Abb. IV.1a Klassische Herleitung Bethe-Bloch

Impulsübertrag:

$$\Delta p = \int F \, dt = q \int E_{\perp} \frac{dt}{dx} \, dx = \frac{q}{v} \int E_{\perp} \, dx$$
$$\int_{\partial A} E_{\perp} \, dA = \int E_{\perp} \cdot 2\pi b \, dx = 4\pi z e$$
$$\rightarrow \int E_{\perp} \, dx = \frac{2ze}{b}$$
$$\Delta p = \frac{2ze^2}{bv}$$

Energieübertrag:

$$\Delta E(b) = \frac{\left(\Delta p\right)^2}{2m_e} = \frac{2z^2e^4}{m_eb^2v^2}$$

Energieübertrag im Intervall [b, b+db]:

$$-dE(b) = \Delta E(b) \cdot N_e \cdot dV = \frac{2z^2 e^4}{m_e b^2 v^2} \cdot N_e \cdot 2\pi b db dx = \frac{4\pi z^2 e^4}{m_e v^2} N_e \frac{db}{b} dx$$

$$-\frac{dE}{dx} = \frac{4\pi z^2 e^4}{m_e v^2} N_e \ln \frac{b_{\text{max}}}{b_{\text{min}}} \quad \text{Stoßparameter:} \quad b_{\text{min}} = \frac{z e^2}{m_e v^2}; \quad b_{\text{max}} = \sqrt{\frac{2}{m_e I}} \frac{z e^2}{v}$$

Abb. IV.1b Energieverlust nach Bethe-Bloch

Energieverlust durch Ionisation (Bethe-Bloch)

Abb. IV.2a Teilchenidentifikation

Kennt man den Impuls eines Teilchens so kann man den spezifischen Energieverlust zur Identifikation eines Teilchens benutzen

Abb. IV.2b Veranschaulichung des Energieverlustes:

Blasenkammer

Dichte der Blasen ist Maß für spez. Energieverlust dE/dx

Abb. IV.2c Bragg-Peak

slac.stanford.edu: Calculated with Geant4

Abb. IV.3 Strahlungslänge X₀

Material	X ₀ [cm]	X ₀ [g cm ⁻²]
H ₂ (Gas)	731×10 ³	61.3
С	18.8	42.7
AI	8.9	24.0
Pb	0.6	6.4

http://pdg.lbl.gov/

Abb. IV.4 Cherenkov-Strahlung

7

Abb. IV.5 Wechselwirkung von Photonen mit Materie

Abb. IV.6 Compton-Spektrum (Elektronen)

Abb. IV.7 Elektromagnetische Schauer

Detaillierte Schauersimulation

Abb. IV.8 Hadronische Wechselwirkungslängen

Material	X ₀ [cm]	λ_{WW} [cm]
C	19	39
Plastik	35	70 - 80
Fe	1.8	16.8
Pb	0.6	17.6
U	0.3	11

http://pdg.lbl.gov/2017/AtomicNuclearProperties/index.html

7. Detektorsysteme:

- Rekonstruktion der Trajektorien geladener Teilchen (Spursysteme)
- Impulsmessung für geladene Teilchen (Spektrometer)
- Energiemessung e.m. und hadronischer Schauer (Kalorimeter)
- Teilchenidentifikation

a) Spursysteme

Rekonstruktion der Trajektorien geladener Teilchen. Rekonstruktion von Primär- und Sekundärvertices.

Technolgien für Spurdetektoren

Halbleiterdetektoren:

- Streifendetektoren
- Pixeldetektoren

Secondary Ionization (due to δ-electrons)

Gas \rightarrow e/lonen Paare

Gasdetektoren:

- Vieldrahtproportionalkammern
- Driftkammern
- Time-Projektion Chambers

b) Impulsmessung - Spektrometer:

Impulsmessung durch Ablenkung im Magnetfeld.

Standard-Anordnung: Axiales Magnetfeld längs der z-Achse eines Detektors (Solonoid).

Impulsanteil transversal zum Magnetfeld:

$$p = q \cdot B \cdot R$$

Bzw für q=1:

$$\rho$$
[GeV/c] = 0.3 · B [T] · R [m]

R = Krümmungsradius der Spuren

c) Energiemessung mittels Kalorimeter

Elektromagnetische Kalorimeter:

Energieauflösung von Kalorimeter ist durch die statistische Fluktuation des erzeugten Signals gegeben: Signal N ~ E \rightarrow Fluktuation \sqrt{N} ~ \sqrt{E} .

Hadronische Kalorimeter (Sampling Kalorimeter):

Typ. Skala der Schauerentwicklung $\lambda_{WW} \rightarrow n$ ötige Tiefe kann nur mit "nicht-aktiven" Absorber (z.B. Fe/U/...) erreicht werden.

d) Teilchenidentifikation:

<u>p, π, K Erkennung</u>:

- dE/dx
- Cherenkov-Winkel
- Flugzeitmessung

Muon-Detektoren:

- Muon sind quasi stabil,
 d.h. sie zerfallen nicht im Detektor
- Muonen sind minimal ionisierend
- Muonen erzeugen keine e.m. oder hadronische Schauer

 Kalorimeter wirken wie Filter: Bis auf Muonen werden Teilchen gestoppt

e) Zwiebelschalen-Aufbau

Hadronische Schauer fangen meist schon im ECAL an !

ATLAS Detektor

