3. Electric and magnetic dipole moments

(follows lecture from S. Westhoff)

3.1 Phenomenology

In non-relativistic electrodynamics the interaction of a particle (with Spin \tilde{S}) with an electric and magnetic field is described by the Hamiltonian

$$\mathcal{H} = -\mu \frac{\vec{S}}{\left|\vec{S}\right|} \cdot \vec{B} - d\frac{\vec{S}}{\left|\vec{S}\right|} \cdot \vec{E}$$

μ: magnetic dipole moment (MDM)

d: electric dipole moment (EDM)

Transformation properties under parity (P) and time reversal (T):

$$P: \vec{B} \to +\vec{B}, \quad \vec{E} \to -\vec{E}, \quad \vec{S} \to +\vec{S}$$
$$T: \vec{B} \to -\vec{B}, \quad \vec{E} \to +\vec{E}, \quad \vec{S} \to -\vec{S}$$

In relativistic quantum electrodynamics MDMs and EDMs are induced by the following effective operators:

$$-\mu_{e}\frac{\dot{S}}{\left|\vec{S}\right|}\cdot\vec{B} \iff e\left(\vec{e}\gamma_{\mu}e\right)A^{\mu}+a_{e}\frac{e}{4m_{e}}\left(\vec{e}\sigma_{\mu\nu}e\right)F^{\mu\nu}$$
$$-d_{e}\frac{\vec{S}}{\left|\vec{S}\right|}\cdot\vec{E} \iff +d_{e}\frac{i}{2}\left(\vec{e}\sigma_{\mu\nu}\gamma_{5}e\right)F^{\mu\nu}$$

The coupling $e(\bar{e}\gamma_{\mu}e)A^{\mu}$ induces the magnetic moment with the gyromagnetic factor g = 2.

The dipole operators induce an anomalous magnetic moment a_e with

$$\mu_{e} = g_{e} \frac{e}{2m_{e}}$$
 and $(g_{e} - 2) = 2a_{e}$

and a CP-violating electric dipole moment d_e.

In quantum field theory a_e and d_e are induced by quantum corrections to the interaction of the lepton with a static electromagnetic background field.

These corrections can be calculated from loop-diagrams at zero momentum transfer.

3.2 Anomalous magnetic moment (g-2)

3.2.1 Phenomenology:

a) Electromagnetic contributions (dominant)

For the electron the weak-contributions are irrelevant!

For the muon:

$$a_{\mu}^{EW} = \frac{\sqrt{2} G_{F}^{2} m_{\mu}^{2}}{48\pi^{2}} \left(5 + \left(-1 + 4\sin^{2}\theta_{w} \right)^{2} \right) + O\left(m_{\mu}^{4} / M_{W}^{4} \right)$$
$$\approx \left(194.82 \pm 0.02 \right) \times 10^{-11} \qquad \text{(Jegerlehner)}$$

Summary:
$$a_{\mu}^{SM} = a_{\mu}^{QED} + a_{\mu}^{pol} + a_{\mu}^{had} + a_{\mu}^{EW} = 1.16591786(66) \cdot 10^{-3}$$

 $a_{e}^{SM} = a_{e}^{QED} + \underline{a_{e}^{pol}} + a_{e}^{had} + a_{e}^{EW} = 1.15965218073(28) \cdot 10^{-3}$
small compared to muon 23

3.3.2. Electron (g-2) measurement: (Gabrielse et al., 2006 + 2008)

Experimental method: Quantum cyclotron

Bind a single electron in a "artificial atom" made of a penning-trap, put into a strong external magnetic field.

Cool-down of "artificial atom" to ~70 mK: only certain energy levels and circular cyclotron radii are allowed anymore \rightarrow quantum cyclotron with discrete ladders of energy levels spaced by hf_c (f_c cyclotron frequency).

Energy levels also depend on electron spin – different for spin \uparrow and \downarrow .

A flip of spin/B configuration $\uparrow \Downarrow$ to $\uparrow \Uparrow \rightarrow$ shift of cyclotron levels by hf_s

$$f_s = \frac{g}{2} f_c$$
 (spin revolution frequency)

Measurement:

In addition to the cyclotron and the magnetron motion (see Figure) the electron also perform axial oscillations inside the cavity of the trap (f_z) .

Because of the coupling the axial motion depends on n_c and the spin-orientation \rightarrow allows to measure f_c and f_s from the axial motion

- One measures f_c and $f_a = f_s f_c$ to determine $g/2 = 1 + f_a / f_{s_c}$
- f_c is measured using the so called quantum-jump spectroscopy: electron in lowest energy level + tuned micro-wave photon $\rightarrow 1^{st}$ excited a state.

Measurement 1: microwave to excite electron $(n_c=0, \downarrow)$ to $(n_c=1, \downarrow)$ Measurement 2: prepare electron in $(n_c=0, \uparrow) \rightarrow$ microwave signal to make transition to $(n_c=1, \downarrow)$

$$\frac{g}{2} = 1 + C_2 \left(\frac{\alpha}{\pi}\right) + C_4 \left(\frac{\alpha}{\pi}\right)^2 + C_6 \left(\frac{\alpha}{\pi}\right)^3 + C_8 \left(\frac{\alpha}{\pi}\right)^4 + C_{10} \left(\frac{\alpha}{\pi}\right)^5 + \ldots + a_{\mu\tau} + a_{\text{hadronic}} + a_{\text{weak}},$$

CODATA 2006 UW Harvard a, after QED reevaluation a_e (Harvard, 2008) h/m(Rb) 2008 This work HOH 599.8 599,85 599.9 599,95 600 600.05 600.1 600,15 $(\alpha^{-1} - 137.03) \times 10^{5}$

 $\alpha^{-1} = 137.035\,999\,084\,(33)\,(39)$ [0.24 ppb][0.28 ppb], = 137.035\,999\,084\,(51) [0.37 ppb]. (5) Agrees well with the value from spectroscopy and recoil measurement but has a 20 times smaller error

A triumph of QED

3.2.3 Muon (g-2) measurement:

Measurement principle

• store polarized muons in a storage ring with magnetic dipole field B: revolution with cyclotron frequency ω_c

$$\omega_{\rm c} = \frac{eB}{m_{\mu}c} = 2\frac{eB}{2m_{\mu}c}$$

- measure spin precession $\omega_{\rm s}$ around the magnetic dipole field relative to the direction of cyclotron motion:

$$\omega_{\rm s} = g \frac{eB}{2m_{\mu}c}$$
$$\omega_{\rm a} = \omega_{\rm s} - \omega_{\rm c}$$

• Taking in addition to the magnetic dipole field also the effect of the electrical focusing fields into account one obtains for $\omega_{\rm a}$

$$\vec{\omega}_{a} = -\frac{e}{m_{\mu}c} \left[a_{\mu}\vec{B} - (a_{\mu} - \frac{1}{\gamma^{2} - 1})\vec{\beta} \times \vec{E} \right] \qquad \text{mit} \quad a_{\mu} = \frac{g - 2}{2}$$

$$\underset{\text{Effect of electrical focusing fields (relativistic effect)}}{\text{Effect of electrical focusing fields (relativistic effect)}} \qquad \text{mit} \quad a_{\mu} = \frac{g - 2}{2}$$

Illustration:

More recent: BNL g-2. Currently: Same storage ring at FNAL $(g-2)_{\mu}$ Experiment at BNL

"V-A" structure of weak decay:

Use high-energy e⁺ from muon decay to measure the muon polarization: electron direction align with the muon spin.

Weak charged current couples to LH fermions (RH anti-fermions)

$\frac{\omega_{a}}{\omega} = 229023.59(16)$ Hz $\overline{2\pi}$ (0.7ppm)

To convert into a_{μ} need B-field. B-field is determined with NMR:

$$a_{\mu} = \frac{\omega_{a} / \omega_{p}}{\mu_{\mu} / \mu_{p} - \omega_{a} / \omega_{p}}$$

 μ_{μ^+}/μ_p =3.183 345 39(10) *)

 $a_{\mu^+} = 11659203(8) \times 10^{-10}(0.7 ppm)$ $a_{\mu^{-}} = 11659214(8) \times 10^{-10}(0.7 ppm)$ $a_{\mu} = 11659208(6) \times 10^{-10}(0.5ppm)$

*) Measured via ground state hyperfine structure of muonium: ., PRL 82, 711 (1999).

Remark: Standard Model determination differ in the determination of the hadr. corrections.

Theoretician finally converged on one value.

New FermiLab g-2 experiment: https://muon-g-2.fnal.gov/

Improvements:

- better B-field homogeneity (x2)
- higher number of muons injected
- beam profile measurem. at injection

 a_{μ} (FNAL) = 11 659 2040(54)×10⁻¹¹(0.46*ppm*) (0.434_{stat} ± 0.157_{syst}) ppm

 4.2σ deviation from the SM value.

(FNAL g-2 collaboration can reduce the error by another factor of 2)

Currently the most exciting deviation of measurements from the SM prediction (together with the R_{K} and P_{5} measurements)

Potential new physics contributions? Measurement systematic?

3.3 Electric Dipole Moment

3.3.1 Phenomenology

EDMs are CP-violating quantities. In the SM the only source*) of CP violation is the phase δ of the CKM matrix.

(axial vectors don't change sign under parity)

a) EDM in the quark sector (d-quark \rightarrow neutron EDM)

*) assuming zero neutrino masses and not considering a CPV θ -term in QCD.

at 2-loop:

$$\boldsymbol{d}_{d}^{(2)} \sim \frac{\boldsymbol{e}}{\left(16\pi^{2}\right)^{2}} \boldsymbol{G}_{F}^{2} \boldsymbol{m}_{d} \boldsymbol{m}_{c}^{2} \cdot \Im\left(\boldsymbol{V}_{td} \boldsymbol{V}_{tb}^{*} \boldsymbol{V}_{cb} \boldsymbol{V}_{cd}^{*}\right) \neq 0$$

Jarlskog Invariant J ~ 10⁻⁵

But:

$$\sum_{\text{diagrams}} d_d^{(2)} = 0 \quad !$$

(anti-symmetrie of J, E.P. Shabalin 1981)

at 3-loop:

For the down quark an EDM is only induced at 3-loop level.

Most recent masurement of the neutron EDM

Phys. Rev. Lett. 124, 081803 (2020)

Neutron EDM:

100

0

200

300

Cycle number

400

500

Measure spin precession in B and E field of ultra-cold trapped neutrons.

(2 n / cm³; 180 s)

b) Lepton EDM only induced at 4-loop level:

$$d_{e} \sim \frac{e}{\left(16\pi^{2}\right)^{3}} \frac{g_{s}^{2}}{16\pi^{2}} G_{F}^{3} m_{e} m_{c}^{2} m_{s}^{2} \cdot J \neq 0$$
$$d_{e} \approx 10^{-44} e \cdot cm \ll d_{d}$$
(Pospelov & Ritz, 2013)

New physics in electron EDM d_e ?

Current experimental upper bound on electron EDM:

$$|d_e| < 8.7 \times 10^{-29} e \cdot cm$$
 (ACME 2013 using ThO - see below)

Consider new physics at a scale Λ with CP-violating (complex) couplings:

$$d_{e}^{NP} \sim \frac{C_{NP}}{\Lambda^{2}} m_{e} \left(\overline{e} \sigma_{\mu\nu} \gamma_{5} e \right) F^{\mu\nu}$$

Assuming $C_{NP} \sim 1$ (NP at tree level) or $C_{NP} \sim 1/(16\pi^2)$ (NP at loop level) with a CP violating phase of O(1), ACME probes New Physics at scales $\Lambda \sim 300$ (30) TeV

c) Principle of electron EDM measurement:

A bound electron with magnetic and electrical dipole moment inside a magnetic and electrical field experiences an energy shift. If it evolves in time, it aquires an additional phase ϕ .

Problems:

ACME Collaboration Science 343 (2014) EPJconf/20135702004

- A bound electron in an atom / molecule is not experiencing a net electrical field

 as there is no net acceleration the net electrical field experienced by the
 electron should be zero!
- For heavy nuclei, electrons move at relativistic speed near the nucleus. Lorentz contraction causes d_e to spatially vary over the orbit. While the mean <E> is zero the mean <d.E> is not.
- Not only that the effective E-field defined as d.E_{eff} = <d.E> is non zero in atoms/molecules, it is also much larger than achievable in laboratory.
 For ThO: E_{eff}=84 GV/cm (scales with Z^3).
- Only unpaired electrons can create an EDM. And, since the relativistic contraction occurs only near the nucleus, the atoms/molecules must have unpaired electrons penetrating the core.
- Di-atomic polarizable molecules are advantageous. The polarization induced by an moderate outside field (<100 V/cm) leads to very strong effective E-field.

Measurement is difficult! Due to time reasons I will not discuss is but I will keep the slides (p 41 - 50) in the notes. 40

Thorium Oxide

ACME Collaboration Science 343 (2014) EPJconf/20135702004

ThO effective E-filed = 84 GV/cm

Ground state

Complicated molecular spectrum.

With small external E-field E_{lab} (>10V/cm)

 \rightarrow The P=± sublevels with the same M_J mix completely: the resulting eigenstates have complete electrical polarization (N=±1) - The M_J =0 don't mix.

M = -1 M = 0 M = +1

Additional B-field shift the levels

Further level shifting in case of electron EDM: $\sim d_e \frac{\vec{s}\vec{E}_{eff}}{|\vec{s}|}$

At the entrance of the field region, the molecules are pumped from the $|X\rangle$ states to the $|A\rangle$ state, where they spontaneously decay to the $|H\rangle$, equally populating the $|J = 1, M = \pm 1, N = \pm 1 >$ sublevels

Next, a pure superposition of Zeeman sublevels $|X_N\rangle$ is prepared by pumping out the orthogonal superposition $|Y_N\rangle$ using linearly polarized light resonant with the transition frequency.

$$X_{\mathcal{N}} \rangle \equiv \frac{1}{\sqrt{2}} \left(|M_J = +1; \mathcal{N} \rangle + |M_J = -1; \mathcal{N} \rangle \right)$$
$$|Y_{\mathcal{N}} \rangle \equiv \frac{1}{\sqrt{2}} \left(|M_J = +1; \mathcal{N} \rangle - |M_J = -1; \mathcal{N} \rangle \right)$$

Next, the molecule state precedes in the applied **E** and **B** fields for approximately 1.1 ms as the beam traverses the 22-cm-long interaction region. The relative phase accumulated between the two Zeeman sublevels depends on EDM d_e .

Near the exit of the field region, we read out the final state of the molecules: By exciting the $|H, J = 1 > \rightarrow |C, J = 1, M_J = 0 >$ transition with rapidly switched orthogonal ('x and 'y) linear polarizations and detecting the $C \rightarrow X$ fluorescence from each polarization, the population is projected onto the $|X_N >$ and $|Y_N >$ states.

$$|\psi_f^{\mathcal{N}}\rangle = \frac{1}{\sqrt{2}} \left(e^{i\phi} | M_J = +1; \mathcal{N} \rangle + e^{-i\phi} | M_J = -1; \mathcal{N} \rangle \right)$$

$$|X_{\mathcal{N}}\rangle \equiv \frac{1}{\sqrt{2}} \left(|M_J = +1; \mathcal{N}\rangle + |M_J = -1; \mathcal{N}\rangle\right)$$
$$|Y_{\mathcal{N}}\rangle \equiv \frac{1}{\sqrt{2}} \left(|M_J = +1; \mathcal{N}\rangle - |M_J = -1; \mathcal{N}\rangle\right)$$

The probability of detecting the molecule in the state $|X_N\rangle$ or $|Y_N\rangle$ is:

$$P_{\chi} = \left| \left\langle X_{N} \left| \psi_{f}^{N} \right\rangle \right|^{2} = \cos^{2} \phi \qquad P_{\chi} = \left| \left\langle Y_{N} \left| \psi_{f}^{N} \right\rangle \right|^{2} = \sin^{2} \phi$$

with
$$\phi = \int_{x=0}^{x=L} (d_e \mathcal{E}_{eff} \mathcal{N} \hat{E} + g_{H,J=1} \mu_B B \hat{B}) \frac{dx}{\hbar v} \equiv \phi_{\mathcal{E}} + \phi_B.$$

Assuming

E_{eff} =84 GV/cm

 $d_e = (-2.1 \pm 3.7_{\text{stat}} \pm 2.5_{\text{syst}}) \times 10^{-29} e \cdot \text{cm}$

 $|d_e| < 8.7 \times 10^{-29} e \cdot cm$

10⁻²³ Cs Xe cell experiments 10⁻²⁴ beam experiments electron EDM limit (e cm) 10⁻²⁵ ●Cs ■TI PbO 10⁻²⁶ TI TI 10⁻²⁷ YbF 10⁻²⁸ ThO 10⁻²⁹ 1970 1980 1990 2000 2010 2020 year

Electron EDM and New (BSM) Physics

