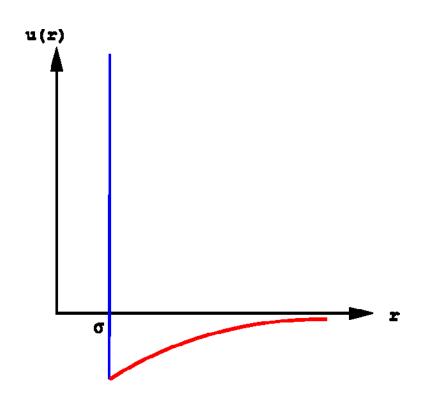
From the potential to the equation of state



From a potential to an equation of state

In absence of interactions the canonical partition function *Z* of an ideal gas consisting $N = nN_A$ identical particles with mass *m* runs as follows:

$$Z = \frac{z^{N}}{N!} \quad with \quad Z = \frac{1}{N!} \left[\int \int e^{-\beta \left(\frac{p^{2}}{2m} + U_{e}\right)} \frac{d^{3}r d^{3}p}{h^{3}} \right]^{N}$$

with $\beta = 1/kT$ integration over momenta yields

$$Z = \frac{1}{N!} \left[\left(\frac{2\pi m}{\beta h^2} \right)^{\frac{3}{2}} \int e^{-\beta U_e} d^3 r \right]^N$$

Each particle moves independently in an average potential generated by the other particles. The interaction between a pair of particles, which are hard spheres, is taken to be:

$$\mathsf{u}(r) = \infty ext{ for } r < d$$

 $\mathsf{u}(r) = -\epsilon \left(rac{d}{r}
ight)^6 ext{ for } r \geq d,$

r is the distance between the centers of the spheres and d is the distance where the hard spheres touch each other.

The integrand vanishes in the regions $V < V_x$ where U_e is infinity. Hence, the integration volume is reduced to $V - V_x$. Otherwise, U(r) only moderatly changes with r, and U_e is placed by an effective potential $< U_e >$.

From potential to equation of state

Thus the previous equation becomes

$$Z = \frac{1}{N!} \left[\left(\frac{2\pi m}{h^2 \beta} \right)^{\frac{3}{2}} (V - V_x) e^{-\beta \langle U_e \rangle} \right]^{N}$$

Now we have to estimate the values of the parameters $\langle U_e \rangle$ and V_x . The total mean potential energy of the molecules is $N \langle U_e \rangle$. But, because these are $\left(\frac{1}{2}\right)N(N-1) \cong \left(\frac{1}{2}\right)N^2$ pairs of molecules in the gas, it follows that the total mean potential energy is also $\frac{1}{2}N^2 \langle u \rangle$, where u is the potential energy of interaction between one given pair of molecules. Equating the different expressions fo the total mean potential energy of the gas, we obtain $N \langle U_e \rangle = \frac{1}{2}N^2 \langle u \rangle$, or

$$< U_e > = \frac{1}{2}N < u >$$

With the above definition of the potential u(r) the molecules are weakly-attracting spheres of radius $\frac{1}{2}R_0$. Under the assumption that another molecule is equally likely to be anywhere in the container. Hence

$$< u > = \frac{1}{V} \int_0^\infty u(R) 4\pi R^2 dR = -\frac{4\pi u_0}{V} \int_{R_0}^\infty \left(\frac{R}{R_0}\right)^6 R^2 dR = \frac{4\pi u_0}{V} R_0(1/3)$$

with that

$$< U_e > = \frac{1}{2}N < u > = \frac{2\pi}{3}R_0^3\frac{1}{3}u_0\frac{N}{V}$$

Yvonne Leifels, GSI Darmstadt

From the potential to an equation of state

The distance of closest approach between molecules is R_0 . This, in each encounter between a pair of molecules, there is a volume excluded to one molecule by the presence of the other one. Because of $\frac{1}{2}N^2$ pairs of molecules, the total excluded volume is $\frac{1}{2}N^2\frac{4}{3}\pi R_0^3$. This volume must be equal to NV_x . Thus it follows $2\pi = 2 \left[4\pi \left(R_0\right)^3\right]$

$$V_{x} = \frac{2\pi}{3}R_{0}^{3} = 4\left[\frac{4\pi}{3}\left(\frac{R_{0}}{2}\right)^{3}\right]$$

This is four times the volume of the hard sphere molecule. The equation of state is than given by

$$\langle p \rangle = \frac{1}{\beta} \frac{\partial \ln Z}{\partial V} = \frac{1}{\beta} \frac{\partial}{\partial V} [N \ln (V - V_x) - N\beta \langle U_e \rangle].$$

one obtains

$$= rac{kTN}{V-b'N} - rac{a'N^2}{V^2}$$

with $b' = \frac{2\pi}{3}R_0^3$ and $a' = \frac{2\pi}{3}R_0^3u_0\frac{1}{3}$

Rearranging the terms give

$$\left(p+\frac{a}{v^2}\right)(v-b)=RT$$

where $a = N_A^2 a'$ and $b = N_A b'$ and v is the molar volume.

Yvonne Leifels, GSI Darmstadt

For nuclear matter

Calculate the equivalent to the partition function: energy density functional because we are dealing with a quantum mechanical system

 $E = \langle \Psi | T + V | \Psi \rangle$

T = kinetic Energy V = potential Energy Ψ = Slater determinant

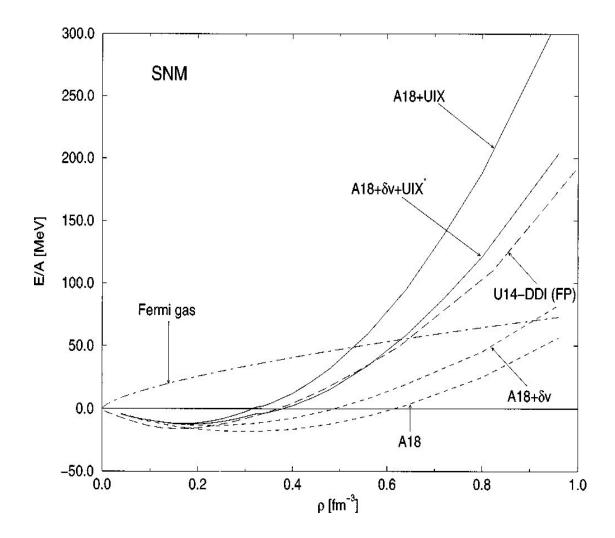
$$\Psi(1, 2, 3 \dots N) = A_N \psi_1(1) \psi_2(2) \dots \psi_N(N)$$

where A_N is the anti-symmetrization operator, which exchanges pairs of particles.

This can be re-written as

$$A_N[\phi_1(1)\phi_2(2)\dots\phi_N(N)] = rac{1}{\sqrt{N!}} egin{pmatrix} \phi_1(1) & \phi_2(1) & \dots & \phi_N(1) \ \phi_1(2) & \phi_2(2) & \dots & \phi_N(2) \ dots & dots & \ddots & dots \ \phi_1(N) & \phi_2(N) & \dots & \phi_N(N) \ \end{bmatrix} = |\phi_1\phi_2\dots\phi_N|$$

Examples for EOS of symmetric nuclear matter

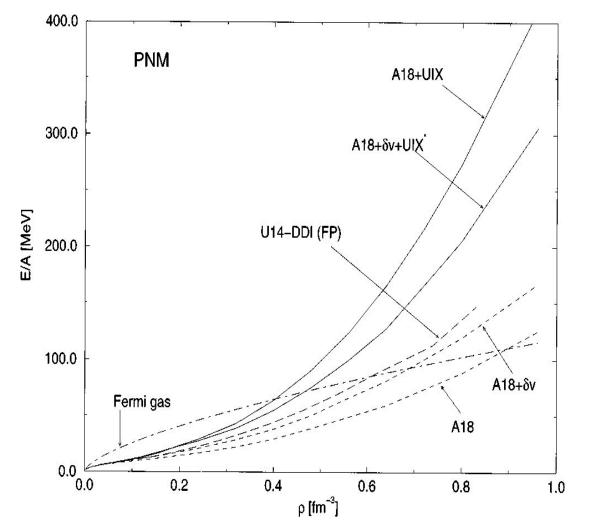


Variational method

A18: Argonne potential UIX: including three body forces δv: relativistic corrections

Akmal et al. PRC 58 (1998) 1804

EOS for pure neutron matter

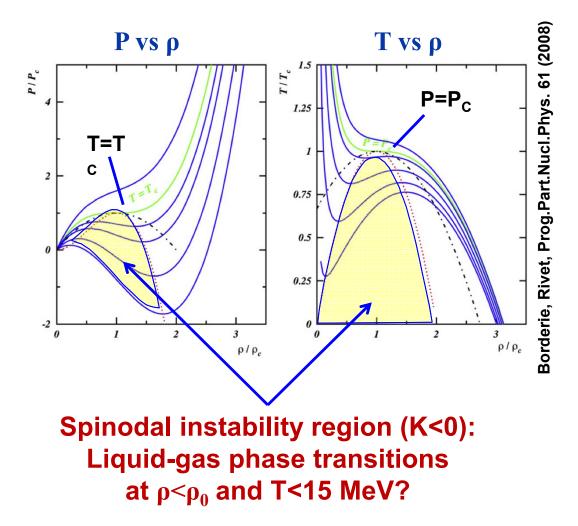


Variational method

A18: Argonne potential UIX: including three body forces δv: relativistic corrections

Akmal et al. PRC 58 (1998) 1804

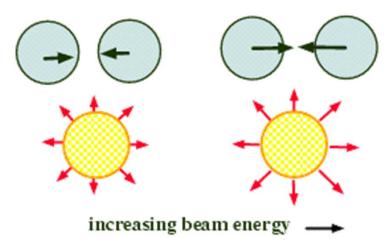
Equation of state as a function of temperature



needs some heating and low densities

Methods to heat nuclei

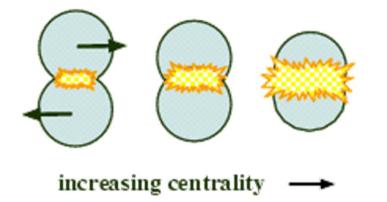
a) Heating of participant:



Typical Incident Energy ≈ 30AMeV Flow

 $\sigma_{centralcollision} \approx 0$ Overlap Participant & Spectators

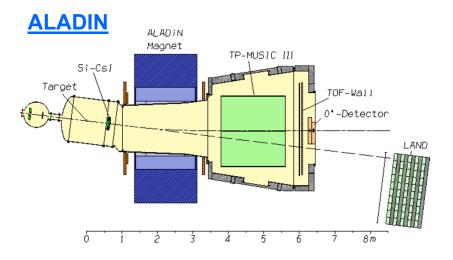
b) Heating of spectator(s):



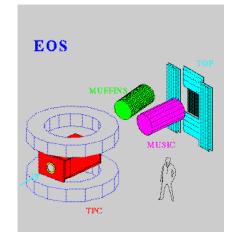
Typical Incident Energy \approx 1 AGeV (*almost*) no flow Source well localized in rapidity Equilibrated System Easy 4π coverage for fragments

Detectors for LG phase transition

Spectrometers

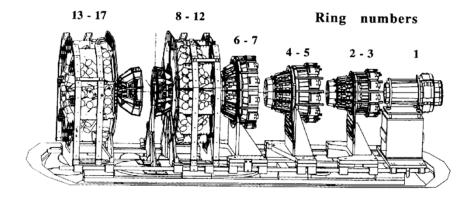


EOS

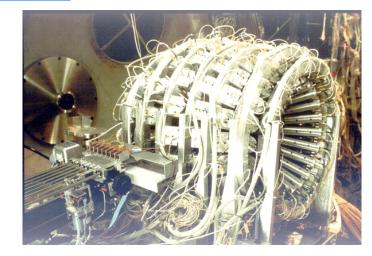


 4π detectors

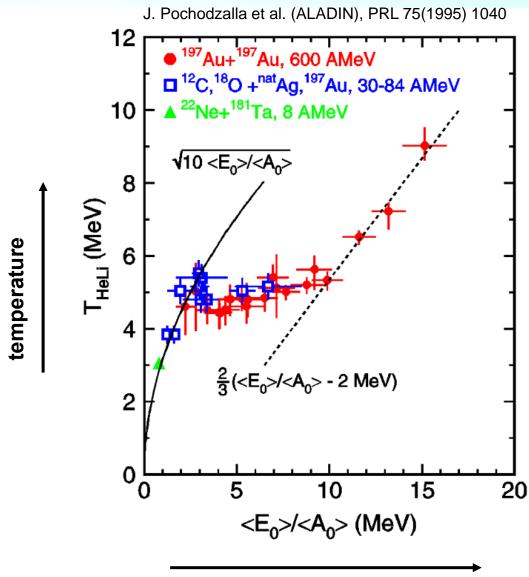
INDRA



MINIBALL



Caloric curve of nuclei



Recent review: B. Borderie, M.F. Rivet,

"Nuclear multifragmentation and phase transition for hot nuclei", Progress in Particle and Nuclear Physics 61 (2008) 551-601

excitation energy

Statistical thermal model

Chemical thermal model:

P. Braun-Munzinger et al., arXiv:nucl-th/0304013

assume a common 'surface' at which all particles decouple (inelastic collisions stop)

Grand canonical formulation (i.e. energy and particle exchange with heat bath)

$$Z^{GC}(T,V,\mu_Q) = Tr \left[e^{-\beta \left(H - \sum_i \mu_{Q_i} Q_i \right)} \right]$$

Q_i = conserved quantum numbers (baryon number, strangeness, isospin, charm,...)

 β = 1/T, T= Temperature

H = Hamiltonian of non-interacting hadron gas

Grand canonical potential J:

$$J(T,V,\mu_{Q}) = -T \ln Z^{GC}(T,V,\mu_{Q})$$

$$F(T,V,N) = J(T,V,\mu_{Q}) + \sum_{i} \mu_{Q_{i}} N_{i}$$

Decomposition into individual hadronic species:

i:
$$\ln Z^{GC}(T,V,\mu) = \sum_{i} \ln Z_{i}^{GC}(T,V,\mu)$$
$$n_{i}(\mu,T) = \frac{N_{i}}{V} = -\frac{T}{V} \frac{\partial \ln Z_{i}}{\partial \mu_{i}}$$

Yvonne Leifels , GSI Darmstadt

Density of particle species

27/06/2018

Thermal model for particle production

P. Braun-Munzinger et al., arXiv:nucl-th/0304013

Chemical equilibrium concept. Density of particle state i:

$$n_{i}(\mu,T) = \frac{N_{i}}{V} = -\frac{T}{V} \frac{\partial \ln Z_{i}}{\partial \mu} = \frac{g_{i}}{2\pi^{2}} \int \frac{p^{2} dp}{e^{\frac{E_{i}-\mu_{i}}{T}} \pm 1}$$
$$\mu_{i} = \mu_{B}B_{i} + \mu_{S}S_{i} + \mu_{I_{3}}I_{3,i}$$

"+" for fermions, "-" for bosons g_i – spin degeneracy factor

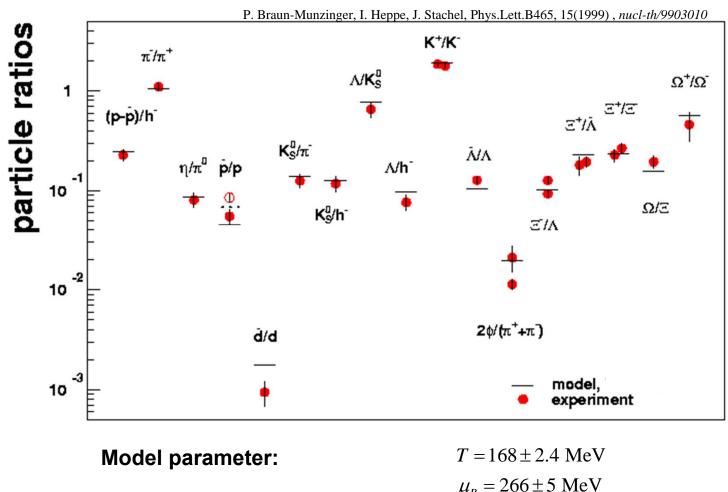
Chemical potentials μ_i are constrained by conservation of quantum numbers:

baryon number:
$$V \sum_{i} n_{i} B_{i} = Z + N \rightarrow V$$
3 equations,
5 unknowsstrangeness: $V \sum_{i} n_{i} S_{i} = 0 \rightarrow \mu_{S}$ \checkmark 3 equations,
5 unknowscharge: $V \sum_{i} n_{i} I_{3,i} = \frac{Z - N}{2} \rightarrow \mu_{I_{3,i}}$ 2 free parameter

Yvonne Leifels , GSI Darmstadt

Chemical equilibrium

Example: SPS data, E_{beam}=158 AGeV, Pb+Pb

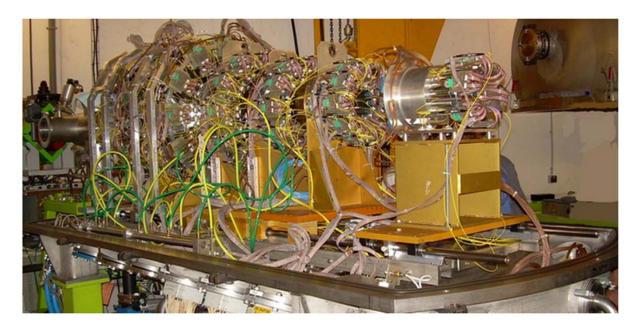


Note: volume is not needed for description of particle ratios.

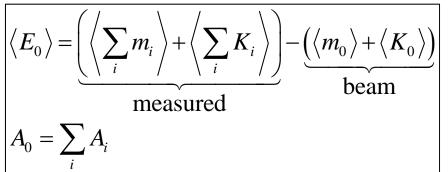
 $\mu_{B} = 266 \pm 5 \text{ MeV}$ $\mu_{S} = 71.1 \text{ MeV}$ $\mu_{I_{3}} = -5. \text{ MeV}$

Experimental Setup

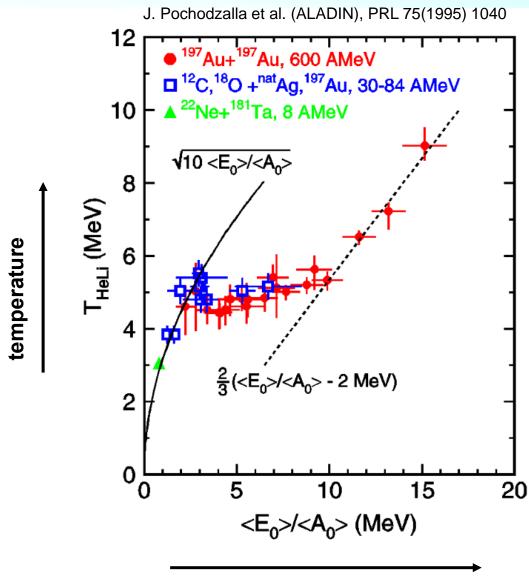
INDRA (Identification des Noyaux et Détection à Résolution Accrue) http://pro.ganil-spiral2.eu/laboratory/detectors/indra



Measurement of excitation energy



Caloric curve of nuclei

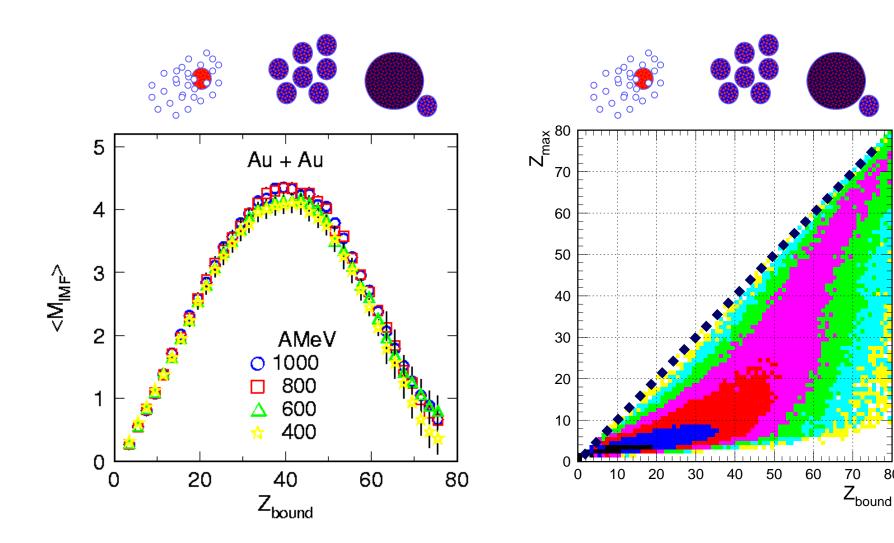


Recent review: B. Borderie, M.F. Rivet, "Nuclear multifragmentation

and phase transition for hot nuclei", Progress in Particle and Nuclear Physics 61 (2008) 551-601

excitation energy

Multifragmentation - Bimodality



80

Critical exponents

Close to a critical point the thermodynamic behaviour of physical systems is universal and depends within a universality class only on

$$t = \frac{T - T_C}{T_C}$$

Thermodynamic quantities show a power law behaviour:

 $C \sim |t|^{-\alpha}$

 $M \sim |t|^{\beta}$

 $\chi \sim |t|^{-\gamma}$

 $M \sim \left|H\right|^{\frac{1}{\delta}}$

 $\xi \sim |t|^{-\nu}$

Heat capacity:

Order parameter:

Susceptibility:

Equation – of – state:

Correlation length:

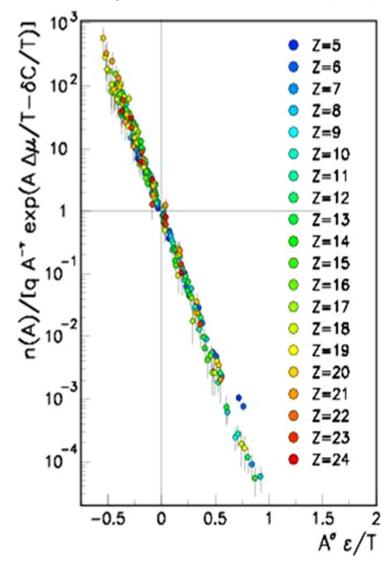
Griffiths universality hypothesis R.B. Griffiths, PRL 24, 1479 (1970): **Critical exponents are universal** and depend only on: **Dimension of the system** 1)

- **Range of the interaction** 2)
- **Spin dimensionality** 3)

Note: Only 2 of the critical exponents are independent.

Nuclear liquid - gas phase transition

M. D'Agostino et al., NPA 724, 455 (2003)



Fragment distribution

(Fisher droplet model 1967)

$$n_{A} = q_{o} A^{-\tau} \exp\left(\frac{-c_{o} \varepsilon A^{\sigma}}{T}\right)$$
$$\varepsilon = \frac{T_{c} - T}{T_{c}}$$

Universal critical exponents in the vicinity of the critical point:

	Au	Liquid-Gas
τ	2.1±0.1	2.196 ± 0.024
σ	0.66 ± 0.02	0.647 ± 0.006

Current status Nuclear LG – phase transition

B. Borderie, M.F. Rivet, Progress in Particle and Nuclear Physics 61 (2008) 551-601, Table 1

Excitation energies (MeV/nucleon) where LG - phase transition signatures occur:

variable	QP $A_s \sim 36$	QP $Z_s \sim 68$	monosources $Z_s \sim 82$
$\mathbf{E}_{crit}^{Fisher}$	5-6	4.2	3.8-4.5
Δ scaling	5-6	-	6.2
$\max A_s \sigma_k^2 / T^2$	4-6.5	4-5	≤ 4
$\max \sigma_{Z_{max}}^2 / \langle Z_{max} \rangle$	5-6	-	-
c < 0	-	[2.5:5.5]	[-:6.5]
$\max \sigma_{Zmax/Zs}$	-	4-5	≤ 5
$\max \langle Z_{max2} \rangle$	6	5	4.5-6
$\mathbf{E}_{Zipf}: \lambda = 1$	5.6	8.5	7.5
$S_p = 0.5$	5.2	$8.5~\mathrm{and}$ above	3.2 - 6
change slope \mathbf{S}_p	5.6	4	-
$\mathbf{E}_{tr}^{bimodality}$	5.6	[4.75:5.25]	7.8
spinodal	-	[5:8]	[5:9]
threshold ε_{rad}	-	$\sim 5.$	$\sim \!\! 4.5$