Higgs Boson - Spin and Parity

Higgs Boson - Spin and Parity

Spin 0:

$$
A\left(X \rightarrow V_{1} V_{2}\right)=v^{-1} \epsilon_{1}^{* \mu} \epsilon_{2}^{* \nu}\left(a_{1} g_{\mu \nu} m_{H}^{2}+a_{2} q_{\mu} q_{\nu}+a_{3} \epsilon_{\mu \nu \alpha \beta} q_{1}^{\alpha} q_{2}^{\beta}\right)
$$

Spin 2:

$$
\begin{aligned}
& A\left(X \rightarrow V_{1} V_{2}\right)=\Lambda^{-1} e_{1}^{* \mu} e_{2}^{* \nu}\left[c_{1}\left(q_{1} q_{2}\right) t_{\mu \nu}+c_{2} g_{\mu \nu} t_{\alpha \beta} \tilde{q}^{\alpha} \tilde{q}^{\beta}+\right. \\
&+c_{3} \frac{q_{2 \mu} q_{1 \nu}}{m_{X}^{2}} t_{\alpha \beta} \tilde{q}^{\alpha} \tilde{q}^{\beta}+2 c_{41} q_{1 \nu} q_{2}^{\alpha} t_{\mu \alpha}+2 c_{42} q_{2 \mu} q_{1}^{\alpha} t_{\nu \alpha}+ \\
&+c_{5} t_{\alpha \beta} \frac{\tilde{q}^{\alpha} \tilde{q}^{\beta}}{m_{X}^{2}} \epsilon_{\mu \nu \rho \sigma} q_{1}^{\rho} q_{2}^{\sigma}+c_{6} t^{\alpha \beta} \tilde{q}_{\beta} \epsilon_{\mu \nu \alpha \rho} q^{\rho}+ \\
&\left.+\frac{c_{7} t^{\alpha \beta} \tilde{q}_{\beta}}{m_{X}^{2}}\left(\epsilon_{\alpha \mu \rho \sigma} q^{\rho} \tilde{q}^{\sigma} q_{\nu}+\epsilon_{\alpha \nu \rho \sigma} q^{\rho} \tilde{q}^{\sigma} q_{\mu}\right)\right]
\end{aligned}
$$

Higgs Boson - Spin and Parity

Spin 0:

$$
A\left(H_{J=0} \rightarrow V_{1} V_{2}\right)=v^{-1} \epsilon_{1}^{* \mu} \epsilon_{2}^{* \nu}\left(a_{1} g_{\mu \nu} M_{X}^{2}+a_{2} q_{\mu} q_{\nu}+a_{3} \epsilon_{\mu \nu \alpha \beta} q_{1}^{\alpha} q_{2}^{\beta}\right)
$$

For $X \rightarrow Z Z, W W$:
SM Higgs ($J^{\mathrm{P}}=0^{+}$): $\mathrm{a}_{1} \neq 0, \mathrm{a}_{2}=\mathrm{a}_{3}=0$
Pseudoscalar ($J^{\mathrm{P}}=0$): $\mathrm{a}_{3} \neq 0, a_{1}=a_{2}=0$
General amplitude can be separated in various helicity amplitudes ... Helicity amplitudes are used to characterize event kinematics ...
[Computation of helicity amplitude via polarization vectors, $\varepsilon(\pm, 0)$]
[For generic $\mathrm{X} \rightarrow \mathrm{W}$ decay: 9 possible amplitudes A_{k} with $\mathrm{j}, \mathrm{k}= \pm 1,0$]

Higgs Boson - Spin and Parity

Spin 0:

$$
A\left(H_{J=0} \rightarrow V_{1} V_{2}\right)=v^{-1} \epsilon_{1}^{* \mu \omega} \epsilon_{2}^{* *}\left(a_{\substack{\text { SM }}}^{\left(a_{\mu \nu} M_{X}^{2}+a_{2} q_{\mu} q_{\nu}+a_{3} \epsilon_{\mu \nu \alpha \beta} q_{1}^{\alpha} q_{2}^{\beta}\right)}\right.
$$

Three allowed amplitudes for spin 0 :
[Aoo, $\mathrm{A}_{++}, \mathrm{A}_{--}$]

Yields different angular distributions

Angular distribution

parametrized by helicity amplitudes

$$
\begin{aligned}
F_{00}^{J}\left(\theta^{*}\right) \times & \left\{4 f_{00} \sin ^{2} \theta_{1} \sin ^{2} \theta_{2}+\left(f_{++}+f_{--}\right)\left(\left(1+\cos ^{2} \theta_{1}\right)\left(1+\cos ^{2} \theta_{2}\right)+4 R_{1} R_{2} \cos \theta_{1} \cos \theta_{2}\right)\right. \\
& -2\left(f_{++}-f_{--}\right)\left(R_{1} \cos \theta_{1}\left(1+\cos ^{2} \theta_{2}\right)+R_{2}\left(1+\cos ^{2} \theta_{1}\right) \cos \theta_{2}\right) \\
& +4 \sqrt{f_{++} f_{00}}\left(R_{1}-\cos \theta_{1}\right) \sin \theta_{1}\left(R_{2}-\cos \theta_{2}\right) \sin \theta_{2} \cos \left(\Phi+\phi_{++}\right) \\
& +4 \sqrt{f_{--} f_{00}}\left(R_{1}+\cos \theta_{1}\right) \sin \theta_{1}\left(R_{2}+\cos \theta_{2}\right) \sin \theta_{2} \cos \left(\Phi-\phi_{--}\right) \\
& \left.+2 \sqrt{f_{++} f_{--}} \sin ^{2} \theta_{1} \sin ^{2} \theta_{2} \cos \left(2 \Phi+\phi_{++}-\phi_{--}\right)\right\} \\
\hline+4 F_{11}^{J}\left(\theta^{*}\right) \times & \left\{\left(f_{+0}+f_{0-}\right)\left(1-\cos ^{2} \theta_{1} \cos ^{2} \theta_{2}\right)-\left(f_{+0}-f_{0-}\right)\left(R_{1} \cos \theta_{1} \sin ^{2} \theta_{2}+R_{2} \sin ^{2} \theta_{1} \cos \theta_{2}\right)\right. \\
& \left.+2 \sqrt{f_{+0} f_{0-}} \sin \theta_{1} \sin \theta_{2}\left(R_{1} R_{2}-\cos \theta_{1} \cos \theta_{2}\right) \cos \left(\Phi+\phi_{+0}-\phi_{0-}\right)\right\} \\
+(-1)^{J} \times & 4 F_{-11}^{J}\left(\theta^{*}\right) \times\left\{\left(f_{+0}+f_{0-}\right)\left(R_{1} R_{2}+\cos \theta_{1} \cos \theta_{2}\right)-\left(f_{+0}-f_{0-}\right)\left(R_{1} \cos \theta_{2}+R_{2} \cos \theta_{1}\right)\right. \\
& \left.+2 \sqrt{f_{+0} f_{0-}} \sin \theta_{1} \sin \theta_{2} \cos \left(\Phi+\phi_{+0}-\phi_{0-}\right)\right\} \sin \theta_{1} \sin \theta_{2} \cos (2 \Psi) \\
\hline & \\
+2 F_{22}^{J}\left(\theta^{*}\right) \times & f_{+-}\left\{\left(1+\cos ^{2} \theta_{1}\right)\left(1+\cos ^{2} \theta_{2}\right)-4 R_{1} R_{2} \cos \theta_{1} \cos \theta_{2}\right\} \\
+(-1)^{J} \times & 2 F_{-22}^{J}\left(\theta^{*}\right) \times f_{+-} \sin ^{2} \theta_{1} \sin ^{2} \theta_{2} \cos (4 \Psi)
\end{aligned}
$$

+ interference terms

Decay Angles

Angular Distributions - Expectation

Spin 0; θ^{*} and $\Phi_{1} \ldots$

Angular Distributions - Expectation

Spin 0; $\theta_{1,2}$ and $\Phi \ldots$

Angular Distributions - Expectation

Spin 0; θ^{*} and $\Phi_{1} \ldots$

Angular Distributions - Expectation

Spin 1; $\theta_{1,2}$ and $\Phi \ldots$

Angular Distributions - Expectation

Spin 0; θ^{*} and $\Phi_{1} \ldots$

Angular Distributions - Expectation

2^{+}
gravition-like tensor with minimal couplings

2^{-}
pseudo-tensor
Spin $1 ; \theta_{1,2}$ and $\Phi \ldots$

Higgs Spin and Parity - Analysis

$\mathrm{H} \rightarrow \mathrm{ZZ}$ analysis
CMS-HIG-12-04
[12.2 fb-1 at 8 TeV \& $5.1 \mathrm{fb}^{-1}$ at 7 TeV]
ATLAS-CONF-2013-013
[$20.7 \mathrm{fb}^{-1}$ at $8 \mathrm{TeV} \& 4.8 \mathrm{fb} \mathrm{f}^{-1}$ at 7 TeV]
$\mathrm{H} \rightarrow$ WW analysis
ATLAS-CONF-2013-031
[20.7 fb^{-1} at 8 TeV]
$\mathrm{H} \rightarrow \mathrm{\gamma Y}$ analysis
CMS-PAS-HIG-13-016 [$19.6 \mathrm{fb}^{-1}$ at 8 TeV \& $5.1 \mathrm{fb}^{-1}$ at 7 TeV]
ATLAS-CONF-2013-029
[20.7 fb ${ }^{-1}$ at 8 TeV]
Combination
CERN-PH-EP-2013-102 [Phys. Lett B]
ATLAS-CONF-2013-040

$H \rightarrow Z Z$ analysis
Full reconstruction of 4 decay products
5 decay angles to characterize decay kinematics
$\mathrm{H} \rightarrow$ WW analysis
Only leptonic decays; partial event reconstruction
$H \rightarrow Y Y$ analysis
Sensitivity through polar angular distribution
Only one decay angle to characterize decay kinematics

CMS-Analysis $[\mathrm{H} \rightarrow \mathrm{ZZ} \rightarrow 4$ leptons]

Description of 4-lepton events by a set of 8 variables:

3 masses [$m_{44}, m_{z 1}, m_{z 2}$]
2 production angles $\left[\theta^{*}, \Phi_{1}\right]$
3 decay angles $\left[\theta_{1}, \theta_{2}, \Phi\right]$

The PDF of these 8 variables can be calculated for a particular model ...
In principle: use 8-dimensional fit ...

Limited statistics: Combine the non-m4l variables into kinematic discriminants ...

CMS - Matrix Element Likelihood Analysis

$\mathrm{H} \rightarrow \mathrm{ZZ} \rightarrow 4$ lepton CMS Analysis ... Use of MELA/K ${ }_{D}$ observable ...

Kinematic discriminant K_{D} using the probability density
in the di-lepton masses and angular variables ...

$$
K_{D} \equiv \frac{\mathcal{P}_{\mathrm{sig}}}{\mathcal{P}_{\mathrm{sig}}+\mathcal{P}_{\mathrm{bkg}}}=\left[1+\frac{\mathcal{P}_{\mathrm{bkg}}\left(m_{\mathrm{Z}_{1}}, m_{\mathrm{Z}_{2}}, \vec{\Omega} \mid m_{4 \ell}\right)}{\mathcal{P}_{\mathrm{sig}}\left(m_{\mathrm{Z}_{1}}, m_{\mathrm{Z}_{2}}, \vec{\Omega} \mid m_{4 \ell}\right)}\right]^{-1} \quad \begin{aligned}
& \text { with } \\
& \vec{\Omega}=\left\{\theta^{*}, \Phi_{1}, \theta_{1}, \theta_{2}, \Phi\right\}
\end{aligned}
$$

Invariant mass
of on-shell Z boson

Invariant mass
of off-shell Z boson

Distribution
of $\cos \theta_{1}$

CMS - Matrix Element Likelihood Analysis

$\mathrm{H} \rightarrow \mathrm{ZZ} \rightarrow 4$ lepton CMS Analysis ... Use of MELA/K K_{D} observable ...

Kinematic discriminant K_{D} using the probability density in the di-lepton masses and angular variables ...

$$
K_{D} \equiv \frac{\mathcal{P}_{\text {sig }}}{\mathcal{P}_{\text {sig }}+\mathcal{P}_{\mathrm{bkg}}}=\left[1+\frac{\mathcal{P}_{\mathrm{bkg}}\left(m_{\mathrm{Z}_{1}}, m_{\mathrm{Z}_{2}}, \vec{\Omega} \mid m_{4 \ell}\right)}{\mathcal{P}_{\text {sig }}\left(m_{\mathrm{Z}_{1}}, m_{\mathrm{Z}_{2}}, \vec{\Omega} \mid m_{4 \ell}\right)}\right]^{-1} \quad \begin{aligned}
& \text { with } \\
& \vec{\Omega}=\left\{\theta^{*}, \Phi_{1}, \theta_{1}, \theta_{2}, \Phi\right\}
\end{aligned}
$$

Distribution of $\cos \theta_{2}$

Distribution
of $\cos \Phi_{1}$

Distribution
of $\cos \Phi$

CMS - Matrix Element Likelihood Analysis

$\mathrm{H} \rightarrow \mathrm{ZZ} \rightarrow 4$ lepton CMS Analysis ... Use of MELA/K K_{D} observable ...

Kinematic discriminant K_{D} using the probability density in the di-lepton masses and angular variables ...

$$
K_{D} \equiv \frac{\mathcal{P}_{\mathrm{sig}}}{\mathcal{P}_{\mathrm{sig}}+\mathcal{P}_{\mathrm{bkg}}}=\left[1+\frac{\mathcal{P}_{\mathrm{bkg}}\left(m_{\mathrm{Z}_{1}}, m_{\mathrm{Z}_{2}}, \vec{\Omega} \mid m_{4 \ell}\right)}{\mathcal{P}_{\mathrm{sig}}\left(m_{\mathrm{Z}_{1}}, m_{\mathrm{Z}_{2}}, \vec{\Omega} \mid m_{4 \ell}\right)}\right]^{-1} \quad \begin{aligned}
& \text { with } \\
& \vec{\Omega}=\left\{\theta^{*}, \Phi_{1}, \theta_{1}, \theta_{2}, \Phi\right\}
\end{aligned}
$$

Projected separation of
$J^{P}=0^{+}$(purple) and
$J^{P}=0^{-}$(blue) resonances ...
... with $20 \mathrm{fb}^{-1}$ of 8 TeV data.

CMS - Data vs. Expectation

Background expectation

Signal expectation [$\mathrm{m}_{\mathrm{H}}=126 \mathrm{GeV}$]

CMS - Distinguishing SM from other Models ...

$$
\begin{aligned}
\text { MELA } & \equiv \frac{\mathcal{P}_{\mathrm{sig}}}{\mathcal{P}_{\mathrm{sig}}+\mathcal{P}_{\mathrm{bkg}}}=\left[1+\frac{\mathcal{P}_{\mathrm{bkg}}\left(m_{Z_{1}}, m_{z Z_{2}}, \vec{\Omega} \mid m_{4 \ell}\right)}{\mathcal{P}_{\mathrm{sig}}\left(m_{Z_{1}}, m_{z Z_{2}}, \vec{\Omega} \mid m_{4 \ell}\right)}\right]^{-1} \\
\text { superMELA } & \equiv \frac{\mathcal{P}_{\mathrm{sig}}}{\mathcal{P}_{\mathrm{sig}}+\mathcal{P}_{\mathrm{bkg}}}=\left[1+\frac{\mathcal{P}_{\mathrm{bkg}}\left(m_{Z_{1}}, m_{z Z_{2}}, \vec{\Omega} \mid m_{4 \ell}\right) \mathcal{P}_{\mathrm{bkg}}\left(m_{4 \ell}\right)}{\mathcal{P}_{\mathrm{sig}}\left(m_{Z_{1}}, m_{z Z_{2}}, \vec{\Omega} \mid m_{4 \ell}\right) \mathcal{P}_{\mathrm{sig}}\left(m_{4 \ell}\right)}\right]^{-1}
\end{aligned}
$$

Define analogously:
[analogous to superMELA]

$$
\mathcal{D}_{12}=\frac{\mathcal{P}_{1}}{\mathcal{P}_{1}+\mathcal{P}_{2}}
$$

$$
\mathcal{P}_{1}: \quad J \mathrm{P} \text { hypothesis } 1
$$

$$
\mathcal{P}_{2}: \quad J P \text { hypothesis } 2 \text { or bkg. hypothesis }
$$

$\mathcal{D}_{\mathrm{SB}}$: Discriminator for SM vs. background
$\mathcal{D}_{\mathrm{PS}}$: \quad Discriminator for Pseudoscalar ($\mathrm{J}^{\mathrm{P}}=0^{-}$) vs. SM
$\mathcal{D}_{\mathrm{GS}}$: \quad Discriminator for Spin-2 Tensor $\left(\mathrm{J}^{\mathrm{P}}=2^{+}\right)$vs. SM

CMS - Distinguishing SM from other Models ...

Two-dimensional unbinned likelihood fit ...

$$
\mathcal{L}=\prod_{i=1}^{N} p\left(\vec{x}_{i}, \vec{a}\right)
$$

N : number of events
$\mathrm{p}:$ probability from model prediction
x_{i} : set of observables for event i
a : model parameters
Discriminants:

$$
\mathcal{D}_{\text {New }}=\frac{\mathcal{P}_{\mathrm{SM}}}{\mathcal{P}_{\mathrm{SM}}+\mathcal{P}_{\mathrm{New}}} \quad \mathcal{D}_{\mathrm{SB}}=\frac{\mathcal{P}_{\mathrm{sig}}}{\mathcal{P}_{\text {sig }}+\mathcal{P}_{\mathrm{bgr}}}
$$

Likelihood ratio:

$$
q=-2 \ln \frac{\mathcal{L}_{\text {New } 1}}{\mathcal{L}_{\text {New } 2}}
$$

CMS - Templates for Hypothesis Testing

CMS - Alternative Models

0^{+}: SM Higgs with minimal coupling
0^{-}: pure pseudoscalar
$0^{+}{ }^{+}$: higher dimension operators (in decay amplitude)
1^{-}:vector
1^{+}: axial vector
$2^{+}{ }_{g g}$: graviton with minimal coupling
$2^{+}{ }_{q q}$: graviton with minimal coupling

CMS - $\mathrm{D}_{\text {sig }}$ distributions for $\mathrm{D}_{\mathrm{bkg}}>0.5$

CMS - Profiled Log-Likelihood Distributions

CMS - Results of Spin-Parity Analysis

J^{P}	production	comment	expect $(\mu=1)$	obs. 0^{+}	obs. J^{P}	CLs $^{\prime}$
0^{-}	$\mathrm{gg} \rightarrow \mathrm{X}$	pseudoscalar	$2.6 \sigma(2.8 \sigma)$	0.5σ	3.3σ	0.16%
$0^{+}{ }_{\mathrm{h}}$	$\mathrm{gg} \rightarrow \mathrm{X}$	higher dim operators	$1.7 \sigma(1.8 \sigma)$	0.0σ	1.7σ	8.1%
$2^{+}{ }_{m g g}$	$\mathrm{gg} \rightarrow \mathrm{X}$	minimal couplings	$1.8 \sigma(1.9 \sigma)$	0.8σ	2.7σ	1.5%
$2^{+}{ }_{m q q}$	$\mathrm{qq} \rightarrow \mathrm{X}$	minimal couplings	$1.7 \sigma(1.9 \sigma)$	1.8σ	4.0σ	$<0.1 \%$
1^{-}	$\mathrm{qq} \rightarrow \mathrm{X}$	exotic vector	$2.8 \sigma(3.1 \sigma)$	1.4σ	$>4.0 \sigma$	$<0.1 \%$
1^{+}	$\mathrm{qq} \rightarrow \mathrm{X}$	exotic pseudovector	$2.3 \sigma(2.6 \sigma)$	1.7σ	$>4.0 \sigma$	$<0.1 \%$

Separation of alternative models from the SM. The expected separation is quoted for two scenarios, when the signal strength is pre-determined from the fit to data and when events are generated with SM expectation for the signal yield $(\mu=1)$. The observed separation quotes the difference between the observation and the expected average of the 0^{+}model or the J^{P} model expressed in standard deviations, and corresponds to the scenario where the signal strength is pre-determined from the fit to data. The last column quotes CLs criterion for the J^{P} model.

The studied pseudo-scalar, spin-1 and spin-2 models are excluded at 95\% CL or higher

ATLAS - Statistical Treatment

Same for all analyses $\left[0^{+}\right.$vs. $\left.1^{+} \ldots\right]$
Use likelihood function with ε giving the fraction of a spin-0 component ...
[$\varepsilon=0$: spin $=2$; $\varepsilon=1$: spin $=0$; signal strength μ : nuisance parameter ...]

$$
\begin{array}{ll}
\mathcal{L}(\epsilon, \mu, \vec{\theta})=\prod_{i}^{N_{\text {bins }}} P\left(N_{i} \mid \mu\left(\epsilon S_{0^{+}, i}(\vec{\theta})+(1-\epsilon) S_{2^{+}, i}(\vec{\theta})\right)+b_{i}(\vec{\theta})\right) \times \prod_{j}^{N_{\text {sys }}} \mathcal{A}\left(\tilde{\theta}_{j} \mid \theta_{j}\right) \\
\text { Sistic q: } & \text { Spin 0 2 }
\end{array}
$$

$$
q=\log \frac{\mathcal{L}\left(H_{0^{+}}\right)}{\mathcal{L}\left(H_{2_{m}^{+}}\right)}=\log \frac{\mathcal{L}\left(\epsilon=1, \hat{\hat{\mu}}_{\epsilon=1}, \hat{\hat{\theta}}_{\epsilon=1}\right)}{\mathcal{L}\left(\epsilon=0, \hat{\hat{\mu}}_{\epsilon=0}, \hat{\hat{\theta}}_{\epsilon=0}\right)}
$$

Results given in terms of p_{0}-values and

Confidence level
for exclusion of $\mathrm{J}=2^{+}$ as normalized CLs...

$$
\mathrm{CL}_{\mathrm{S}}\left(J^{P}=2^{+}\right)=\frac{p_{0}\left(J^{P}=2^{+}\right)}{1-p_{0}\left(J^{P}=0^{+}\right)}
$$

lepton

Spin correlations between the two W bosons, and hence the final leptons, depend on the spin assignment of the decaying resonance X ...

Kinematic distributions for the di-lepton pair discriminate between different spin hypotheses ...

Azimuth between leptons

Lepton invariant mass

Preselection:

Re-use criteria from well-established rate measurement but:
loosen selection cuts
looking only at the e $\mu / 0$-jet final state

Selection via BDT ...

Input variables:
$m_{\|}$: di-lepton invariant mass
$\mathrm{p}_{\mathrm{T}, \mathrm{I}}:$ di-lepton transverse momentum
$\Delta \Phi_{\|}$: di-lepton angular difference
m_{T} : transverse mass of system

ATLAS
$\mathrm{H} \rightarrow \mathrm{WW} \rightarrow \mathrm{Hlv}$

BDT Input Variables in Control Region

ATLAS
$\mathrm{H} \rightarrow \mathrm{WW} \rightarrow \mathrm{Ivlv}$

BDT Input Variables in Control Region

ATLAS
$\mathrm{H} \rightarrow \mathrm{WW} \rightarrow \mathrm{Ivlv}$

BDT Input Variables in Signal Region

ATLAS
$\mathrm{H} \rightarrow \mathrm{WW} \rightarrow \mathrm{Ivlv}$

BDT Input Variables in Signal Region

BDT 0
[Trained using 0^{+}sample as signal]

BDT 2

[Trained using 2^{+}sample as signal]

Use both BDTs in 2-dimensional fit ...

ATLAS
$\mathrm{H} \rightarrow \mathrm{WW} \rightarrow \mathrm{Ivlv}$

BDT Output in Signal Region

ATLAS
$\mathrm{H} \rightarrow \mathrm{WW} \rightarrow \mathrm{Ivlv}$

BDT Output in Signal Region

Use 2-dimensional log-likelihood fit to get test statistic q and determination of CLs ...

Re-mapped 1D-classifier $\left(\mathrm{J}^{\mathrm{P}}=0^{+}\right)$

Re-mapped 1D-classifier ($\mathrm{J}^{\mathrm{P}}=2^{+}$)

ATLAS
$\mathrm{H} \rightarrow \mathrm{WW} \rightarrow \mathrm{Ivv}$

Use 2-dimensional log-likelihood fit to get test statistic q and determination of CLs ...

Use 2-dimensional log-likelihood fit to get test statistic q and determination of CLs ...

$H \rightarrow W W^{*}$					
$f_{q \bar{q}}$	2^{+}assumed Exp. $p_{0}\left(J^{P}=0^{+}\right)$	0^{+}assumed Exp. $p_{0}\left(J^{P}=2^{+}\right)$	Obs. $p_{0}\left(J^{P}=0^{+}\right)$	Obs. $p_{0}\left(J^{P}=2^{+}\right)$	$\mathrm{CL}_{\mathrm{s}}\left(J^{P}=2^{+}\right)$
100%	0.013	$3.6 \cdot 10^{-4}$	0.541	$1.7 \cdot 10^{-4}$	$3.6 \cdot 10^{-4}$
75%	0.028	0.003	0.586	0.001	0.003
50%	0.042	0.009	0.616	0.003	0.008
25%	0.048	0.019	0.622	0.008	0.020
0%	0.086	0.054	0.731	0.013	0.048

Excess easier to reconcile with a spin 0 signal! Spin 2 looks too flat. Sensitivities between 2σ and 3σ according to fraction f_{qq}.
[$f_{q q}=$ fraction of quark anti-quark annihilation ...]

ATLAS
$\mathrm{H} \rightarrow \mathrm{WW} \rightarrow \mathrm{Ivlv}$

Expected and observed
confidence level for $\mathrm{J}^{\mathrm{P}}=2^{+} \ldots$

ATLAS - Higgs $\rightarrow \gamma$

Discriminating variable: distribution of the polar angle $\theta \ldots$

Best discrimination power ... Impact of ISR minimal ...

Topological differences before acceptance cuts:

Spin 0: Isotropic decay Spin 2: distribution depends on the qq-fraction, f_{qq}
$\rightarrow 100 \%$ qq: $d N \sim 1+\cos ^{4} \theta^{\star}+6 \cos ^{2} \theta^{\star}$ 100\% gg: dN $\sim 1-\cos ^{4} \theta^{*}$

ATLAS - Higgs $\rightarrow \gamma Y$

Event selection:

- two photons, ET > 35, 25 GeV ...
- di-photon inv. mass: $105<\mathrm{m}_{\mathrm{yv}}<160$

120-130 GeV : signal region
105-122 GeV : sideband
130-160 GeV : sideband
Minimal correlations between m_{w} and $\cos \theta^{\star}: \quad \frac{p_{T}^{\gamma_{1}}}{m_{\gamma \gamma}}>0.35, \quad \frac{p_{T}^{\gamma_{2}}}{m_{\gamma \gamma}}>0.25$
Likelihood:

$$
-\ln \mathcal{L}=\left(n_{S}+n_{B}\right)-\sum_{\text {events }} \ln \left[n_{S} \cdot f_{S}\left(\left|\cos \theta^{*}\right|\right) \cdot f_{S}\left(m_{\gamma \gamma}\right)+n_{B} \cdot f_{B}\left(\left|\cos \theta^{*}\right|\right) \cdot f_{B}\left(m_{\gamma \gamma}\right)\right]
$$

Number of events in signal region

ATLAS - Higgs $\rightarrow \gamma \gamma$

Perform

Likelihood fit to $\cos \theta^{*}$ distribution ...

Background subtracted data within signal region

ATLAS - Higgs $\rightarrow \gamma Y$

Observed values of the test statistic q ...

ATLAS - Higgs Spin \& Parity

$H \rightarrow \gamma \gamma$					
$f_{q \bar{q}}$	2^{+}assumed Exp. $p_{0}\left(J^{P}=0^{+}\right)$	0^{+}assumed Exp. $p_{0}\left(J^{P}=2^{+}\right)$	Obs. $p_{0}\left(J^{P}=0^{+}\right)$	Obs. $p_{0}\left(J^{P}=2^{+}\right)$	CL $_{s}\left(J^{P}=2^{+}\right)$
100%	0.148	0.135	0.798	0.025	0.124
75%	0.319	0.305	0.902	0.033	0.337
50%	0.198	0.187	0.708	0.076	0.260
25%	0.052	0.039	0.609	0.021	0.054
0%	0.012	0.005	0.588	0.003	0.007

$H \rightarrow Z^{*}$					
$f_{q \bar{q}}$	2^{+}assumed assumed Exp. $p_{0}\left(J^{P}=0^{+}\right)$	0^{+}assumed Exp. $p_{0}\left(J^{P}=2^{+}\right)$	Obs. $p_{0}\left(J^{P}=0^{+}\right)$	Obs. $p_{0}\left(J^{P}=2^{+}\right)$	$\mathrm{CL}_{\mathrm{s}}\left(J^{P}=2^{+}\right)$
100%	0.102	0.082	0.962	0.001	0.026
75%	0.117	0.099	0.923	0.003	0.039
50%	0.129	0.113	0.943	0.002	0.035
25%	0.125	0.107	0.944	0.002	0.036
0%	0.099	0.092	0.532	0.079	0.169

$H \rightarrow W W^{*}$					
$f_{q \bar{q}}$	2^{+}assumed Exp. $p_{0}\left(J^{P}=0^{+}\right)$	0^{+}assumed Exp. $p_{0}\left(J^{P}=2^{+}\right)$	Obs. $p_{0}\left(J^{P}=0^{+}\right)$	Obs. $p_{0}\left(J^{P}=2^{+}\right)$	$\mathrm{CL}_{\mathrm{s}}\left(J^{P}=2^{+}\right)$
100%	0.013	$3.6 \cdot 10^{-4}$	0.541	$1.7 \cdot 10^{-4}$	$3.6 \cdot 10^{-4}$
75%	0.028	0.003	0.586	0.001	0.003
50%	0.042	0.009	0.616	0.003	0.008
25%	0.048	0.019	0.622	0.008	0.020
0%	0.086	0.054	0.731	0.013	0.048

ATLAS - Higgs Spin \& Parity

