The SM Lagrangian – Revised

expectation value

SM Parameters

18 free SM parameters no neutrino masses

$$m_{\rm W}^2 = \frac{1}{2} g^2 \rho_0^2$$

$$m_{\rm Z}^2 = \frac{1}{2} (g^2 + {g'}^2) \rho_0^2$$

$$m_{\rm H}^2 = 4 \lambda \rho_0^2$$

$$g' = e/\cos \theta_W$$

$$m_f = c_f \rho_0$$

Higgs Couplings – Examples

Pre-LHC Status [a very short history]

Higgs Search at LEP

The LEP Collider

The LEP Experiments [Example: OPAL]

The LEP Experiments [Example: OPAL]

OPAL Calorimeter

The LEP Experiments [Example: OPAL]

OPAL Jet Chamber

The LEP Experiments [Example: ALEPH]

SM Higgs Production at LEP

LEP Higgs Signatures

Higgs Candidate [MH=114 GeV]

LEP Higgs Candidates

		Expt	E_{cm}	channel	\mathbf{M}^{rec}	$\ln(1+s/b)$	prev.
					(GeV)	@ 115 GeV	rank.
	1	Α	206.6	4 jet	114.1	1.76	1
LEP	2	Α	206.6	4 jet	114.4	1.44	2
final result	3	Α	206.4	4 jet	109.9	0.59	3
	4	L	206.4	Emiss	115.0	0.53	4
	5	Α	205.1	Lept.	117.3	0.49	7
Observation:	6	Α	206.5	Tau	115.2	0.45	8
17 candidate	7	0	206.4	4 jet	108.2	0.43	5
events	8	Α	206.4	4 jet	114.4	0.41	9
	9	L	206.4	4 jet	108.3	0.30	12
E	10	D	206.6	4 jet	110.7	0.28	
Expectation:	11	Α	207.4	4 jet	102.8	0.27	14
15.8 background	12	D	206.6	4 jet	97.4	0.23	11
events	13	Ο	201.5	Emiss	111.2	0.22	
	14	L	206.0	Emiss	110.1	0.21	17
8.4 signal events	15	Α	206.5	4 jet	114.2	0.19	
for M _H =115 GeV	16	D	206.6	4 jet	108.2	0.19	
	17	L	206.6	4 jet	109.6	0.18	

Observation consistent with background !

Final LEP Result

Invariant mass of Higgs candidates

LEP Summary: No signal above background

M_H > 114.4 GeV @ 95% CL

Blue Band Plot [Indirect Information on SM Higgs]

LEP "Zedometry"

Hadronic		Measurement	Fit		^{is} –O ^{fit}	l/σ ^{m€}	eas O
vaccuum polarization	$\Delta \alpha_{had}^{(5)}(m_Z)$	0.02750 ± 0.00033	0.02759			<u> </u>	3
7 Mass	m _z [GeV]	91.1875 ± 0.0021	91.1874				
	Γ _z [GeV]	2.4952 ± 0.0023	2.4959	-			
Z Width	$\sigma_{\sf had}^{\sf 0}\left[{\sf nb} ight]$	41.540 ± 0.037	41.478				
Had. Pole Cross Section	R _I	20.767 ± 0.025	20.742				
	A ^{0,I} fb	0.01714 ± 0.00095	0.01645				
Lepton Asymmetries	A _I (P _τ)	0.1465 ± 0.0032	0.1481				
Left/Right Asymmetries	R _b	0.21629 ± 0.00066	0.21579				
Eony /Backw Asymmetries	R _c	0.1721 ± 0.0030	0.1723				
Detice	A ^{0,b} _{fb}	0.0992 ± 0.0016	0.1038				
Ratios	A ^{0,c} _{fb}	0.0707 ± 0.0035	0.0742				
	A _b	0.923 ± 0.020	0.935				
	A _c	0.670 ± 0.027	0.668				
Effective mixing angle	A _I (SLD)	0.1513 ± 0.0021	0.1481				
	$\sin^2 \theta_{eff}^{lept}(Q_{fb})$	0.2324 ± 0.0012	0.2314				
W Mass	m _w [GeV]	80.385 ± 0.015	80.377	-			
W Width	Г _w [GeV]	2.085 ± 0.042	2.092	•			
Top Mass	m _t [GeV]	173.20 ± 0.90	173.26				
	March 2012			0	1	2	3

The Higgs Influencing the SM

The Blue Band Plot 2010 ...

The Blue Band Plot 2012 ...

TLAS:

$$M_{H} = 125.5^{+0.5}_{-0.6} \text{ GeV}$$

MS:
 $M_{H} = 125.3^{+0.6}_{-0.6} \text{ GeV}$

Higgs Search at Tevatron

Tevatron: Higgs Discovery Potential

Tevatron: Latest Result

Observed and expected 95% C.L. upper limits on the ratios to the SM cross section, as functions of the Higgs boson mass for the combined CDF and D0 analyses ...

Higgs Search at the LHC [The 2010 Perspective]

The LHC A New Dimension in Particle Physics

The LHC A New Dimension in Particle Physics

Two Basic Architectures

ATLAS: A Toroidal LHC ApparatuS

CMS: Compact Muon Solenoid

The ATLAS Detector

ATLAS October 2005

ATLAS July 2006

ATLAS August 2006

The CMS Detector

CMS June 2002

CMS September 2005

CMS February 2007

ATLAS vs. CMS

Silicon pixels; Silicon strips; Transition Radiation Tracker; 2 T magnetic field	Inner Detector	Silicon pixels, Silicon strips, 4 T magnetic field
Lead plates as absorbers; active medium: liquid argon; outside solenoid	Electrom. Kalorimeter	Lead tungsten (PbWO ₄) orystals; both absorber and scintillator; inside solenoid
Central region: Iron absorber with plastic scintillating tiles; Endcaps: copper and tungsten absorber with liquid argon	Hadronic Calorimeter	Stainless steel and copper with plastic scintillating tiles
Large air-core toroid magnet; muon chambers: drift tubes and resistive plate chambers;0.5 T magnetic field	Muon Chambers	Magnetic field from return yoke (solenoid field: 4 T); muon chambers: drift tubes and resistive plate chambers

Higgs Production Mechanisms

Higgs Production Cross Sections

Higgs Boson Decays

For M < 135 GeV: H \rightarrow bb, $\tau\tau$ dominant For M > 135 GeV: H \rightarrow WW, ZZ dominant

Direct Higgs Channels

Channel	LHC Potential
gg → H → bb	Huge QCD background (gg → bb); extremely difficult
gg → H → ττ	Higgs with low p⊤, hard to discriminate from background; problematic
gg → H → γγ	Small rate, large combinatorial background, but excellent determination of m _H (CMS: crystal calorimeter)
gg → H → WW	Large rate, but 2 neutrinos in leptonic decay, Higgs spin accessible via lepton angular correlations
gg → H → ZZ	ZZ → 4µ: "gold-plated" channel for high-mass Higgs (ATLAS: muon spectrometer)

Vector Boson Fusion

Channel	LHC Potential
qq → qq H	Very large QCD background (gg/qq → bbqq);
[with H → bb]	still very difficult
qq → qq H [with H → ττ]	Higher p_T than direct channel; interesting discovery channel for $m_H < 135$ GeV
qq → qq H	Most likely combined with gg \rightarrow H \rightarrow $\gamma\gamma$
[with H → γγ]	to inclusive diphoton signal
qq → qq H [with H → WW]	Additional background suppression w.r.t. direct channel; interesting discovery channel for $m_H > 135$ GeV
gg → ttH	Top-associated production; Seemed very promising,
[with H → bb]	but overwhelmed by SM ttbb production

Higgs Searches @ LHC: Examples

LHC: Higgs Discovery, Potential

Full mass range can already be covered after a few years at low luminosity

Several channels available over a large range of masses

Low mass discovery requires combination of three of the most demanding channels

Comparable situation for the CMS experiment