What we discussed last time

BINDING ENERGIES

Binding energy of stable nuclei

Binding energy \approx 8 MeV/N (~ 1% of the atom's mass)

Liquid drop model

Y. Litvinov

Measured mass spectrum

Fermigas model of nuclei

 V^{\dagger}

Phase space single particle state density:

(2s+1) – spin degeneracy

$$dn = \frac{4\pi p^2 dp}{\left(2\pi\hbar\right)^3} V\left(2s+1\right)$$

Total number of nucleons N in Volume V defines the maximum momentum p_F.

$$N_{p,n} = \int_{0}^{p_{F}} dn = \frac{p_{F}^{3}}{3\pi^{2}\hbar^{3}}V$$
$$p_{F}^{3} = 3\pi^{2}\hbar^{3}\rho_{p,n}$$
$$p_{F} = \hbar (3\pi^{2})^{\frac{1}{3}}\rho_{p,n}^{\frac{1}{3}}$$

separately for neutrons and protons

Typical numbers for N=Z nuclei (equal number of neutrons and protons):

 $p_F \approx 250 \text{ MeV/c}$ $E_F \approx 33 \text{ MeV}$

Asymmetry energy in Fermi gas model

2.5

Contribution to total kinetic energy of the nucleus:

$$E_{kin}(N,Z) = N \langle E_{kin}^{n} \rangle + Z \langle E_{kin}^{p} \rangle = \frac{3}{10m_{p,n}} (Np_{F,n}^{2} + Zp_{F,n}^{2})$$

$$= \frac{3}{10m_{p,n}} \frac{\hbar^{2}}{r_{0}^{2}} (\frac{9}{4}\pi)^{\frac{2}{3}} \frac{N^{\frac{5}{3}} + Z^{\frac{5}{3}}}{A^{\frac{2}{3}}}$$
using:

$$Z = \frac{p_{F,p}^{3}}{3\pi^{2}\hbar^{3}} V, \qquad N = \frac{p_{F,n}^{3}}{3\pi^{2}\hbar^{3}} V$$

$$V = \frac{4}{3}\pi R^{3} = \frac{4}{3}\pi r_{0}^{3} A$$

$$\Rightarrow p_{F,p} = \frac{\hbar}{r_{0}} (\frac{9}{4}\pi \frac{Z}{A})^{\frac{1}{3}}, \qquad p_{F,n} = \frac{\hbar}{r_{0}} (\frac{9}{4}\pi \frac{N}{A})^{\frac{1}{3}}$$

... as in liquid drop model ...

Yvonne Leifels , GSI Darmstadt

Binding energies of nuclei

Structures are indicative of shell effects.

Magic numbers

2.5

Nuclear potential

For large nuclei, neither a box nor a harmonic oscillator fits the potential.

Empirically from electron scattering: Woods – Saxon – Potential

$$V(r) = \frac{-V_0}{1 + e^{\frac{r-R}{a}}}$$

with R = 1.07 A^{1/3}, a = 0.54 fm

Due to the reduced symmetry

 \Rightarrow N – degeneracy of shells is broken.

Spin-Orbit-interaction

Historic remark: contribution by Heidelberg professors Haxel and JensenConjectureHaxel, SuessCalculationGöppert-Mayer, Jensen1949(Nobelprize 1963)

Nuclear potential has strong contribution from spin – orbit coupling:

 $V(r) = V_{central} + V_{ls}(r) \cdot \left\langle \vec{l} \cdot \vec{s} \right\rangle$

Level ordering depends on total angular momentum j:

 $\vec{j} = \vec{l} + \vec{s}$ $j = l \pm \frac{1}{2}$ $\left\langle \vec{j}^2 \right\rangle = \left\langle \left(\vec{l} + \vec{s}\right)^2 \right\rangle = \left\langle \vec{l}^2 \right\rangle + 2\left\langle \vec{l} \cdot \vec{s} \right\rangle + \left\langle \vec{s}^2 \right\rangle$ $\left\langle \vec{l} \cdot \vec{s} \right\rangle = \frac{1}{2} \left(j \left(j + 1 \right) - l \left(l + 1 \right) - s \left(s + 1 \right) \right)$ $= \begin{cases} l/2 & \text{for } j = l + \frac{1}{2} \\ -(l+1)/2 & \text{for } j = l - \frac{1}{2} \end{cases}$

Spin-orbit splitting

$$\Delta E_{ls} = \frac{2l+1}{2} \langle V_{ls}(r) \rangle$$

Splitting grows with rising I, determines shell structure for large I !

Level with j=l+1/2 is energetically favored. (opposite to atomic (electronic) shell levels (fine structure))

 $1d_5$

Shell model levels

Fig. 17.6 Order of energy levels according to the independent-particle model with various assumptions for the shape of the nuclear potential (Feld 1953).

Shell model levels

1.

spin 0.

$\frac{3s}{2d} \rightarrow \frac{3s}{2d}$ the spin – parity of the total angular

momentum of the valence nucleon (hole).

Predictions of shell model:

 In odd-even nuclei the nucleons in the odd shell couple to J=j (very seldom to J=j-1)

The spin of nuclei is given by the total

angular momentum 0. The spin of even

- even nuclei is 0, closed shells have

(~hole) outside of a closed shell have

angular momentum of the nucleons.

2. Even number of nucleons combine to

3. Nuclei with only one valence nucleon

- 5. In odd-odd nuclei nucleons prefer triplett states
 - a) $j_1=l_1 + \frac{1}{2}, j_2=l_2 \frac{1}{2} \Rightarrow J=|j_1-j_2|$ (strong Nordheim rule)
 - b) $j_1 = I_1 + \frac{1}{2}, j_2 = I_2 + \frac{1}{2}$ $j_1 = I_1 - \frac{1}{2}, j_2 = I_2 - \frac{1}{2} \implies J = j_1 + j_2$ (weak Nordheim rule)
- Fig. 17.6 Order of energy levels according to the independent-particle model with various assumptions for the shape of the nuclear potential (Feld 1953).

P.E. Hodgson, 'Introductory Nuclear Physics', Oxford Science Publications

Shell model – predictions

Yvonne Leifels , GSI Darmstadt

Complete shell + 1

$${}^{41}_{20}Ca_{21} \qquad J^P = \frac{7}{2}$$
$${}^{91}_{40}Zr_{51} \qquad J^P = \frac{5}{2}^+$$

Complete shell - 1

 $^{39}_{20}Ca_{19} \qquad J^P = \frac{3}{2}^+$

Complete orbital + 1

$$^{35}_{15}P_{20}$$
 $J^P = \frac{1}{2}$

Magnetic moments and g-factors

http://mri-q.com/uploads/3/4/5/7/34572113/1938_rabi_physrev.53.318.pdf

https://fys.kuleuven.be/iks/nm/files/publications/rpp-gerda-2003-30405.pdf

Yvonne Leifels , GSI Darmstadt

2.5