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A short introduction ...
The Higgs Boson
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Nobel Prize 2013 ...

The Nobel Prize in Physics 2013 was awarded jointly to  
François Englert and Peter W. Higgs  

"for the theoretical discovery of a mechanism that contributes to our  
understanding of the origin of mass of subatomic particles, and which recently  

was confirmed through the discovery of the predicted fundamental particle,  
by the ATLAS and CMS experiments at CERN's Large Hadron Collider"



The Standard Model 
A particle physicist's view of the world ... 



L = L0 + L0

L0 = LDirac + Lmass + ...

. . . + Lgauge

L0 = LWZA + Lgauge/ 

The Standard Model 
A theorist's view of the world ... 

Free Fields
Interaction

Fermions 
[kinetic terms]

Mass Terms 
[from Yukawa couplings]

Gauge Fields 
[kinetic energy]

Gauge Fields 
[triple and quartic couplings]

Interactions 
[Fermion-Boson couplings] + Higgs terms

LSM = LDirac + Lmass + Lgauge + Lgauge/ . (1)
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The SM Lagrangian [massless particles]

kinetic & self-coupling  
of gauge bosons

kinetic energy  
of fermions

interaction between 
fermions & fields

SM Lagrangian without Higgs
where:

But: SU(2)L x U(1)Y symmetry  
forbids „ad hoc“ introduction  
of extra masses terms:

Fermions:
Bosons:

destroy gauge  
invariance !

But: particles do  
have mass



φ1

φ2

V(φ)

v/
√

2

V (φ) = −µ2|φ†φ| + λ|φ†φ|2

Lφ = (∂µφ†)(∂µφ) − V (φ)

Lφ = (Dµφ†)(Dµφ) − V (φ) with Dµ = ∂µ + ieAµ

LYuk = cf (ψ̄LψRφ+ ψ̄RψLφ)

Introduce: 
New doublet of complex scalar fields  
[4 degrees of freedom; ‘mexican hat’ potential]

with µ, λ > 0

Lagrangian of scalar field:

Coupling to bosons via transition to covariant derivative. 
Coupling to fermions via “ad-hoc” introduction of “Yukawa” coupling.

Introduction into SM Lagrangian maintains 
invariance under SU(2)L x U(1)Y  gauge transformation

The Higgs Mechanism



φ1

φ2

V(φ)

v/
√

2

V (φ) = −µ2|φ†φ| + λ|φ†φ|2

Introduce: 
New doublet of complex scalar fields  
[4 degrees of freedom; ‘mexican hat’ potential]

with µ, λ > 0

The Higgs Mechanism

Spontaneous symmetry breaking: 
	 System falls in to minimum of V at φ ≠ 0.  
	 This results in: 
	 	 • Three massless excitations along valley  ➛ 3 longitudinal d.o.f. for W± and Z 
	 • One  massive  excitation out of valley  ➛  1 d.o.f. for „physical“ Higgs boson

Higgs field has two components: ϕ = “v + H”. 
	 1. 	omnipresent, constant background condensate v = 246 GeV 
	 2. 	Higgs boson H with unknown mass MH = μ⋅√2 = (2λ)½⋅v



LYuk = (
⇤

2)�1 ·
�

cf (�̄L�RH + �̄R�LH) + cfv(�̄L�R + �̄R�L)
⇥

�� �� =
�

0
1⇥
2
(v + H)

⇥
�� �� =

�
0

1⇥
2
(v + H)

⇥

MW = gv/2 a

MZ =
�

g2 + g�2 v/2 a

= (
⇥

2)�1 ·
�

cf (�̄L�RH + �̄R�LH) + mf �̄�
⇥

Lφ = (Dµφ†)(Dµφ) − V (φ) with Dµ = ∂µ + ieAµ

LYuk = cf (ψ̄LψRφ+ ψ̄RψLφ)

Higgs-fermion 
coupling

Yields Higgs-Boson 
couplings Contains Higgs 

self-couplings

➥

Substitute: MH = µ
�

2 =
�

2� v a

Mass generation and Higgs couplings

Unitary gauge



v =247 GeV
x

Fermion

x x

W/Z boson

Mv	 ~ gv	 (Gauge coupling) 
mf 	~ gfv	 (Yukawa coupling)

 Interaction with „ether“ v=247 GeV:

x
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v =247 GeV

Fermion

v =247 GeV
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W/Z boson

 Interaction with Higgs boson H:

Fermions:         gf  ~  mf/v 
W/Z bosons: gV  ~  MV/v = g2⋅v2
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The LHC  
A New Dimension in Particle Physics

ATLAS
ALICE

LHCb

CMS

The LHC  
A New Dimension in Particle Physics



Circumference: 	27 km

Proton beam

Detector

Collision rate: 	 40 MHz
CMS-Energy: 	 14 TeV

Proton bunches 
[number: 2808]

	 	 Proton collisions 
	 [109 per second]

Parton-parton 
interactions

New physics?

Dipols: ca. 1200
	 [Field: up to 8.3 T] 
	 [Temperature: 1.9 K] 
	 [Stored energy: 9.2 GJ]

The LHC  
A New Dimension in Particle Physics



The Discovery Channel

109 Events/sec
[1 Mbyte/Event]

1010

10 Events/min
[mH ≈ 100 GeV]

with 	 0.2%	  H → γγ 
		     	1.5%	  H → ZZ

Efficient 
rate reduction needed

[Storage rate: 100 Hz]



Higgs Production Mechanisms	

Gluon fusion

Associated  
production

Vector  
boson fusion

tt-fusion-



Higgs Production Cross Sections



Higgs Couplings – Examples
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Fig. 3. Branching ratios of the SM Higgs boson (left) and total decay width (right) for Higgs-bosonmasses accessible at LEP and before, calculated with the
programme Hdecay [51].
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Fig. 4. Branching ratios of the SMHiggs boson (left, taken fromRefs. [26,52]),with the bandwidths illustrating the parametric and theoretical uncertainties,
and total decay width in the Higgs-boson mass range accessible by the LHC.
Source: Right, taken from Ref. [25].

Fig. 5. Leading-order diagrams for the various SM Higgs-boson decay channels, where Q denotes any heavy quark.

Theoretically this situation is very challenging, because production and decay processes do not factorize anymore from each
other. Instead, a proper treatment of the broad resonance has to deal with the signal, consisting of Higgs-boson production,
propagation, and decay, background, comprising non-resonant diagramswith the same final state as the Higgs-boson decay,
and of interference effects between signal and background at the same time. Even the proper field-theoretical definition of
mass and width of a heavy Higgs boson to parametrize the resonance becomes subtle. For more details about these issues,
which are still under investigation, we have to refer to the literature (see e.g. Refs. [25,26,54,55] and earlier references
therein). In the followingwe put the emphasis on the Higgs-bosonmass range 100 GeV < MH < 200 GeV, which is favoured
by the overall fit of the SM to precision data and the results of the direct searches.

To deliver precise predictions for the Higgs-boson decay widths and branching ratios, a huge effort was made by many
theorists. The decay channels that are most important for Tevatron and the LHC are:

• H ! f f̄ (mainly f = ⌧ , b, t) [56–68].
In describing a Higgs boson decaying into bottom (or even lighter) quarks it is essential to base the Yukawa coupling

on the running quark mass at the relevant scale, which is set by the Higgs-boson mass. For instance, for MH & 100 GeV
the transition from the pole to the running bottom mass mb(MH) reduces the H ! bb̄ partial decay width by ⇠60% or
more. Starting from this improved LO prediction, the perturbative QCD series, which is known in NLO [58] and beyond
that even up to NNNNLO [60], shows nice convergence with a small residual scale uncertainty of ⇠0.1%. Recently, the
NNLO QCD corrections to H ! bb̄ became available for fully differential observables [61] as well. Generally, a proper
treatment of the qq̄ threshold region deserves particular attention [59].

For the decay into top quarks, the full mass dependence of the tt̄ final state has to be included, and the issue of a
running mass is not as pronounced as for the lighter quarks. The QCD corrections, which are available at NLO [58,62] and
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Coupling to 
Fermions

Coupling to gluons 
[via heavy particle loops]

Coupling to photons 
[via charged particle loops]

Higgs Coupling 
to Gauge Boson



Higgs Boson Decays

For M < 135 GeV:  H  ➛  bb, ττ dominant 
For M > 135 GeV:  H  ➛  WW, ZZ dominant 

ZZ
WW

ττ

bb

Tiny but also 
important: H  ➛   γγ

γγ

bb



Direct Higgs Channels

Channel LHC Potential

gg ➛ H ➛ bb   Huge QCD background (gg ➛ bb);  
extremely difficult

gg ➛ H ➛ ττ   Higgs with low pT, hard to discriminate  
from background; problematic

gg ➛ H ➛ γγ Small rate, large combinatorial background, but excellent 
determination of mH (CMS: crystal calorimeter)

gg ➛ H ➛ WW   Large rate, but 2 neutrinos in leptonic decay, Higgs spin 
accessible via lepton angular correlations

gg ➛ H ➛ ZZ ZZ ➛ 4μ: “gold-plated” channel for high-mass  
Higgs (ATLAS: muon spectrometer)



Vector Boson Fusion

Channel LHC Potential

	 qq ➛ qq H 
	 [with H ➛ bb]

Very large QCD background (gg/qq ➛ bbqq); 
still very difficult

	 qq ➛ qq H 
 	 [with H ➛ ττ]

Higher pT than direct channel; interesting discovery  
channel for mH < 135 GeV

	 qq ➛ qq H 
	 [with H ➛ γγ]

Most likely combined with gg ➛ H ➛ γγ  
to inclusive diphoton signal

	 qq ➛ qq H 
	 [with H ➛ WW] 

Additional background suppression w.r.t. direct channel;  
interesting discovery channel for mH > 135 GeV

	 gg ➛ ttH	  
	 [with H ➛ bb]

Top-associated production; Seemed very promising,  
but overwhelmed by SM ttbb production



Higgs Searches @ LHC: Examples
Two high-energy 
photons

4 muons 
[Mμμ = MZ]

2 electrons 
2 jets



Two Omni-Purpose Detectors

μ
⊗ ⊗ ⊗ ⊗ μ

⊗
⊗

⊗⊗⊗
⊗

⊗ ⊗ ⊗
⊗

μ μ

ATLAS: A Toroidal LHC ApparatuS CMS: Compact Muon Solenoid

Hight: 25 m 
Length: 40 m 
Weight: 7000 t

Hight: 15 m 
Length: 22 m 
Weight: 12500 t



Generic Detector Design 
[Example: ATLAS Exp.] 



The ATLAS Detector

EM Calorimeters: σ/E ≈ 10%/√E ⊕ 0.7% 
excellent e/γ identification 
good energy resolution (e.g. for H → γγ)

Precision Muon Spectrometer:  σ/pt ≈ 10% @ 1 TeV ⊕ 
fast trigger response 
good momentum resolution 
(e.g. H → ZZ → 4μ)

Hadron Calorimeter:  
σ/E ≈ 50%/√E ⊕ 3% 
good jet resolution 
good missing ET resolution 
(e.g. H → ττ)

Inner Detector:
Si Pixel & strips; TRT
σ/pt ≈ 5 ⋅ 10-4 pt ⊕ 0.001 
good impact parameter res., i.e. 
σ(d0) ≈ 15 μm @ 20 GeV 
(e.g. H → bb)Magnets:  

Solenoid (inner detector): 2 T  
Toroid (muon spectrometer): 0.5 T



ATLAS October 2005

View into 
ATLAS Detector



ATLAS July 2006

Insertion of 
Tile Calorimeter



ATLAS August 2006

Insertion of 
Inner Detector



The CMS Detector

EM Calorimeters:  
σ/E ≈ 3%/√E ⊕ 0.5% 
[vergl. ATLAS: σ/E ≈ 10%/√E ⊕ 0.7%]

Hadron Calorimeter:  
σ/E ≈ 100%/√E ⊕ 5% 
[vergl. ATLAS: σ/E ≈ 50%/√E ⊕ 3%]

Inner Detector:
σ/pt ≈ 5 ⋅ 10-4 pt ⊕ 0.001 
[vergl. ATLAS σ/pt ≈ 5 ⋅ 10-4 pt ⊕ 0.001]

Muon Spectormeter
σ/pt ≈ 10% @ 1 TeV  
[vergl. ATLAS: σ/pt ≈ 10% @ 1 TeV] 

Magnet:  
Solenoid: 4 T



CMS June 2002

Insertion of  
vacuum tank 3



CMS September 2005

Insertion of the CMS  
coil into the barrel yoke 



QCD at LHC. LHC X-sections as a figure.
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ATLAS 
estimates 2005: 

Full mass range can already  
be covered after a few years  
at low luminosity  
Several channels available  
over a large range of masses  
Low mass discovery requires 
combination of three of the most 
demanding channels 
 
Comparable situation for  
the CMS experiment

LHC: Higgs Discovery Potential

18 S.Asai et al.: Prospects for the Search for a Standard Model Higgs Boson in ATLAS using Vector Boson Fusion
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Fig. 13. ATLAS sensitivity for the discovery of a Standard Model Higgs boson for integrated luminosities of 10 and 30 fb−1 .
The signal significances are plotted for individual channels, as well as for the combination of channels. A systematic uncertainty
of ± 10% on the background has been included for the vector boson fusion channels.
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The Discovery Channel

Higgs
[Production via Gluon Fusion]

Photon

Photon

Top

Top

Top



The Discovery Channel



Basic Analysis Principle

 H ➛ γγ 
 Event Signature
[Schematic]Higgs

Photon 2

Photon 1

E1

E2

mγγ = 2 E1E2  (1 – cosϑ)
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Invariant Mass:

Basic Analysis Principle



Basic Analysis Principle

Simulation

Higgs?
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Invariant Mass:
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Basic Analysis Principle

Simulation

mγγ = 2 E1E2  (1 – cosϑ)
Invariant Mass:
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Basic Analysis Principle
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Basic Analysis Principle
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3
Datenanalyse 
Zeitliche Entwicklung des Higgssignals



Bruno Lenzi (CERN) Search for the Higgs boson in the diphoton decay channel with the ATLAS detector SUSY2012

Diphoton invariant mass spectra
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ATLAS Result 
Observation of a New Particle [H ➛ γγ]  [Summer 2012]



ATLAS Result 
Observation of a New Particle [H ➛ γγ]

ATLAS-CONF-2013-012
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Did we measure the higgs?

Photonen 
0.2%

b-Quarks 
57%

Andere 
0.8%

Z-Bosonen 
3% Taus 

6%
Gluonen 
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W-Bosonen 
21%
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Proton

Proton
Higgs

Decay particle

Decay particle



ZZ Decay 



WW decay



Measuring the 
Higgs couplings




