Partial wave analysis for elastic scattering

Cross section without imposing any limitation on the strength of V(r)
Potential is spherical symmetric

-> angular momentum of the incident particle will be conserved, i.e. a particle
scattering from a central potential will have the same angular momentum
before and after the collision

Assuming that the incident wave is in the z direction:
®,...(r) = exp(ikr cos0)

We want to express this in terms of angular momentum eigenstates, each with
a definite angular moment [:

oo

ek = gikrcos® — z il(21 + 1)j;(kr)P;(cos®©)
1=0



Partial wave expansion for elastic scattering

Starting with the Schrodinger equation in the CM frame:

—hZ _, ~
T 2P(@) + VY = EP(@)

The most general solution of the Schrédinger equation is
Y@ = ) ConRu@)Yim(6, 9)
Ilm

Since V(r) is central, the system is symmetrical about the z-axis. Therefore, the
scattered wave function must not depend on the azimuthal angle¢p > m =0
With Y;4(0, )~ P;(cosB) the scattered wave function becomes

Y(r,0) = Z ;R (r)P;(cos0) here k* = Z;n_zE
1

where R;;(r) obeys the following radial equation

d? I[(1+1) 2m
W + kz —_ rz ]rRkl(r) = ﬁv(r)rRkl(r)

each term, known as partial wave, is a joint eigenfunction of L? and L,



Partial wave analysis for elastic scattering

for a free particle V(r) = 0

w
Ri(kr) =rj(kr) =7 |/
rRGkr) = riGkr) = 7 5, (k)

Bessel function

But a free particle is also described by a plane wave
Hence, rewrite plane wave in terms of eigenfunction of angular momentum

incoming wave €' = ZAz(kT)Pz(COSG) = 2 a;(kr) j;(kr)P;(cos0)
] ]

with coefficients a;(kr) = i'(21 + 1)

1,0% : .
Note: J, has its maximum close
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Partial wave analysis for elastic scattering

Now we have to write in-coming and out-going waves in terms of the same basis:
We worked out that the total wave function is:

1I)T(?) = 1I)m(?) + lpout(?)

=4 - (eifo-? +£(0,9) (ef»

with ¢ = 0 and k = k, for elastic scattering

ikr

Wr(r,0) ~ Z i'(21 + 1)j,;(kr)P,(cos0) + f(6)

=0

r

Since we are only interested in the solutions at large distances, we use an
approximation of the Bessel functions:

, lm
sin (kr — 7)

kr

Julkr) - (r > o)

Then the asymptotic form of ¥ (1, 0) is given by

sin (kr — %t) eikr
Y(r,0) - Z i'l(2l + 1)P;(cos 6) - + £(0) ( >

r



Partial wave analysis for elastic scattering

With  sin (kr — ) = [(=Dlei*" — ile~ikr] /2
because eti™/2 = (+i)!

One obtains:

Ilj(r, 0) - =

e ikr ikr
- Z i?L(21 + 1)P;(cos0) +
I

1
il TV
2ik - Lf(6 + ik l i'(—0)"(2l+ 1)P;(cosO)]
Now we have to find the asymptotic solution of the SE:

At large values of r the scattering potential is effectively 0 -> radial equation becomes

dZ
ok a® Bessel’s function of first kind (F + kz) rRkl (T) =0
i J i)
5(®)
AN A The general solution o this equation is given by
linear combination of spherical Bessel and

Neumann functions. In order to have a physical
Ny , l solution one has to introduce the phase shift §; :

Bessel’s function of 2nd kind Rkl (r) = Cl [COSSI jl (kr) - Siné'l n; (kr)]

Known as Neumann function




Partial wave analysis for elastic scattering

The asymptotic form of the radial function can be written as:

C <c036, sin (kr — %n) — sind; cos (kr — %))

Ry (r) - o

(r - o)

sin (kr — %T + 61)

Ry (r) = C p

(r - )

With 8; = 0, the radial function Ry;(r) is finite at r=0, because R,,;(r) reduces to j;(kr).

6;, phase shift of the Ith partial wave, vanishes for all values of | in absence of the
scattering potential. It measures the distortion of Ry, (r) from the “free” solution j,(kr).

Such the scattered wave function in the asymptotic limit runs as follows:
. I
sin (kr —5 + 6,)
kr

(r > o)

Y(r,0) - z a;P;(cos0)
1

This wave function is called the distorted plane wave, which differs from the plane wave
by the phase shift §;



Partial wave analysis for elastic scattering

with sin (kr — %” + 61) = [(—i)!ekrelot — jle~ikre=idi] /2j

one rewrites the distorted plane wave:

—ikr

e .
Y(r,0) - — il E a,i'e %P,(cosh)
]

and compares this to

—ikr ikr
W(r,0) —» — ;ikr ? i2L(21 + 1)P,(cos0)(+ er [f(6 + ﬁ? il(—D)!(2L + 1)P,(cos0)]

one obtains (21 + 1)i?! = q,ile™

- 7 a;(—i)! e P;(cos0)

a; = (21 + 1)ile!®




Partial wave analysis for elastic scattering

elkr

By comparing the coefficients for in the two equations one obtains:

f(0) + ﬁ l il(=)!(21 + 1)P;(cosB) = Z—:kZ(zz + 1)it(—i)!e?%1P;(cosB)

e2i61_1

= e'¥sind; and i'(—i)! = 1 one gets:

by using Y

1 ]
£(8) = ) f1(6) =5 (2L+ 1DPy(cos8) (€% - 1)
l l

1 :
= EZ(ZI + 1)e'sind; P;(cos0)
l

where f;(cos@) is the partial wave amplitude.



Partial wave analysis for elastic scattering

We obtain for the differential cross section:

do

1 .
a9 | £(8)|* = ﬁz Z(Zl +1)(21' + 1)e'®%)siné,; sind,; P;(cos@) Py (cosh)
T

and the total cross section:

do 21

o= jEdQ = Ln|f(e)|2sinedef0

T
— 27/K? Z 2(21 + 1)@ + 1)ei® 3 sing, sins, j P,(cos0)P, (cos)sind do
T U 0

do = 2m ] n| f(0)|*sin6 do
0

2

Using the relation f:Pl(cose)Plr(cosB) sinf d6 = _—

Sll’

one yields

4T
g = z o = FE(ZI + 1)Sin261
l

l




Partial wave analysis for elastic scattering
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Partial wave analysis for elastic scattering

 The differential cross section is a superposition of different angular momenta and

gives rise to interference patterns between different partial waves corresponding to
different values of L.

e The interference terms vanish in the total cross section
e If V(r)=0the phase shifts vanish and the cross section is ZERO

* Inthe case of low energy scattering between particles, i.e. =0, the scattering
amplitude is.

1 .
fo= Ee‘aosinSO with Py(cos0) = 1

Since f, does not depend on 0, the differential and total cross sections are given by:

do

1 4m
E = |f()|2 — F81n260) 0 = 4'7T|f0|2 = FSanSO (l = O)




The optical theorem

The total cross section can be related to the forward scattering amplitude f£(0).

Since P;(cos@) = P;(1)=1for0=0:

1
f£(0) = EZ(ZI + 1)(sind; cosd; + i sin?é&))
I

yields

41
k

41t
Imf(0) =0 = F2(21 + 1)sin?§;
l

This relation is known as the optical theorem.

The physical origin of this theorem is the conversation of particle numbers.



Partial wave analysis for inelastic scattering

The scattering amplitude can be rewritten as:

£(8) = ) 2L+ 1)f (k) Py(cos6)
where l

1 .
fi(k) = E(e"s’—l) =1/2ik (S;(k) — 1)
with
(k) = e

In case of NO beam particle losses, |S;(k)| =1

If there is absorption of the incident beam S;(k) is redefined by

S (k) = m(k)e*®

nIBZiSI -1 1

fill) =—0— =2k

[, sin26; + i(1 — n; cos24;)]

f(0) = %Z(Zl + 1)[n; sin26; + i(1 — n; cos26;)|P;(cosB)
]




Total elastic and inelastic cross section

The total elastic scattering cross section is then

T
Opl = 4nZ(Zl + DIf]? = ﬁE(Zl +1)(1 + 57 — 21, cos28))
l 1

The total inelastic scattering cross section, which describes the loss of flux:

Oiet = 77 ) 2L+ D1~ nF (k)

l

If my) = 1there is no inelastic scattering, but if ;) = 0there is max absorption, but
still elastic scattering in this wave.

Total cross section:

2T
Otot = Oel T Oinel = ﬁz(ZI + 1)(1 — 1 €0526))
l

The optical theorem is also valid:

Imf(0) = koo /4T



Cross-section (b)

Incident neutron data f JEFF-3.1.1 /U238 /| Cross section
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3.2

Resonance scattering

Resonance characterized by spin and parity => contribution from few partial waves only
(conservation of orbital angular momentum)

Differential cross section: Res 2
dor 12 (23 +1)° P} (cos ) a /24 _
dQ  |p| (Ws—M)2+T?%/4
Total cross section: 2
aReS=4—f(2J +1) L /24 a
K (Ws—M)2+T?/4

Breit-Wigner distribution (NR):
c 1.0

max

0.5 o(E) =0,

FZ

4
1—~2
E-MV+——
(E-m)+




3.2

S —wave scattering

Vv(r)
E Low relative energy dominated by s-wave scattering.
RO
:r Condition (non relativistic):
mVR, <<1
U
_VO p2 1
Euin = < 2
2m  2mRg

QM — solution of scattering pIobIem:
(7)) =R(r)Yn (6.0)
u(r)=rR(r)
Radial SE:  U"(r) +k’u(r)=0
U(r) — aeikr + Be—ikr
r <Ry 1Kk, =+/2m(E + V,)——u,(r) = Asink,r

r >R, :k, =+/2mE ——u(r) = kieif’f) sin(k,r + 8, )

2

. ) K
Continuity for u and u’: = 8, = -K,R, + arctan(k_Ztan klROJ
1



3.2

Sign of phase shift
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Figure 4.4 The effect of a scattering potential is to shift the phase of the scattered
wave at points beyond the scattering regions, where the wave function is that of a free
particle.
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