related to two parameters which are in widespread use: the Pierce parameter and the power gain length

ρpierce =
λuΓ
4π

Lg =
1√
3 Γ

. (32)

The above calculations, which have been sketched only very briefly, indicate that there is an onset of
an “instability”, leading to a progressing microbunching and an exponential increase in radiation power
along the undulator. A quantitative treatment requires elaborate numerical simulations (see Fig. 17).
Microbunching has been experimentally observed at the 60 µm FEL Firefly at Stanford University, see
Fig. 18. The exponential growth of radiation power and the progressing microbunching in a long undula-
tor are depicted in Fig. 19. One characteristic but quite undesirable feature of a SASE FEL is the presence
of fluctuations which are due to the stochastic nature of the initiating undulator radiation. The light pulse
energy fluctuates from pulse to pulse, and the same applies for the wavelength and the time structure. As
an example I show in Fig. 20 the measured wavelength distribution of several FEL pulses together with
the average over 100 pulses. The origin of the large fluctuations is that small statistical fluctuations in
the incoming undulator radiation are strongly amplified in the exponential growth region (see Fig. 19).
There are so-called “seeding schemes” under development where radiation of the desired wavelength is
produced in a short undulator, passed through a monochromator and then used as seed radiation for the
FEL process. Here one can expect much higher monochromaticity of the final FEL radiation. In spite
of the fluctuations the SASE radiation is highly coherent as demonstrated by the double-slit interference
patterns in Fig. 21.
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Fig. 19: The exponential growth of radiation power as a function of undulator length. The data at λ = 100 nm
have been obtained at the SASE FEL of the TESLA Test Facility at DESY. The progressing microbunching is
indicated schematically.

4. The TTF Accelerator and SASE-FEL

4.5.2. Measurements of the spectrum

The spectral distribution of the radiation pulse could be measured with a spectrom-
eter [GFL+01]. It consisted of a normal incidence grating with 1 m focal length; the
image which was focused on a fluorescent screen was imaged with tandem optics pro-
viding a very large aperture. This set-up was able to capture 5.3% of isotropically
emitted light from the screen. The image intensifier was coupled to a CCD, which is
digitised directly in the device. It was controlled and read out by a fibre optical link
from the control room. A wavelength resolution of 0.2 nm has been measured with
this spectrometer, while the imaged range is of 7 nm [GFL+01]. Single-shot spectra
could be recorded using the short exposure times of the image intensifier (figure 4.19).
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Figure 4.19.: Measured spectra of FEL pulses. Individual electron bunches produce
different spectral distributions. An averaged spectrum is also shown.
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Fig. 20: The measured spectra of three pulses in the SASE FEL at DESY. Also shown is the average spectrum of
100 pulses. 7.1. Measurements of the FEL in saturation
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Figure 7.2.: Measured horizontal double slit diffraction patterns at 100 nm FEL
wavelength. a) 0.5mm, b) 1mm, c) 2mm and d) 3mm slit separation.
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Fig. 21: Measured double-slit diffraction patterns at 100 nm FEL wavelength. The separation of the horizontal
slits is 0.5 resp. 1 mm.
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