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The CKM-Matrix

12 12. CP violation in meson decays

The charged current interactions (that is, the W ± interactions) for quarks are given by

−LW± =
g√
2

uLi γµ (VCKM)ij dLj W+
µ + h.c. (12.46)

Here i, j = 1, 2, 3 are generation numbers. The Cabibbo-Kobayashi-Maskawa (CKM)
mixing matrix for quarks is a 3 × 3 unitary matrix [36]. Ordering the quarks by their
masses, i.e., (u1, u2, u3) → (u, c, t) and (d1, d2, d3) → (d, s, b), the elements of VCKM are
written as follows:

VCKM =

⎛

⎝
Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

⎞

⎠ . (12.47)

While a general 3 × 3 unitary matrix depends on three real angles and six phases, the
freedom to redefine the phases of the quark mass eigenstates can be used to remove five
of the phases, leaving a single physical phase, the Kobayashi-Maskawa phase, that is
responsible for all CP violation in meson decays in the Standard Model.

The fact that one can parametrize VCKM by three real and only one imaginary
physical parameters can be made manifest by choosing an explicit parametrization. The
Wolfenstein parametrization [37,38] is particularly useful:

VCKM =⎛

⎜⎜⎜⎝

1 − 1
2
λ2 − 1

8
λ4 λ Aλ3(ρ − iη)

−λ +
1
2
A2λ5[1 − 2(ρ + iη)] 1 − 1

2
λ2 − 1

8
λ4(1 + 4A2) Aλ2

Aλ3[1 − (1 − 1
2
λ2)(ρ + iη)] −Aλ2 +

1
2
Aλ4[1 − 2(ρ + iη)] 1 − 1

2
A2λ4

⎞

⎟⎟⎟⎠
.

(12.48)

Here λ ≈0.23 (not to be confused with λf ) plays the role of an expansion parameter,
and η represents the CP -violating phase. Terms of O(λ6) were neglected.

The unitarity of the CKM matrix, (V V †)ij = (V †V )ij = δij , leads to twelve distinct
complex relations among the matrix elements. The six relations with i ̸= j can be
represented geometrically as triangles in the complex plane. Two of these,

VudV ∗
ub + VcdV ∗

cb + VtdV ∗
tb = 0

VtdV
∗
ud + VtsV

∗
us + VtbV

∗
ub = 0 ,

have terms of equal order, O(Aλ3), and so have corresponding triangles whose interior
angles are all O(1) physical quantities that can, in principle, be independently measured.
The angles of the first triangle (see Fig. 12.1) are given by

α ≡ ϕ2 ≡ arg
(
−

VtdV
∗
tb

VudV ∗
ub

)
≃ arg

(
−1 − ρ − iη

ρ + iη

)
,

β ≡ ϕ1 ≡ arg
(
−

VcdV ∗
cb

VtdV ∗
tb

)
≃ arg

(
1

1 − ρ − iη

)
,

γ ≡ ϕ3 ≡ arg
(
−

VudV ∗
ub

VcdV ∗
cb

)
≃ arg (ρ + iη) . (12.49)
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 CKM-Matrix: (Exact) Wolfenstein parametrisation
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The charged current interactions (that is, the W ± interactions) for quarks are given by
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uLi γµ (VCKM)ij dLj W+
µ + h.c. (12.46)

Here i, j = 1, 2, 3 are generation numbers. The Cabibbo-Kobayashi-Maskawa (CKM)
mixing matrix for quarks is a 3 × 3 unitary matrix [36]. Ordering the quarks by their
masses, i.e., (u1, u2, u3) → (u, c, t) and (d1, d2, d3) → (d, s, b), the elements of VCKM are
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freedom to redefine the phases of the quark mass eigenstates can be used to remove five
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responsible for all CP violation in meson decays in the Standard Model.
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Here λ ≈0.23 (not to be confused with λf ) plays the role of an expansion parameter,
and η represents the CP -violating phase. Terms of O(λ6) were neglected.
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1212.CPviolationinmesondecays

Thechargedcurrentinteractions(thatis,theW±interactions)forquarksaregivenby

−LW±=
g√

2
uLiγµ(VCKM)ijdLjW+

µ+h.c.(12.46)

Herei,j=1,2,3aregenerationnumbers.TheCabibbo-Kobayashi-Maskawa(CKM)
mixingmatrixforquarksisa3×3unitarymatrix[36].Orderingthequarksbytheir
masses,i.e.,(u1,u2,u3)→(u,c,t)and(d1,d2,d3)→(d,s,b),theelementsofVCKMare
writtenasfollows:

VCKM=

⎛

⎝
VudVusVub
VcdVcsVcb
VtdVtsVtb

⎞

⎠.(12.47)

Whileageneral3×3unitarymatrixdependsonthreerealanglesandsixphases,the
freedomtoredefinethephasesofthequarkmasseigenstatescanbeusedtoremovefive
ofthephases,leavingasinglephysicalphase,theKobayashi-Maskawaphase,thatis
responsibleforallCPviolationinmesondecaysintheStandardModel.

ThefactthatonecanparametrizeVCKMbythreerealandonlyoneimaginary
physicalparameterscanbemademanifestbychoosinganexplicitparametrization.The
Wolfensteinparametrization[37,38]isparticularlyuseful:

VCKM= ⎛

⎜⎜⎜⎝

1−1
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λ2−1
8

λ4λAλ3(ρ−iη)

−λ+
1
2

A2λ5[1−2(ρ+iη)]1−1
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λ2−1
8

λ4(1+4A2)Aλ2

Aλ3[1−(1−1
2

λ2)(ρ+iη)]−Aλ2+
1
2

Aλ4[1−2(ρ+iη)]1−1
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A2λ4

⎞
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(12.48)

Hereλ≈0.23(nottobeconfusedwithλf)playstheroleofanexpansionparameter,
andηrepresentstheCP-violatingphase.TermsofO(λ6)wereneglected.

TheunitarityoftheCKMmatrix,(VV†)ij=(V†V)ij=δij,leadstotwelvedistinct
complexrelationsamongthematrixelements.Thesixrelationswithi̸=jcanbe
representedgeometricallyastrianglesinthecomplexplane.Twoofthese,

VudV∗
ub+VcdV∗

cb+VtdV∗
tb=0

VtdV
∗
ud+VtsV

∗
us+VtbV

∗
ub=0,

havetermsofequalorder,O(Aλ3),andsohavecorrespondingtriangleswhoseinterior
anglesareallO(1)physicalquantitiesthatcan,inprinciple,beindependentlymeasured.
Theanglesofthefirsttriangle(seeFig.12.1)aregivenby

α≡ϕ2≡arg
(

−
VtdV

∗
tb

VudV∗
ub

)
≃arg

(
−1−ρ−iη

ρ+iη

)
,

β≡ϕ1≡arg
(

−
VcdV∗

cb

VtdV∗
tb

)
≃arg

(
1

1−ρ−iη

)
,

γ≡ϕ3≡arg
(

−
VudV∗

ub

VcdV∗
cb

)
≃arg(ρ+iη).(12.49)
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η̄ = 0.348 ± 0.014 [128]. The fit results for the magnitudes of all nine CKM elements are

VCKM =

⎛

⎝
0.97427± 0.00015 0.22534 ± 0.00065 0.00351+0.00015

−0.00014

0.22520± 0.00065 0.97344 ± 0.00016 0.0412+0.0011
−0.0005

0.00867+0.00029
−0.00031 0.0404+0.0011

−0.0005 0.999146+0.000021
−0.000046

⎞

⎠ , (11.27)

and the Jarlskog invariant is J = (2.96+0.20
−0.16) × 10−5.

Figure 11.2 illustrates the constraints on the ρ̄, η̄ plane from various measurements
and the global fit result. The shaded 95% CL regions all overlap consistently around the
global fit region. This consistency gets noticeably worse if B → τ ν̄ is included in the fit.

11.5. Implications beyond the SM

The effects in B, K, and D decays and mixings due to high-scale physics (W , Z, t, h in
the SM, and new physics particles) can be parameterized by operators made of SM fields,
obeying the SU(3)×SU(2)×U(1) gauge symmetry. The beyond SM (BSM) contributions
to the coefficients of these operators are suppressed by powers of the scale of new physics.
At lowest order, there are of order a hundred flavor-changing operators of dimension-6,
and the observable effects of BSM interactions are encoded in their coefficients. In the
SM, these coefficients are determined by just the four CKM parameters, and the W ,
Z, and quark masses. For example, ∆md, Γ(B → ργ), and Γ(B → Xdℓ

+ℓ−) are all
proportional to |VtdV

∗
tb|

2 in the SM, however, they may receive unrelated contributions
from new physics. The new physics contributions may or may not obey the SM relations.
(For example, the flavor sector of the MSSM contains 69 CP -conserving parameters and
41 CP -violating phases, i.e., 40 new ones [129]). Thus, similar to the measurements of
sin 2β in tree- and loop-dominated decay modes, overconstraining measurements of the
magnitudes and phases of flavor-changing neutral-current amplitudes give good sensitivity
to new physics.

To illustrate the level of suppression required for BSM contributions, consider a
class of models in which the unitarity of the CKM matrix is maintained, and the
dominant effect of new physics is to modify the neutral meson mixing amplitudes [130]
by (zij/Λ2)(qiγ

µPLqj)
2 (for recent reviews, see [131,132]). It is only known since the

measurements of γ and α that the SM gives the leading contribution to B0 –B0

mixing [6,133]. Nevertheless, new physics with a generic weak phase may still contribute
to neutral meson mixings at a significant fraction of the SM [134,127]. The existing
data imply that Λ/|zij |1/2 has to exceed about 104 TeV for K0 –K0 mixing, 103 TeV for
D0 –D0 mixing, 500TeV for B0 –B0 mixing, and 100TeV for B0

s –B0
s mixing [127,132].

(Some other operators are even better constrained [127].) The constraints are the
strongest in the kaon sector, because the CKM suppression is the most severe. Thus, if
there is new physics at the TeV scale, |zij | ≪ 1 is required. Even if |zij | are suppressed
by a loop factor and |V ∗

tiVtj |2 (in the down quark sector), similar to the SM, one expects
percent-level effects, which may be observable in forthcoming flavor physics experiments.
To constrain such extensions of the SM, many measurements irrelevant for the SM-CKM

fit, such as the CP asymmetry in semileptonic B0
d,s decays, Ad,s

SL , are important [135]. A
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12 12. CP violation in meson decays

The charged current interactions (that is, the W ± interactions) for quarks are given by

−LW± =
g√
2

uLi γµ (VCKM)ij dLj W+
µ + h.c. (12.46)

Here i, j = 1, 2, 3 are generation numbers. The Cabibbo-Kobayashi-Maskawa (CKM)
mixing matrix for quarks is a 3 × 3 unitary matrix [36]. Ordering the quarks by their
masses, i.e., (u1, u2, u3) → (u, c, t) and (d1, d2, d3) → (d, s, b), the elements of VCKM are
written as follows:
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Vtd Vts Vtb

⎞
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While a general 3 × 3 unitary matrix depends on three real angles and six phases, the
freedom to redefine the phases of the quark mass eigenstates can be used to remove five
of the phases, leaving a single physical phase, the Kobayashi-Maskawa phase, that is
responsible for all CP violation in meson decays in the Standard Model.

The fact that one can parametrize VCKM by three real and only one imaginary
physical parameters can be made manifest by choosing an explicit parametrization. The
Wolfenstein parametrization [37,38] is particularly useful:
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Here λ ≈0.23 (not to be confused with λf ) plays the role of an expansion parameter,
and η represents the CP -violating phase. Terms of O(λ6) were neglected.

The unitarity of the CKM matrix, (V V †)ij = (V †V )ij = δij , leads to twelve distinct
complex relations among the matrix elements. The six relations with i ̸= j can be
represented geometrically as triangles in the complex plane. Two of these,
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tb = 0
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∗
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∗
ub = 0 ,

have terms of equal order, O(Aλ3), and so have corresponding triangles whose interior
angles are all O(1) physical quantities that can, in principle, be independently measured.
The angles of the first triangle (see Fig. 12.1) are given by
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γ ≡ ϕ3 ≡ arg
(
−

VudV ∗
ub

VcdV ∗
cb

)
≃ arg (ρ + iη) . (12.49)
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11. THE CKM QUARK-MIXING MATRIX
Revised February 2008 by A. Ceccucci (CERN), Z. Ligeti (LBNL), and Y. Sakai (KEK).

11.1. Introduction

The masses and mixings of quarks have a common origin in the Standard Model (SM).
They arise from the Yukawa interactions with the Higgs condensate,

LY = −Y d
ij QI

Li φ dI
Rj − Y u

ij QI
Li ϵ φ∗uI

Rj + h.c., (11.1)

where Y u,d are 3× 3 complex matrices, φ is the Higgs field, i, j are generation labels, and
ϵ is the 2 × 2 antisymmetric tensor. QI

L are left-handed quark doublets, and dI
R and uI

R
are right-handed down- and up-type quark singlets, respectively, in the weak-eigenstate
basis. When φ acquires a vacuum expectation value, ⟨φ⟩ = (0, v/

√
2), Eq. (11.1) yields

mass terms for the quarks. The physical states are obtained by diagonalizing Y u,d

by four unitary matrices, Vu,d
L,R, as Mf

diag= Vf
L Y f Vf†

R (v/
√

2), f = u, d. As a result,
the charged-current W ± interactions couple to the physical uLj and dLk quarks with
couplings given by

VCKM ≡ Vu
L Vd†

L =

⎛

⎝
Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

⎞

⎠ . (11.2)

This Cabibbo-Kobayashi-Maskawa (CKM) matrix [1,2] is a 3 × 3 unitary matrix. It
can be parameterized by three mixing angles and a CP -violating phase. Of the many
possible parameterizations, a standard choice has become

V =

⎛

⎝
c12c13 s12c13 s13e− iδ

−s12c23−c12s23s13eiδ c12c23−s12s23s13eiδ s23c13

s12s23−c12c23s13eiδ −c12s23−s12c23s13eiδ c23c13

⎞

⎠ , (11.3)

where sij = sin θij , cij = cos θij , and δ is the KM phase [2] responsible for all CP -violating
phenomena in flavor-changing processes in the SM. The angles θij can be chosen to lie in
the first quadrant, so sij , cij ≥ 0.

It is known experimentally that s13 ≪ s23 ≪ s12 ≪ 1, and it is convenient to exhibit
this hierarchy using the Wolfenstein parameterization. We define [3–5]

s12 = λ =
|Vus|√

|Vud|2 + |Vus|2
, s23 = Aλ 2 = λ

∣∣∣∣
Vcb

Vus

∣∣∣∣,

s13e
iδ = V∗

ub = Aλ 3(ρ + iη) =
Aλ 3(ρ̄ + iη̄)

√
1 − A2λ 4

√
1 − λ 2[1 − A2λ 4(ρ̄ + iη̄)]

. (11.4)

These relations ensure that ρ̄+ iη̄ = −(VudV∗
ub)/(VcdV

∗
cb) is phase-convention-independent,

and the CKM matrix written in terms of λ , A, ρ̄, and η̄ is unitary to all orders in λ .
The definitions of ρ̄, η̄ reproduce all approximate results in the literature. For example,
ρ̄ = ρ(1 − λ 2/2 + . . .) and we can write VCKM to O(λ 4) either in terms of ρ̄, η̄ or,
traditionally,

V =

⎛

⎝
1 − λ 2/2 λ Aλ 3(ρ − iη)

−λ 1 − λ 2/2 Aλ 2

Aλ 3(1 − ρ − iη) −Aλ 2 1

⎞

⎠ + O(λ 4) . (11.5)

CITATION: C. Amsler et al., Physics Letters B667, 1 (2008)
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Before proceeding it should be stressed that there ex-
ist nine fundamentally different ways for describing the
CKM matrix [6, 7]). (Of course, the freedom of rotat-
ing the phase of quark fields will render the parametriza-
tion of the quark mixing matrix infinitely many.) Among
them, the most popular ones are the KM, CK and
Fritzsch-Xing (FX) [8] parametrizations. Although these
different parametrizations are mathematically equiva-
lent, they have a different theoretical motivation and one
of them may turn out to be more convenient for some spe-
cific problem. For example, the imaginary part appears
in the CK parametrization with a smaller coefficient of
order 10−3, contrary to the KM one where the imagi-
nary part of the matrix element, e.g. Vtb, is large and
comparable to the real part. The FX parametrization
is motivated by the hierarchical structure of the quark
masses. It has primarily a heavy quark mixing involv-
ing the t and b quarks whereas the CP-odd phase resides
solely in the light quark sector [8]. On the other hand,
it is known that among the possible parametrizations of
the CKM matrix, only the KM and FX ones can allow to
have maximal CP violation [9], namely, the phase δKM in
the KM parametrization (see Eq. (2)) is in the vicinity
of 90◦.
The magnitudes of the CKM matrix given in Eq. (1)

show a hierarchical pattern with the diagonal elements
being close to unity, the elements |Vus| and |Vcd| being
of order 0.23, the elements |Vcb| and |Vts| of order 0.04
whereas |Vub| and |Vtd| are of order (3 − 9)× 10−3. The
Wolfenstein parametrization given in Eq. (4) below ex-
hibits this hierarchy manifestly and transparently. More-
over, the imaginary parts are suppressed as they first
appear at order λ3. The transparency of the Wolfen-
stein form and its smallness of CP violation explains
why this parametrization is so popular and successful in
the phenomenological applications. It is an approximate
parametrization of the CKM matrix expanded as a power
series in terms of the small parameter λ ≈ |Vus|; the three
angles and one phase in various exact parametrizations
are replaced by the four real parameters λ, A, ρ and η.

A new Wolfenstein-like parametrization has been advo-
cated recently by Qin and Ma (QM) [10] in which the
three angles are substituted by the parameters λ, f and
h while the phase parameter δ is still kept. Unlike the
original Wolfenstein parametrization, the QM one has
the advantage that its CP-odd phase δ is manifested in
the parametrization and close to 90◦ [see Eq. (17) be-
low]. In a recent work, we have shown that this feature
of maximal CP violation is crucial for a viable neutrino
phenomenology [11].
The Wolfenstein parametrization [1] was introduced as

VWolf =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1−
1
2
λ2, λ, Aλ3(ρ− iη

+iη 1
2
λ2)

−λ, 1−
1
2
λ2 Aλ2(1 + iλ2η)

−iηA2λ4,

Aλ3(1 − ρ− iη), −Aλ2, 1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, (4)

where it was demanded that the imaginary part of the
unitarity relation be satisfied to order λ5 and the real
part only to order λ3. It was noted in [1] that the term
iηAλ5/2 in Vub could be transferred to Vtd. Using the
global fits to the data, the four unknown real parameters
A, λ, ρ and η are determined to be [3]

A = 0.808+0.022
−0.015 , λ = 0.2253± 0.0007 ,

ρ̄ = 0.132+0.022
−0.014 , η̄ = 0.341± 0.013 , (5)

where ρ̄ = ρ(1−λ2/2+ · · ·) and η̄ = η(1−λ2/2+ · · ·). In
principle, the expression of the Wolfenstein parametriza-
tion to the high order of λ can be systematically obtained
from the exact parametrization of the CKM matrix by
expanding it to the desired order of λ. It is well known
that the Wolfenstein parametrization can be easily ob-
tained from the standard CK parametrization in Eq. (3)
by applying the relations

s12 = λ, s23 = Aλ2, s13e
−iφ = Aλ3(ρ− iη). (6)

The detailed expression up to order λ6 is given by

V (CK)
Wolf =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1−
λ2

2
−

λ4

8
λ , Aλ3(ρ− iη)

−
λ6

16
[1 + 8A2(ρ2 + η2)] ,

−λ+ λ5

2
A2(1− 2ρ− 2iη) , 1−

λ2

2
−

λ4

8
(1 + 4A2) Aλ2

−
λ6

16
[1− 4A2(1 − 4ρ − 4iη)] ,

Aλ3(1 − ρ− iη) −Aλ2 + λ4

2
A(1 − 2ρ− 2iη) 1−

λ4

2
A2

+λ5

2
A(ρ+ iη) , +λ6

8
A , −

λ6

2
A2(ρ2 + η2)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

+O(λ7) . (7)

Here we note that the next higher order λ term in Vus

appears at order λ7 (i.e., − 1
2A

2λ7(ρ2+η2)). In compar-
ison with the original Wolfenstein form in Eq. (4), the
imaginary term iηAλ5/2 has been transferred from Vub

 

 
 



Vcb Determination @ Belle

The Belle Detector 
at the KEK-B Accelerator

Ee+ = 3.5 GeV
Ee– = 8 GeV

Beam energies:

1 km

     Belle

     Cavities

Ecms = MΥ(4s)

e+e– ➙ Υ ➙ BB–
Main Process:

CMS energy:

[BaBar: similar]
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Bd Oscillation Measurement

Y(4s)
B0

B0

Δz ~ Δt

–

Lepton

Lepton

Decay 2

Decay 1

Entangled

BaBar 
Belle

0



Bd Oscillation Measurement0



B0(b̄d)! D�(c̄d)µ+⌫µ

B̄0(bd̄)! D+(cd̄)µ�⌫̄µ

Consider:

Measure:

A(�t) =
NOF �NSF

NOF + NSF

A(�t) =
⇥
P (B0

t=0 ! B0) + P (B̄0
t=0 ! B̄0)

⇤
�

⇥
P (B0

t=0 ! B̄0) + P (B̄0
t=0 ! B0)

⇤
⇥
P (B0

t=0 ! B0) + P (B̄0
t=0 ! B̄0)

⇤
+

⇥
P (B0

t=0 ! B̄0) + P (B̄0
t=0 ! B0)

⇤

A(�t) = cos2
✓

�mdt

2

◆
� sin2

✓
�mdt

2

◆
= cos(�mdt)

Sign of lepton 
identifies B0 and B0 decay …–

Bd Oscillation Measurement



Bd Oscillation Result

© Cambridge University Press 2013
M. Thomson, Modern Particle Physics

Belle 
Collaboration

π/Δmd

Δmd	= (0.507 ± .005) ps-1

Vtd 	 = (8.4 ± 0.6) × 10-3



CP-Violation in the B-Meson System

© Cambridge University Press 2013
M. Thomson, Modern Particle Physics

Measure:

AKS
CP =

�(B̄0
t=0 ! J/ KS)� �(B0

t=0 ! J/ KS)
�(B̄0

t=0 ! J/ KS) + �(B0
t=0 ! J/ KS)

= sin(�mdt) sin(2�)

Important: |ξ| ≠ 1

BaBar 
Collaboration

sin(2β) = 
= 0.685 ± 0.032 
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Unitarity Triangle and CP Violation

Unitarity  
Triangle

The unitarity triangle is just a geometrical presentation of this equation
in the complex plane [8].

The angles of the triangle α, β and γ are also referred to as φ2, φ1, and
φ3, respectively, with β and γ being the phases of the CKM elements Vtd and
Vub as per

Vtd = |Vtd|e
−iβ, Vub = |Vub|e

−iγ (4)

to a precison of better than a tenth of a degree.
Rescaling the triangle so that the base is of unit length, the coordinates

of the vertices become:

(ρ̄ = Re(Vud V∗
ub)/|Vcd V∗

cb|, η̄ = Im(Vud V∗
ub)/|Vcd V∗

cb|), (1, 0), and (0, 0) .
(5)

CP -violating processes involve the phase δ in the CKM matrix, assuming
that the observed CP violation is solely related to a nonzero value of this
phase. A necessary and sufficient condition for CP violation with three
generations is than that the determinant J of the commutator of the mass
matrices for the charge 2e/3 and charge −e/3 quarks is non-zero [7]. CP -
violating amplitudes or differences of rates are all proportional to the product
of CKM factors in this quantity, namely J = s

12
s

13
s

23
c

12
c2

13
c

23
sin δ. This is

just twice the area of the unitarity triangle.
We now proceed to determine the unitarity triangle from CP invariant

quantities alone. For the following input data we refer to our last review
[9] and the references therein: |Vud| = 0.9738 ± 0.0005, |Vcd| = 0.224 ±
0.012, |Vcs|2 = (2.039 ± 0.026) − |Vud|2 − |Vus|2 − |Vub|2 − |Vcd|2 − |Vcb|2,

|Vtb|
2

|Vtd|2+|Vts|2+|Vtb|2
= 0.94+0.31

−0.24.

|Vus| – New results from NA48 [10], KLOE [11], and KTEV [12] on the
branching ratio of KL → πeν and on the KL lifetime have been used to
extract Vus×f+(0, K0) = 0.2171±0.0004. Two additional results from K+ →
π0eν yield an average Vus × f+(0, K+) = 0.2233± 0.0011. Two independent
theoretical evaluations of the form factor f+(0) have been published. Chiral
perturbation theory at the p6 approximation gives f+(0, K0) = 0.981±0.010
for K0 and 1.002± 0.010 for K+ [13]. Lattice calculations yield f+(0, K0) =
0.961 ± 0.009[14].We take the average of both and obtain Vus = 0.2238 ±
0.0004 ± 0.0023 from K0 decays and 0.2252 ± 0.0022 from K+ decays.The
overall average is

|Vus| = 0.2244 ± 0.0022 , (6)

where the error comes chiefly from the theoretical uncertainty.

3

Unitary CKM matrix: VV†= 1  
[➛ 6 “triangle” relations in complex plane] 

courtesy U.Uwer

Important for Bd and Bs decays



Determination of CP Violation
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Rescaled unitarity condition
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Determination of CP Violation

B0 → J/ψ/Ks: sin 2β 
tan β = η/(1-ρ)

Kaon mixing: ε 
ε∝η (1-ρ+constant)

B0 mixing: Δmd 
Δmd determines |Vtb|



Unitarity Triangle from B Decays

courtesy U.Uwer

Sides from CP violating observables
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Unitarity Triangle from B Decays

courtesy U.Uwer

CPV: 	B0 ➛ ππ, ρπ, ρρ

CPV: 	B0 ➛ DK*, DKs, Kπ, D*π 
	 	 Bs ➛ DsK, KK0 0 CPV: 	B0 ➛ J/ψKs

0

α

γ β

Re

Angles from CP violating observables 
[Rare decays; several 109 B mesons necessary]

["Golden Channel"]

Im



Constraints on ρ and η

PDG 2012

14 11. CKM quark-mixing matrix

γ

γ

α

α

dm∆
Kε

Kε

sm∆ & dm∆

ubV

βsin 2

(excl. at CL > 0.95)
 < 0βsol. w/ cos 2
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Figure 11.2: Constraints on the ρ̄, η̄ plane. The shaded areas have 95% CL.

The CKM matrix elements can be most precisely determined by a global fit that
uses all available measurements and imposes the SM constraints (i.e., three generation
unitarity). The fit must also use theory predictions for hadronic matrix elements, which
sometimes have significant uncertainties. There are several approaches to combining the
experimental data. CKMfitter [6,101] and Ref. 124 (which develops [125,126] further) use
frequentist statistics, while UTfit [108,127] uses a Bayesian approach. These approaches
provide similar results.

The constraints implied by the unitarity of the three generation CKM matrix
significantly reduce the allowed range of some of the CKM elements. The fit for the
Wolfenstein parameters defined in Eq. (11.4) gives

λ = 0.22535± 0.00065 , A = 0.811+0.022
−0.012 ,

ρ̄ = 0.131+0.026
−0.013 , η̄ = 0.345+0.013

−0.014 . (11.26)

These values are obtained using the method of Refs. [6,101]. Using the prescription
of Refs. [108,127] gives λ = 0.22535 ± 0.00065, A = 0.817 ± 0.015, ρ̄ = 0.136 ± 0.018,
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