Abb. IX.6 Stabile und instabile Kerne - Stabilitätstal

Stabile Kerne (schwarz) beschränken sich auf schmales Band in N-Z Ebene.

Kerne mit Z,N = 2, 8, 20, 28, 50, 82, 126 (magische Zahlen) sind sehr stabil und kommen besonders häufig vor.

"magische Zahlen": s. Schalenmodell

ε

Abb. IX.7 β-Zerfälle

ug/gu Kerne:

In der Regel nur ein stabiles Isobar

Für Z>7:

keine stabile **uu** Kerne, mindestens 2 stabile **gg** Kerne

Doppelter Beta-Zerfall (gg→gg) prinzipiell möglich, aber sehr stark unterdrückt

Abb. IX.8 Alpha-Zerfall & Geiger-Nutall Regel

Abb. 12.6: abstoßen des Coulombpotential, $V_{Coul} = 2(Z-2)(\alpha/r)$

Logarithmische Abhängigkeit von Energie hat Ursache im Tunneleffekt!

Abb. IX.9 Radioaktive Zerfallsreihen

Die 4. Zerfallsreihe: Neptunium-237 (Plutonium 241) \rightarrow Thallium-205 kommt in der Natur nicht mehr vor (bereits vollständig zerfallen) 4n+1

Abb. IX.10 Spontane Kernspaltung

Abb. 12.14: Potentielle Energie in verschiedenen Phasen der Spaltung. Der Atomkern mit der Ladung Z spaltet in zwei Tochterkerne. Die durchgezogene Kurve entspricht dem Potentialverlauf im Mutterkern. Die Höhe der hier vorhandenen Spaltbarriere bestimmt die Wahrscheinlichkeit der spontanen Spaltung. Bei Kernen mit $Z^2/A \gtrsim 48$ verschwindet die Spaltbarriere, und der Potentialverlauf entspricht der gestrichelten Kurve (aus [Po96]).

Abb. IX.11 Stoßinduzierte Spaltung

a)
$$n (therm.) + {}^{235}U \rightarrow ({}^{236}U)^* \rightarrow Y_1 + Y_2 + vn (schnell)$$

$$E_B = m({}^{235}U) + m_n - m({}^{236}U) = 6.4 \text{ MeV} > \Delta E_{\text{spalt}} \approx 5.8 \text{ MeV}$$

b)
$$n (\sim 1 \text{ MeV}) + {}^{238}U \rightarrow ({}^{239}U)^* \rightarrow Y_1 + Y_2 + vn$$

$$E_{B} = m(^{238}U) + m_{n} - m(^{239}U) = 4.8 \,\text{MeV} < \Delta E_{\text{Spalt}} \approx 6.4 \,\text{MeV}$$

Bei genügend hoher Neutron-Energie ist gelegentliche Spaltung von ²³⁸U möglich.

Warum kann man ²³⁵U bereits mit thermischen Neutronen spalten?

- a) $ug \rightarrow gg$: Paarungsenergie wird als zusätzliche Energie frei
- b) gg \rightarrow ug : Paarungsenergie wird zusätzlich benötigt

Abb. IX.11a Stoßinduzierte Spaltung von ²³⁵U

4.3 Kernspaltung und Kernkraftwerke (KKW)

$$n (therm.) + {}^{235}U \rightarrow ({}^{236}U)^* \rightarrow Y_1 + Y_2 + vn (schnell)$$

Im Mittel 2.3 Neutronen (schnell)

Neben direkten Neutronen entstehen auch verzögerte (t_{Delay} = 1ms ... 1min) Neutronen (~1%), die für die Steuerung eines Reaktors wichtig sind.

Energiebilanz bei Spaltung

E_{kin} der Spaltfragmente	167	\pm	5 MeV
E_{kin} aller Spaltneutronen	5	\pm	0.2 MeV
prompte γ -Strahlung	8	\pm	1.5 MeV
verzögerte γ -Strahlung	6	\pm	1 MeV
$E_{kin} \operatorname{der} e^-$ aus dem β -Zerfall	6	±	1 MeV
$E_{kin} \operatorname{der} \overline{\nu}_e$ aus dem β -Zerfall	12	±	2.5 MeV
Summe Q	204	±	6 MeV

Nutzbare Energie
Q –
$$E_{kin}(v) = 192 \text{ MeV}$$

Ig U = 2.55 MWh

<u>Nachwärme:</u> anfänglich bis zu 10% der Leistung, aufgrund radioaktiver Zerf.

Kettenreaktion:

Die bei Spaltung ausgelösten v Neutronen können durch verschiedene Reaktionen absorbiert werden und für weitere Spaltprozesse verloren gehen.

Für ²³⁸U ist der WQ für inelastische Stoßprozesse $\sigma(n, n'\gamma)$ sehr viel größer als der Spaltquerschnitt $\sigma(n, f) \rightarrow$ Kettenreaktion ist hier nicht möglich.

Eine Kettenreaktion ist hingegen möglich für ²³⁵U und thermische Neutronen. Das verlangt aber ein Abbremsen der schnellen Neutronen die in der Spaltung entstehen: **Moderation**.

Beim Abbremsen in angereichertem Uran (typ. 97% 238 U + 3% 235 U) mit großem Anteil von 238 U werden die Neutronen im Energiebereich von 1...100 eV, in dem der WQ für 238 U (n, γ) 239 U sehr groß ist von 238 U eingefangen.

Zum Abbremsen muss deshalb ein von ²³⁸U verschiedener Moderator verwendet werden: H_2O , D_2O , ¹²C (D_2O ist optimaler Moderator mit kurzer Abbremslänge aber sehr großer Absorptionslänge).

Kritische Masse:

In hochangereichertem ²³⁵U oder auch ²³⁹Pu ohne Fremdkerne, die die Neutronen absorbieren, kommt es bei genügend großer Masse (kugelförmige Anordnung) zu einer unkontrollierten Kettenreaktion:

lsotop	kritische Masse (kugelf.)	krit. Masse +Reflexion Wasser
²³⁵ U	49 kg	23 kg
²³⁹ Pu	10 kg	5.4 kg

Reaktorbetrieb

Zahl der Neutronen in Generation (n+1): $N_{n+1} = k_{eff} N_n$

mit dem effektiven Vermehrungsfaktor k_{eff}

Typ. Zykluszeit T ~ 1µs zum Abbremsen \rightarrow Zeit zwischen Generationen

$$\frac{dN}{dt} = \frac{k_{eff} - 1}{T} N \qquad \Longrightarrow \qquad N(t) = N_0 \cdot \exp\left(\frac{k_{eff} - 1}{T} \cdot t\right)$$

Stationärer Betrieb eines Reaktors: $k_{eff} = 1$. exponentieller Anstieg: A-Bombe

Selbstregelung bei Leichtwasser-Reaktoren (Moderator = H_20): Zuviel Wärme \rightarrow Dampf Bildung \rightarrow weniger Moderation $\rightarrow k_{eff} < 0$

Druckwasser-Reaktor (gängigster Reaktortyp in D)

Radioaktiver Abbrand

Bei mittlerem Abbrand:

1 t angereichtes Uran \rightarrow ~10 GWd an elektrischer Energie KKW mit 1 GW Leistung \rightarrow 30 t angereichertes Uran / Jahr Typischer Reaktor (1.3 GW) enthält etwa 100 t Uran.

Abb. IX.12 Fermi-Gas Modell

Nukleonen als unabhängige Teilchen in einem effektiven Potential beschrieben:

⇒ Fermi-Gas: Nukleonen können sich frei innerhalb einer Kugel mit Radius R=1.2 $A^{1/3}$ fm frei bewegen.

 Entartetes Fermi-Gas: Kern-Temperatur so niedrig, dass Nukleonen alle im niedrigsten Energiezustand. Besetzung bis Energie E_F.

Abb. IX.13 Verschiedene Zentralpotentiale

Abb. IX.14 Einteilchenzustände des harmon. Oszillators

 $N=2(n-1)+\ell$

							Woods-
$\mid nl$	N	2n+l-2	m_l -Ent-	mit	Zustände	Zustände	Sayon
			artung	Spin	mit E_N	$E \leq E_N$	Janon
1s	0	$2 \cdot 1 + 0 - 2$	1	2	2	2	2
1p	1	$2 \cdot 1 + 1 - 2$	3	6	6	8	8
1d	2	$2 \cdot 1 + 2 - 2$	5	10			18
2s		$2 \cdot 2 + 0 - 2$	1	2	12	20	20
1f	3	$2 \cdot 1 + 3 - 2$	7	14			34
2p		$2 \cdot 2 + 1 - 2$	3	6	20	40	40
1g	4	$2 \cdot 1 + 4 - 2$	9	18			
2d		$2 \cdot 2 + 2 - 2$	5	10			
3s		$2 \cdot 3 + 0 - 2$	1	2	30	70	N
1h	5	$2 \cdot 1 + 5 - 2$	11	22			1
2f		$2 \cdot 2 + 3 - 2$	7	14			
3p		$2 \cdot 3 + 1 - 2$	3	6	42	112	

Magische Zahlen: 2, 8, 20, 28, 50, 82, 126

Abb. IX.15 Schalenmodell (mit Woods-Saxon Pot.)

Abb. IX.16 Vorhersagen des Schalenmodells

- a. In vollständig besetztem j-Niveaus (nL_j) koppeln alle magn. Momente m_j der Nukleonen zu Null: Abgeschlossene n/p Niveaus haben Gesamtdrehimpuls 0.
- b. Für Kerne mit einem Nukleon außerhalb einer abgeschlossenen Unterschale: Spin und Parität des Kerns wird durch diese Nukleonen bestimmt.

Beispiel: ${}^{17}_{8}O_9$ Grundzustand: n in $1d_{5/2}$ Schale $\rightarrow J^P = \frac{5}{2}$

d. Fehlendes Nukleon (Loch) in einer sonst abgeschlossenen Schale bestimmt ebenfalls Spin und Parität des Kerns:

Beispiel: ${}^{15}_{8}O_7$ Grundzustand: Loch in $1p_{1/2}$ Schale $\rightarrow J^P = \frac{1}{2}$

e. Kern-Anregungszustände durch "Leucht-Nukleonen" gut beschrieben.

Kern	Zustand	JP
¹⁵ N	Protonloch in 1p _{1/2}	1/2-
¹⁵ O	Neutronloch in 1p _{1/2}	1/2-
¹⁷ O	Neutron in 1d _{5/2}	5/2+
¹⁷ <i>F</i>	Proton in 1d _{5/2}	5/2+

Beispiele:

Abb. IX.17 γ-Strahlung

Angeregte Kernzustände (1 Nukleon in angeregtem Energiezustand) zerfallen unter Aussendung von elektromagnetischer Strahlung.

Multi-	elektrisch		magnetisch			
polarität	Εℓ	$ \Delta J $	ΔP	Μℓ	$ \Delta J $	ΔP
Dipol	E1	1	_	M1	1	+
Quadrupol	E2	2	+	M2	2	_
Oktupol	E3	3	-	M3	3	+

Welche Multipolbeiträge für einen spezifischen Übergang möglich sind, ergibt sich aus den Erhaltungssätzen für Gesamtdrehimpuls und Parität.

Abb. IX.18 Kontinuumszustände

Kontinuumszustände:

Bei Anregungsenergien oberhalb der typ. Bindungsenergien (~8MeV) können Nukleonen – vorzugsweise Neutronen - emittiert werden.

Im Bereich oberhalb dieser Emissionsschwelle gibt es ebenfalls noch diskrete quasi-gebundene Zustände die Übergänge zu tieferen Niveaus erlauben.

Da die Lebensdauer dieser Zustände sehr kurz ist sind die Energieniveaus breit und überlappen miteinander \rightarrow Ausbildung eines Kontinuums.