### Elektronenstreuung an <sup>40</sup>Ca

 $q = 2 \text{ fm}^{-1} \triangleq 400 \text{ MeV/c}$ 



#### Ladungsdichteverteilungen in Atomkernen aus elastischerElektronenstreuung

Unsicherheit im Inneren: ca 10 %



#### **Elektronenstreuung am Nukleon**



**Trennung von elektrischem und magnetischem Formfaktor durch Rosenbluth Separation** 



Fig. 6-4

# Elektrischer und magnetischer Formfaktor des Proton aus Rückstosspolarisationstransfer



Fehlschlag Rosenbluthanalyse (grün) bei grossem q<sup>2</sup>

#### Ladungsdichteverteilung des Neutrons



2 dim Ladungsdichteverteilung in Ebene senkrecht zu Bewegung des Neutrons als Funktion des Abstands vom Zentrum des CM

#### The Structure of the Nucleon: Elastic Electromagnetic Form Factors Eur. Phys. J. A51 (2015) 79

V. Punjabi<sup>1</sup>, C.F. Perdrisat<sup>2</sup>, M.K. Jones<sup>3</sup>, E.J. Brash<sup>3,4</sup>, and C.E. Carlson<sup>2</sup>

<sup>1</sup> Norfolk State University, Norfolk, VA 23504, USA

<sup>2</sup> The College of William & Mary, Williamsburg, VA 23187, USA

<sup>3</sup> Thomas Jefferson National Accelerator Facility, Newport News, VA 23606, USA

Christopher Newport University, Newport News, VA 23606, USA





# <u>inelastische Elektron-Nukleon Streuung</u> jetzt bei festem q<sup>2</sup> als Funktion der Inelastizität für 2 verschiedene Werte von q<sup>2</sup> (gezeigt ist $F_2 = vW_2/M$ )

mit höherem q<sup>2</sup> werden elastischer Peak und Resonanzen immer mehr unterdrückt (Formfaktor) und Verteilung verschiebt sich zu kleinerem x



# **Bjorken Skalierung**

inelastische Streuung bei verschiedenen Streuwinkeln am Proton für W>2 GeV als Funktion von q<sup>2</sup>



Friedman and Kendall, Annu. Rev. Nucl. Part. Sci. 22 (1972) 203

#### Nukleonstruktur aus Elektron Proton Streuung bei HERA



Fig. 6-11