

Physics at the LHC

Hot QCD matter produced in ultra-relativistic heavy-ion collisions

Lecture 1 December 18, 2019

Silvia Masciocchi GSI Darmstadt and Heidelberg University

Outline

Heavy-ion collisions: Little Bangs

Experimental program at the LHC, ALICE

Global characteristics

Bulk particle production

Quark-gluon plasma tomography with hard probes

Research plans for near and further future

Outline

Quark-gluon plasma tomography with hard probes

Research plans for near and further future

Quantum-chromo dynamics

 \overline{q}

Within the Standard Model of particle physics, it is the gauge field theory that describes the strong interaction of colored quarks and gluons

QCD 1: confinement

QCD vacuum: field lines are compressed in a flux tube

... differently from QED

Cornell potential

[illustration from Fritzsch]

QCD 1: confinement

\rightarrow color-neutral hadrons (qq, qqq)

- \rightarrow no colored object
- \rightarrow no fractional charge

Interaction strength decreases with increasing momentum transfer:

 α_s small for $Q^2 \rightarrow \infty$

1975:

Cabibbo and Parisi, Collins and Perry First formulation: at high densities or temperatures a deconfined phase of matter can be created

Quark Gluon Plasma (QGP)

EXPONENTIAL HADRONIC SPECTRUM AND QUARK LIBERATION

N. CABIBBO

Istituto di Fisica, Universitá di Roma, Istituto Nazionale di Fisica Nucleare, Sezione di Rome, Italy

G. PARISI

Istituto Nazionale di Fisica Nucleare, Frascati, Italy

PLB 59B (1975) 67

Fig. 1. Schematic phase diagram of hadronic matter. ρ_B is the density of baryonic number. Quarks are confined in phase I and unconfined in phase II.

1981 on, QCD on space-time lattice:

critical transition temperature from hadronic phase to the deconfined, plasma phase (partonic degrees of freedom)

J.Engels, F.Karsch, H.Satz, I.Montvay PLB 101 (1981) 89

Deconfined matter at high densities and temperatures: quark-gluon plasma

Extreme conditions:

Extreme temperatures

≈ 160 MeV ≈ 2 x 10¹² K (Sun core: 15 x 10⁶ K)

Extreme densities

≈ few GeV/fm³ (few times ground-state nuclear matter. $ε_{proton} ≈ 0.13 \text{ GeV/fm}^3$)

High energy density QCD: WHY ???

- **Fundamental QCD:**
 - Nature of (de-)confinement
 - How does hadronization happens?
 - Compressibility of nuclear matter

a few micro-seconds after the Big Bang

Transport coefficients

Dense QCD matter in nature: neutron stars

Hot QCD matter in nature: early universe

high temperature, low density QGP: state of matter

very high density (~ GeV/fm³) matter, dominated by baryons

Thermodynamics of strongly interacting

matter and phase diagram of QCD

S. Hands, arXiv:physics/0105022

Heavy-ion physics at the high-energy frontier - Lecture 1

S.Masciocchi@gsi.de

- 1950 Fermi
- 1960 Hagedorn limiting temperature
- Evidence for thermalisation comes from analysis of the distribution of transverse mass m_τ, which is found to be approximately Boltzmann exp(-m_τ/T) for a variety of different hadron species
- Particle yields and particle spectra recall a thermal distribution, depending on the temperature of the system and the mass of the individual state $1 d\sigma$

$$\frac{1}{m_T^2} \frac{d\sigma}{dm_T} \propto exp(-m_T/T)$$

- Strongly interacting matter: rich spectrum of color-neutral hadrons, quarks, gluons (partons)
- Use thermodynamic approach to describe possible states of that matter (made of hadrons or partons, interacting among each other or not)
- Typically the states or phases of matter are expressed as functions of control parameters (e.g. temperature, density, pressure) ...
- ... and are represented in a phase diagram

Example:

QED: phase diagram of water

- Coexistence curves P(T): 2 phases are in equilibrium
- Phase transitions when crossing the curves
- Triple point: 3 coexisting phases
- Critical point: fluid and gas become indistinguishable critical behavior, large variations, fluctuations

[http://serc.carleton.edu/research_education/equilibria/phaserule.html]

Control parameters:

- Temperature T
- Baryon chemical potential μ (μ_{B})

Phase diagram of QCD matter

S. Hands, arXiv:physics/0105022

Phase diagram of QCD matter

High temperature, zero baryon chemical potential: Deconfined quark-gluon plasma

As T raises, transition to a phase where the dominant degrees of freedom are no longer hadrons but partons

Summary:

- Features of particle production in hadron interactions (pp on) inspire a thermodynamic treatment of QCD matter
- QCD phase diagram: μ_B and T
- With basic thermodynamic arguments, a phase transition from a hadron gas to a quark-gluon plasma is proposed

$$T_{c} \simeq 155 MeV \qquad \epsilon_{QGP} \simeq \Lambda \circ MeV/fm'$$

• Rigorous computations with Lattice QCD at $\mu_{B} = 0$:

 $T_{c}(\mu_{B}=\mu_{Q}=\mu_{S}=0) = (156.5 \pm 1.5) \text{ MeV}$

 $\epsilon_{\rm C} \approx 0.42 \text{ GeV/fm}^3$ (~2.5 x $\epsilon_{\rm nuclear}$)

(lattice at $\mu_B > 3T_c$ difficult. Progress in the last years!)

1981 on, QCD on space-time lattice:

critical transition temperature from hadronic phase to the deconfined, plasma phase (partonic degrees of freedom)

J.Engels, F.Karsch, H.Satz, I.Montvay PLB 101 (1981) 89

High temperature regime: both energy density and pressure remain clearly below the non-interacting plasma limit. Strong interactions between q, \overline{q} and g and gluons persist in the QGP

A. Bazavov at al. arXiv:1812.08235

 $T_{c}(\mu_{B}=\mu_{Q}=\mu_{S}=0) = (156.5 \pm 1.5) \text{ MeV}$ ε_c ≈ 0.42 GeV/fm³ (~2.5 x ε_{nuclear})

Hot and dense QCD in nature

Heavy-ion collisions in the laboratory

Heavy-ion physics at the high-energy frontier - Lecture 1

Dense QCD matter in nature: neutron stars

Ozel et al., ApJ 820 (2016)

Neutron star mass bound to the equation of state of nuclear matter: hydrostatic equilibrium resulting from competition between gravity and the pressure of QCD matter

Models \rightarrow clustering around 1.4-1.5 M_{sun}

Dense QCD matter in nature: neutron stars

S.Masciocchi@gsi.de

Heavy-ion physics at the high-energy frontier - Lecture 1

Nature

Nature

Experiment

Extreme conditions in the lab: heavy ions

Produced in the collisions of heavy nuclei at high energies

√s_{NN} from few GeV at AGS, SPS, GSI up to 200 GeV at RHIC up to 2.76 (5.1) TeV at LHC

UrQMD

Heavy-ion physics at the high-energy frontier - Lecture 1

1974-1975

GSI-Marburg-Berkeley collaboration

R. Bock, R. Stock, H. Gutbrod et al. Bevalac / Bevatron: E_{kin}/A ~ 1 GeV

1986: AGS (BNL) and SPS (CERN) 1992: SIS (GSI)

2000: RHIC (BNL)

2010: LHC (CERN)

FUTURE: FAIR, NICA (JINR) FCC

GSI, the former Gesellschaft für Schwerionenforschung, was founded on December 17, 1969

 \rightarrow Events: www.gsi.de/50years

In the laboratory: heavy ion collisions

• Beam energy and experiment configuration (fixed target or collider) determine the $\sqrt{s_{_{NN}}} \propto temperature$

 $\sqrt{s_{NN}}$ is inverse proportional to μ_{B} at mid-rapidity

- System size:
 - Choice of ions: Au, Pb, Xe, Ru, Zr, Al, Cu, ³He, d, p
 - Centrality of the collision (... in a moment)

The Large Hadron Collider at CERN

Beam accelerated up to ≈ 6.5 Z TeV Proton-proton collisions at $\sqrt{s} = 13$ TeV

Heavy ions at the LHC

~ 4 weeks / year: Pb-Pb (2010,2011,2015 + 2018) p-Pb (2012,2013,2016) pp at lower √s (2011,2015,2017)

²⁰⁸Pb ions

Run 2 in 2015 and 2018 $E_{b} = 6.37 \text{ Z TeV}$ $\sqrt{s} = 2 E_{b} > 1 \text{ PeV}$ $\sqrt{s_{NN}} = 5.02 \text{ TeV}$

Design luminosity: 1 x 10²⁷ cm⁻²s⁻¹ surpassed by factor 10

LHC superb performance

Heavy ions at the LHC

²⁰⁸Pb ions

Run 2 in 2015 and 2018 $E_{b} = 6.37 \text{ Z TeV}$ $\sqrt{s} = 2 E_{b} > 1 \text{ PeV}$ $\sqrt{s}_{NN} = 5.02 \text{ TeV}$

Design luminosity: 1 x 10²⁷ cm⁻²s⁻¹ surpassed by factor 10

LHC superb performance

≈ 4000 particles in 2 units of pseudorapidity

Heavy-ion collision evolution

Non-equilibrium evolution at early times:

- Gluon dominated, plasma instabilities, thermalization via strong interactions (~1 fm/c) Local thermal and chemical equilibrium: QGP
- Evolution of the medium described by relativistic fluid dynamics
- Expansion, dilution, cooling (10-15 fm/c)

Chemical freeze-out:

- Below a critical temperature, hadrons are formed
- Inelastic collisions cease, particles species do not change → particle yields
 Kinetic freeze-out:
- Elastic collisions cease, particle momenta do not change \rightarrow spectra

Our experimental work

Extraordinary experiments measure the produced particles, to deduce properties of the QGP, the phase transition, etc.

A Large Ion Collider Experiment

Photo: A. Saba

Track and vertex reconstruction

- L3 solenoid: B = 0.5 T → good acceptance for low momentum
- Inner Tracking System ITS in Run 1-2 with silicon pixel, drift and strip detectors
- Time Projection Chamber TPC
 90 m³ gas sensitive volume, in Run
 1-2 now with multi-wire proportional chambers

Spatial resolution (at vertex) $\approx 10 - 20 \ \mu m$ Momentum resolution (perpendicular to beam) $\approx 1 \ \%$

Particle identification

- Time Projection Chamber TPC specific energy loss dE/dx in gas
- Inner Tracking System ITS
 specific energy loss dE/dx in silicon
- Transition Radiation Detector TRD electron/hadron separation, trigger
- Time-of Flight detector TOF complementing the TPC at higher p
- Calorimetry: EMCal, PHOS, DCAL
- Muon spectrometer

- ~ 90 m³ gas volume (Ne-CO₂(-N₂) \rightarrow Ar-CO₂), equipped with **MWPC**
- Half a million readout pads
- Ions from the amplification region are prevented from reaching the drift volume by a gating grid
- Full readout time ~(100+200) μ s \rightarrow maximum readout rate of 3 kHz

The ALICE Time Projection Chamber

- ~ 90 m³ gas volume (Ne-CO₂(-N₂) \rightarrow Ar-CO₂), equipped with **MWPC**
- Half a million readout pads
- Ions from the amplification region are prevented from reaching the drift volume by a gating grid
- Full readout time ~(100+200) μ s \rightarrow maximum readout rate of 3 kHz

2002-2006: TPC assembly in clean room

2007: TPC moves into ALICE

2002-2006: Assembly, MWPC and electronics installation in clean room nearby

Heavy-ion physics at the high-energy from

REALLY SPECIAL

- High granularity detectors (*) for extraordinary particle multiplicities
- The bulk particle production happens at low momenta:
 - \rightarrow possibly low magnetic fields
 - \rightarrow low material budget essential
 - \rightarrow minimum bias data taking (*) (vs highly selective triggers)
- Particle identification is a crucial asset
- (*) very very Big Data!
 - 1 Pb-Pb collision: 12.6 MB
 - Total disk used (ALICE): (20 [T0] + 24 [T1] + 24 [T2]) = 68 PBytes !
 - Great computing challenges!

• Transverse momentum:

 $p_T = p \cdot \sin \theta$

$$p = \sqrt{p_L^2 + p_T^2}$$

transverse mass: $m_T = \sqrt{p_T^2 + m^2}$

• Rapidity:

additive under Lorentz transformation

y = arctanh
$$\beta_{L}$$
 = $\frac{1}{2} \frac{1+\beta_{L}}{1-\beta_{L}}$ = $\frac{1}{2} \frac{E+p_{L}}{E-p_{L}}$

Basic observables

Global properties - 1

Collision geometry and event centrality

Heavy-ion physics at the high-energy frontier - Lecture 1

Centrality is characterized (but NOT directly measured) via:

- **b**: impact parameter
- N_{part}: number of nucleons, which took part in at least one inelastic nucleon-nucleon scattering
- N_{coll}: number of inelastic nucleon-nucleon collisions

Participants and spectators

N.Herrmann, J.P.Wessels, T.Wienold, Ann. Rev. Nucl. Part. Sci. 49 (1999) 581

The Glauber model

- Impact parameter, number of participants/spectators and number of binary collisions are quantities which are impossible to measure directly
- Theoretical model after Roy Glauber (Nobel Prize 2005, * 26.12.2018)
- Inputs:

inelastic nucleon-nucleon cross section PHYSICAL REVIEW C 88, 044909 (2013)

55

Assumptions:

- NN scattering cross section does NOT depend on the number of NN scatterings that took place before
- Nucleons travel on straight trajectories, even after NN scattering processes.
- Monte Carlo approach: initialize a nucleon distribution according to Woods-Saxon, select random b, simulate many events

S.Masciocchi@gsi.de

The Glauber model

- Total geometrical cross section
- Connection to real collisions

Centrality determination in ALICE

Central collisions \rightarrow high number of participants \rightarrow high multiplicity Peripheral collisions \rightarrow low number of participants \rightarrow low multiplicity

E.g. measure by VZERO scintillators + reproduced by Glauber model fit

Centrality: percentile of total hadronic cross section Global properties - 2

Particle multiplicities

Heavy-ion physics at the high-energy frontier - Lecture 1

S.Masciocchi@gsi.de

STAR at RHIC Au-Au $\sqrt{s_{NN}}$ = 200 GeV central

ALICE at the LHC Pb-Pb $\sqrt{s_{NN}} = 5.02$ TeV central

About 5,000 charged particles in the full rapidity range

About 20,000 charged particles in the full rapidity range

- Y axis: normalization by <N_{part}>/2
- Central AA collisions: increase \propto s^{0.155}
- Much faster growth wrt pp collisions

Centrality expressed as average number of participants

Phys. Rev. Lett. 116 (2016) 222302

S.Masciocchi@gsi.de

Centrality expressed as average number of participants

S.Masciocchi@gsi.de

Heavy-ion physics at the high-energy frontier - Lecture 1

Charged-particle multiplicity extrapolated to full rapidity range

Phys.Lett. B 772 (2017) 567-577

Charged-particle pseudorapidity density

Summary

- Up to 20,000 charged particles produced in the full rapidity range in central Pb-Pb collisions at $\sqrt{s_{_{NN}}} = 5.02 \text{ TeV}$
- Estimates of the energy density in heavy-ion collisions at RHIC and at the LHC range between 5 and 20 GeV/fm³
 → well above the critical energy density for the formation of the quarkgluon plasma (0.42 GeV/fm³, lattice 2018)
- Bose-Einstein correlations of identical pions: estimate of source size and decoupling time of the fireball at freeze-out
 Volume_{LHC} ~ 2 x Volume_{RHIC}
 Time_{LHC} ~ 1.4 x Time_{RHIC}

- QCD matter under extreme conditions in temperature (early universe) and density (neutron stars), recreated in the laboratory with relativistic heavy-ion collisions
- Thermodynamics applied to QCD matter: phase diagram, phase transition, critical temperature and energy density Lattice QCD computations
- Global properties:
 - Collision geometry and centrality
 - Multiplicity of produced particles, initial energy density
 - Source size and decoupling time
- Experimental program, particle detection challenges, Big Data