W Pair Production Cross Section

M. Thomson, Modern Particle Physics © Cambridge University Press 2013

The Higgs Boson A short introduction ...

Nobel Prize 2013 ...

The Nobel Prize in Physics 2013 was awarded jointly to

François Englert and Peter W. Higgs

"for the theoretical discovery of a mechanism that contributes to our understanding of the origin of mass of subatomic particles, and which recently was confirmed through the discovery of the predicted fundamental particle, by the ATLAS and CMS experiments at CERN's Large Hadron Collider"

The Standard Model A particle physicist's view of the world ...

The Standard Model A theorist's view of the world ...

+ Higgs terms

The SM Lagrangian [massless particles]

SM Lagrangian without Higgs

where:

But: $SU(2)_{I} \times U(1)_{Y}$ symmetry forbids "ad hoc" introduction of extra masses terms:

 $eA_{\mu} = \frac{g_s}{2}\lambda_{\nu}G_{\mu}^{\nu} + \frac{g}{2}\vec{\tau}\,\vec{W}_{\mu} + \frac{g'}{2}YB_{\mu}$

 $F_{\mu\nu}F^{\mu\nu} = G_{\mu\nu}G^{\mu\nu} + W_{\mu\nu}W^{\mu\nu} + B_{\mu\nu}B^{\mu\nu}$

The Higgs Mechanism

Introduce:

New doublet of complex scalar fields [4 degrees of freedom; 'mexican hat' potential]

$$\begin{split} V(\phi) &= -\mu^2 |\phi^{\dagger}\phi| + \lambda |\phi^{\dagger}\phi|^2 \\ & \text{with } \mu, \lambda > 0 \end{split}$$

Lagrangian of scalar field:

 $\mathcal{L}_{\phi} = (\partial_{\mu}\phi^{\dagger})(\partial^{\mu}\phi) - V(\phi)$

Coupling to bosons via transition to covariant derivative. Coupling to fermions via "ad-hoc" introduction of "Yukawa" coupling.

 $\mathcal{L}_{\phi} = (D_{\mu}\phi^{\dagger})(D^{\mu}\phi) - V(\phi) \quad \text{with} \quad D_{\mu} = \partial_{\mu} + ieA_{\mu}$ $\mathcal{L}_{\text{Yuk}} = c_f(\bar{\psi}_L\psi_R\phi + \bar{\psi}_R\psi_L\phi) \quad \text{Introduction into SM Lagrangian maintains} \\ \text{Introduction into SM Lagrangian maintains}$

The Higgs Mechanism

Introduce:

New doublet of complex scalar fields [4 degrees of freedom; 'mexican hat' potential]

$$\begin{split} V(\phi) &= -\mu^2 |\phi^{\dagger}\phi| + \lambda |\phi^{\dagger}\phi|^2 \\ & \text{with } \mu, \lambda > 0 \end{split}$$

Spontaneous symmetry breaking:

System falls in to minimum of V at $\phi \neq 0$.

This results in:

- Three massless excitations along valley \rightarrow 3 longitudinal d.o.f. for W[±] and Z
- One massive excitation out of valley \rightarrow 1 d.o.f. for "physical" Higgs boson

Higgs field has two components: $\phi = "v + H"$.

- 1. omnipresent, constant background condensate v = 246 GeV
- 2. Higgs boson H with unknown mass $M_H = \mu \cdot \sqrt{2} = (2\lambda)^{\frac{1}{2}} \cdot v$

Mass generation and Higgs couplings

 $= (\sqrt{2})^{-1} \cdot \left[c_f(\bar{\psi}_L \psi_R H + \bar{\psi}_R \psi_L H) + m_f \bar{\psi} \psi \right]$

Mass generation and Higgs couplings

Fermions: $g_f \sim m_f/v$ W/Z bosons: $g_V \sim M_V^2/v = g^2 \cdot v$

The LHC A New Dimension in Particle Physics

The LHC A New Dimension in Particle Physics

Higgs Production Mechanisms

Higgs Production Cross Sections

Higgs Couplings – Examples

Higgs Boson Decays

For M < 135 GeV: H \rightarrow bb, $\tau\tau$ dominant For M > 135 GeV: H \rightarrow WW, ZZ dominant

Direct Higgs Channels

Channel	LHC Potential
gg → H → bb	Huge QCD background (gg → bb); extremely difficult
gg → H → ττ	Higgs with low p⊤, hard to discriminate from background; problematic
gg → H → γγ	Small rate, large combinatorial background, but excellent determination of m _H (CMS: crystal calorimeter)
gg → H → WW	Large rate, but 2 neutrinos in leptonic decay, Higgs spin accessible via lepton angular correlations
gg → H → ZZ	ZZ → 4µ: "gold-plated" channel for high-mass Higgs (ATLAS: muon spectrometer)

Vector Boson Fusion

Channel	LHC Potential
qq → qq H	Very large QCD background (gg/qq → bbqq);
[with H → bb]	still very difficult
qq → qq H [with H → ττ]	Higher p_T than direct channel; interesting discovery channel for $m_H < 135$ GeV
qq → qq H	Most likely combined with gg → H → γγ
[with H → γγ]	to inclusive diphoton signal
qq → qq H [with H → WW]	Additional background suppression w.r.t. direct channel; interesting discovery channel for $m_H > 135$ GeV
gg → ttH	Top-associated production; Seemed very promising,
[with H → bb]	but overwhelmed by SM ttbb production

Higgs Searches @ LHC: Examples

Two Omni-Purpose Detectors

ATLAS: A Toroidal LHC ApparatuS

CMS: Compact Muon Solenoid

The ATLAS Detector

ATLAS October 2005

ATLAS July 2006

ATLAS August 2006

The CMS Detector

CMS June 2002

CMS September 2005

LHC: Higgs Discovery Potential

ATLAS estimates 2005:

Full mass range can already be covered after a few years at low luminosity

Several channels available over a large range of masses

Low mass discovery requires combination of three of the most demanding channels

Comparable situation for the CMS experiment

The Discovery Channel

The Discovery Channel

Basic Analysis Principle

Invariant Mass:

$$m_{\gamma\gamma}^2 = 2E_1E_2 (1-\cos\theta)$$

Invariant Mass:

$$m_{\gamma\gamma}^2 = 2E_1E_2 (1-\cos\theta)$$

Datenanalyse Zeitliche Entwicklung des Higgssignals

3

ATLAS Result Observation of a New Particle [$H \rightarrow \gamma \gamma$]

[Summer 2012]

ATLAS Result Observation of a New Particle [$H \rightarrow \gamma \gamma$]

[Spring 2013]

ATLAS-CONF-2013-012

Measuring the Higgs couplings

BREAKTHROUGH of the YEAR The HIGGS BOSON

-

21 December 2012 \$10

AAA