Lecture 7

Higgs Boson – Spin and Parity

Higgs Boson – Spin and Parity

Spin 0:

$$A(X \to V_1 V_2) = v^{-1} \epsilon_1^{*\mu} \epsilon_2^{*\nu} \left(a_1 g_{\mu\nu} m_H^2 + a_2 q_\mu q_\nu + a_3 \epsilon_{\mu\nu\alpha\beta} q_1^{\alpha} q_2^{\beta} \right)$$

$$A(X \to V_{1}V_{2}) = \Lambda^{-1}e_{1}^{*\mu}e_{2}^{*\nu}\left[c_{1}(q_{1}q_{2})t_{\mu\nu} + c_{2}g_{\mu\nu}t_{\alpha\beta}\tilde{q}^{\alpha}\tilde{q}^{\beta} + c_{3}\frac{q_{2\mu}q_{1\nu}}{m_{X}^{2}}t_{\alpha\beta}\tilde{q}^{\alpha}\tilde{q}^{\beta} + 2c_{41}q_{1\nu}q_{2}^{\alpha}t_{\mu\alpha} + 2c_{42}q_{2\mu}q_{1}^{\alpha}t_{\nu\alpha}\right]$$

$$Spin_{+c_{5}t_{\alpha\beta}}\frac{\tilde{q}^{\alpha}\tilde{q}^{\beta}}{2}\epsilon_{\mu\nu\alpha\sigma}q^{\rho}q^{\sigma}_{2} + c_{6}t^{\alpha\beta}\tilde{q}_{\beta}\epsilon_{\mu\nu\alpha\sigma}q^{\rho} + \frac{c_{7}t^{\alpha\beta}\tilde{q}_{\beta}}{2}(\epsilon_{\alpha\mu\sigma\sigma}q^{\rho}\tilde{q}^{\sigma}q_{\nu} + \epsilon_{\alpha\nu\sigma\sigma}q^{\rho}\tilde{q}^{\sigma}q_{\mu})\right].$$

$$A(X \to V_{1}V_{2}) = \Lambda^{-1}e_{1}^{*\mu}e_{2}^{*\nu}\left[c_{1}(q_{1}q_{2})t_{\mu\nu} + c_{2}g_{\mu\nu}t_{\alpha\beta}\tilde{q}^{\alpha}\tilde{q}^{\beta} + \frac{c_{1}}{2}e_{1}^{\alpha}e$$

$$+ c_3 \frac{q_{2\mu}q_{1\nu}}{m_X^2} t_{\alpha\beta} \tilde{q}^{\alpha} \tilde{q}^{\beta} + 2c_{41} q_{1\nu} q_2^{\alpha} t_{\mu\alpha} + 2c_{42} q_{2\mu} q_1^{\alpha} t_{\nu\alpha} + {}^{\mathbf{N}}$$

$$+ c_5 t_{\alpha\beta} \frac{\tilde{q}^{\alpha} \tilde{q}^{\beta}}{m_X^2} \epsilon_{\mu\nu\rho\sigma} q_1^{\rho} q_2^{\sigma} + c_6 t^{\alpha\beta} \tilde{q}_{\beta} \epsilon_{\mu\nu\alpha\rho} q^{\rho} + 105$$

$$+ \frac{c_7 t^{\alpha\beta} \tilde{q}_\beta}{m_X^2} \left(\epsilon_{\alpha\mu\rho\sigma} q^{\rho} \tilde{q}^{\sigma} q_{\nu} + \epsilon_{\alpha\nu\rho\sigma} q^{\rho} \tilde{q}^{\sigma} q_{\mu} \right) \right] \sim 40 - 40$$

h

h

hH

SM Higgs $(J^{P} = 0^{+})$: $a_{1} \neq 0$, $a_{2} = a_{3} = 0$ Pseudoscalar $(J^{P} = 0^{-})$: $a_{3} \neq 0$, $a_{1} = a_{2} = 0$

General amplitude can be separated in various helicity amplitudes ... Helicity amplitudes are used to characterize event kinematics ...

[Computation of helicity amplitude via polarization vectors, $\varepsilon(\pm,0)$] [For generic X \rightarrow VV decay: 9 possible amplitudes A_{jk} with j,k = ±1,0]

• Discovery of SM Higgs $(J^P = 0^+)$: $H \to \gamma \gamma$, $ZZ^{(*)}$, W^+W^- ,...

Angular distribution parametrized by helicity amplitudes

$$\begin{split} F_{00}^{J}(\theta^{*}) &\times \left\{ 4 f_{00} \sin^{2} \theta_{1} \sin^{2} \theta_{2} + (f_{++} + f_{--}) \left((1 + \cos^{2} \theta_{1}) (1 + \cos^{2} \theta_{2}) + 4R_{1}R_{2} \cos \theta_{1} \cos \theta_{2} \right) \\ &\quad - 2 \left(f_{++} - f_{--} \right) \left(R_{1} \cos \theta_{1} (1 + \cos^{2} \theta_{2}) + R_{2} (1 + \cos^{2} \theta_{1}) \cos \theta_{2} \right) \\ &\quad + 4 \sqrt{f_{++}f_{00}} \left(R_{1} - \cos \theta_{1} \right) \sin \theta_{1} \left(R_{2} - \cos \theta_{2} \right) \sin \theta_{2} \cos (\Phi + \phi_{++}) \\ &\quad + 4 \sqrt{f_{--}f_{00}} \left(R_{1} + \cos \theta_{1} \right) \sin \theta_{1} \left(R_{2} + \cos \theta_{2} \right) \sin \theta_{2} \cos (\Phi - \phi_{--}) \\ &\quad + 2 \sqrt{f_{++}f_{--}} \sin^{2} \theta_{1} \sin^{2} \theta_{2} \cos (2\Phi + \phi_{++} - \phi_{--}) \right\} \\ &\quad + 4F_{11}^{J}(\theta^{*}) \times \left\{ \left(f_{+0} + f_{0-} \right) (1 - \cos^{2} \theta_{1} \cos^{2} \theta_{2}) - \left(f_{+0} - f_{0-} \right) \left(R_{1} \cos \theta_{1} \sin^{2} \theta_{2} + R_{2} \sin^{2} \theta_{1} \cos \theta_{2} \right) \\ &\quad + 2 \sqrt{f_{+0}f_{0-}} \sin \theta_{1} \sin \theta_{2} \left(R_{1}R_{2} - \cos \theta_{1} \cos \theta_{2} \right) \cos (\Phi + \phi_{+0} - \phi_{0-}) \right\} \\ &\quad + \left(-1 \right)^{J} \times 4F_{-11}^{J}(\theta^{*}) \times \left\{ \left(f_{+0} + f_{0-} \right) \left(R_{1}R_{2} + \cos \theta_{1} \cos \theta_{2} \right) - \left(f_{+0} - f_{0-} \right) \left(R_{1} \cos \theta_{2} + R_{2} \cos \theta_{1} \right) \\ &\quad + 2 \sqrt{f_{+0}f_{0-}} \sin \theta_{1} \sin \theta_{2} \cos (\Phi + \phi_{+0} - \phi_{0-}) \right\} \sin \theta_{1} \sin \theta_{2} \cos (2\Psi) \\ &\quad + 2F_{22}^{J}(\theta^{*}) \times f_{+-} \left\{ \left(1 + \cos^{2} \theta_{1} \right) \left(1 + \cos^{2} \theta_{2} \right) - 4R_{1}R_{2} \cos \theta_{1} \cos \theta_{2} \right\} \\ &\quad + \left(-1 \right)^{J} \times 2F_{-22}^{J}(\theta^{*}) \times f_{+-} \sin^{2} \theta_{1} \sin^{2} \theta_{2} \cos (4\Psi) \\ &\quad + \text{ interference terms} \\ \end{aligned}$$

Spin 0; θ^* and Φ_1 ...

Spin 0; $\theta_{1,2}$ and Φ ...

Angular Distributions – Expectation

Spin 0; θ^* and Φ_1 ...

Spin 1; $\theta_{1,2}$ and Φ ...

Angular Distributions – Expectation

 2^{+}

gravition-like tensor with minimal couplings

Spin 0; θ^* and Φ_1 ...

Angular Distributions – Expectation

 μ^+

 θ_1

 L_1

Х

р

z'

Z

Higgs Spin and Parity – Analysis

$H \rightarrow ZZ$ analysis

CMS-HIG-12-04 [12.2 fb⁻¹ at 8 TeV & 5.1 fb⁻¹ at 7 TeV] ATLAS-CONF-2013-013 [20.7 fb⁻¹ at 8 TeV & 4.8 fb⁻¹ at 7 TeV]

$H \rightarrow WW$ analysis

ATLAS-CONF-2013-031 [20.7 fb⁻¹ at 8 TeV]

$H \rightarrow \gamma \gamma$ analysis

CMS-PAS-HIG-13-016 [19.6 fb⁻¹ at 8 TeV & 5.1 fb⁻¹ at 7 TeV]

ATLAS-CONF-2013-029 [20.7 fb⁻¹ at 8 TeV]

Combination

CERN-PH-EP-2013-102 [Phys. Lett B] ATLAS-CONF-2013-040

	ZZ*	WW*	γγ
0-	~		_
1+,1-	~	~	
2+	\checkmark	\checkmark	\checkmark

$H \rightarrow ZZ$ analysis

Full reconstruction of 4 decay products 5 decay angles to characterize decay kinematics

H → WW analysis

Only leptonic decays; partial event reconstruction

H → γγ analysis

Sensitivity through polar angular distribution Only one decay angle to characterize decay kinematics

CMS-Analysis [$H \rightarrow ZZ \rightarrow 4$ leptons]

Limited statistics: Combine the non-m₄ variables into kinematic discriminants ...

CMS – Matrix Element Likelihood Analysis

 $H \rightarrow ZZ \rightarrow 4$ lepton CMS Analysis ... Use of MELA/K_D observable ...

Kinematic discriminant K_D using the probability density in the di-lepton masses and angular variables ...

$$K_D \equiv \frac{\mathcal{P}_{\text{sig}}}{\mathcal{P}_{\text{sig}} + \mathcal{P}_{\text{bkg}}} = \left[1 + \frac{\mathcal{P}_{\text{bkg}}(m_{Z_1}, m_{Z_2}, \vec{\Omega} | m_{4\ell})}{\mathcal{P}_{\text{sig}}(m_{Z_1}, m_{Z_2}, \vec{\Omega} | m_{4\ell})}\right]^{-1}$$

0.2₁

2.0 nuit 0.18

0,0.16 0,0.14 0.12 0.12 0.1 0.08

0.06

0.04

0.02

20

30

with
$$\vec{\Omega} = \{\theta^*, \Phi_1, \theta_1, \theta_2, \Phi\}$$

Invariant mass of on-shell Z boson

Invariant mass of off-shell Z boson

Signal

40

50

60

m_{z2} [GeV]

Background

Distribution of $\cos\theta_1$

CMS – Matrix Element Likelihood Analysis

0.1 0.09 0.1_□

£ 0.08

0.07 0.06 0.05

0.04

0.03

0.02

0.01

.2

 $H \rightarrow ZZ \rightarrow 4$ lepton CMS Analysis ... Use of MELA/K_D observable ...

Kinematic discriminant K_D using the probability density in the di-lepton masses and angular variables ...

$$K_D \equiv \frac{\mathcal{P}_{\text{sig}}}{\mathcal{P}_{\text{sig}} + \mathcal{P}_{\text{bkg}}} = \begin{bmatrix} 1 + \frac{\mathcal{P}_{\text{bkg}}(m_{Z_1}, m_{Z_2}, \vec{\Omega} | m_{4\ell})}{\mathcal{P}_{\text{sig}}(m_{Z_1}, m_{Z_2}, \vec{\Omega} | m_{4\ell})} \end{bmatrix}^{-1} \quad \text{with} \quad \vec{\Omega} = \{\theta^*, \Phi_1, \theta_1, \theta_2\}$$

Distribution of $\cos\theta_2$

Distribution of $\cos \Phi_1$

0

2

3

Φ.

Distribution of $\cos \Phi$

 θ_2, Φ

CMS – Matrix Element Likelihood Analysis

 $H \rightarrow ZZ \rightarrow 4$ lepton CMS Analysis ... Use of MELA/K_D observable ...

Kinematic discriminant K_D using the probability density in the di-lepton masses and angular variables ...

 $K_D \equiv \frac{\mathcal{P}_{\text{sig}}}{\mathcal{P}_{\text{sig}} + \mathcal{P}_{\text{bkg}}} = \begin{bmatrix} 1 + \frac{\mathcal{P}_{\text{bkg}}(m_{Z_1}, m_{Z_2}, \vec{\Omega} | m_{4\ell})}{\mathcal{P}_{\text{sig}}(m_{Z_1}, m_{Z_2}, \vec{\Omega} | m_{4\ell})} \end{bmatrix}^{-1} \quad \text{with} \quad \vec{\Omega} = \{\theta^*, \Phi_1, \theta_1, \theta_2, \Phi\}$

CMS – Data vs. Expectation

CMS – Distinguishing SM from other Models ...

$$\text{MELA} \equiv \frac{\mathcal{P}_{\text{sig}}}{\mathcal{P}_{\text{sig}} + \mathcal{P}_{\text{bkg}}} = \left[1 + \frac{\mathcal{P}_{\text{bkg}}(m_{Z_1}, m_{zZ_2}, \vec{\Omega} \mid m_{4\ell})}{\mathcal{P}_{\text{sig}}(m_{Z_1}, m_{zZ_2}, \vec{\Omega} \mid m_{4\ell})}\right]^{-1}$$

superMELA
$$\equiv \frac{\mathcal{P}_{\text{sig}}}{\mathcal{P}_{\text{sig}} + \mathcal{P}_{\text{bkg}}} = \left[1 + \frac{\mathcal{P}_{\text{bkg}}(m_{Z_1}, m_{zZ_2}, \vec{\Omega} \mid m_{4\ell}) \mathcal{P}_{\text{bkg}}(m_{4\ell})}{\mathcal{P}_{\text{sig}}(m_{Z_1}, m_{zZ_2}, \vec{\Omega} \mid m_{4\ell}) \mathcal{P}_{\text{sig}}(m_{4\ell})}\right]^{-1}$$

Define analogously: [analogous to superMELA]

$$\mathcal{D}_{12} = rac{\mathcal{P}_1}{\mathcal{P}_1 + \mathcal{P}_2}$$
 $\mathcal{P}_1 : J^P$ hypothesis 1
 $\mathcal{P}_2 : J^P$ hypothesis 2 or bkg. hypothesis

- \mathcal{D}_{SB} : Discriminator for SM vs. background
- \mathcal{D}_{PS} : Discriminator for Pseudoscalar (J^P = 0⁻) vs. SM
- $\mathcal{D}_{\rm GS}~:~$ Discriminator for Spin-2 Tensor (JP = 2+) vs. SM

CMS – Distinguishing SM from other Models ...

Two-dimensional unbinned likelihood fit ...

$$\mathcal{L} = \prod_{i=1}^{N} p(\vec{x}_i, \vec{a})$$

- N: number of events
- p: probability from model prediction
- x_i : set of observables for event i
- a: model parameters

Discriminants:

$$\mathcal{D}_{
m New} = rac{\mathcal{P}_{
m SM}}{\mathcal{P}_{
m SM} + \mathcal{P}_{
m New}} \qquad \mathcal{D}_{
m SB} = rac{\mathcal{P}_{
m sig}}{\mathcal{P}_{
m sig} + \mathcal{P}_{
m bgr}}$$

Likelihood ratio:

$$q = -2\ln\frac{\mathcal{L}_{\text{New1}}}{\mathcal{L}_{\text{New2}}}$$

CMS – Templates for Hypothesis Testing

- 0⁺ : SM Higgs with minimal coupling
- 0⁻ : pure pseudoscalar
- 0⁺_h : higher dimension operators (in decay amplitude)
 - 1⁻ :vector
- 1⁺ : axial vector
- 2⁺_{gg} : graviton with minimal coupling
- 2⁺_{qq} : graviton with minimal coupling

$CMS-D_{sig}$ distributions for $D_{bkg}>0.5$

CMS – Profiled Log-Likelihood Distributions

CMS – Results of Spin-Parity Analysis

J^P	production	comment	expect (µ=1)	obs. 0 ⁺	obs. J^P	CL _S
0-	$gg \rightarrow X$	pseudoscalar	2.6σ (2.8σ)	0.5σ	3.3σ	0.16%
0^{+}_{h}	$gg \rightarrow X$	higher dim operators	1.7σ (1.8σ)	0.0σ	1.7σ	8.1%
2^+_{mgg}	$gg \rightarrow X$	minimal couplings	1.8σ (1.9σ)	0.8σ	2.7σ	1.5%
2^+_{mqq}	$qq \rightarrow X$	minimal couplings	1.7σ (1.9σ)	1.8σ	4.0σ	<0.1%
1-	$qq \rightarrow X$	exotic vector	2.8σ (3.1σ)	1.4σ	>4.00	<0.1%
1+	$qq \rightarrow X$	exotic pseudovector	2.3σ (2.6σ)	1.7σ	>4.00	<0.1%

Separation of alternative models from the SM. The expected separation is quoted for two scenarios, when the signal strength is pre-determined from the fit to data and when events are generated with SM expectation for the signal yield ($\mu = 1$). The observed separation quotes the difference between the observation and the expected average of the 0⁺ model or the J^P model expressed in standard deviations, and corresponds to the scenario where the signal strength is pre-determined from the fit to data. The last column quotes CL_S criterion for the J^P model.

The studied pseudo-scalar, spin-1 and spin-2 models are excluded at 95% CL or higher

ATLAS-CONF-2013-031 ATLAS-CONF-2013-029 ATLAS-CONF-2013-013

. . .

ATLAS – Statistical Treatment

Same for all analyses [0⁺ vs. 1⁺ ...]

Bkgr.

Use likelihood function with ϵ giving the fraction of a spin-0 component ... [ϵ = 0: spin = 2; ϵ = 1: spin = 0; signal strength μ : nuisance parameter ...]

$$\mathcal{L}(\epsilon,\mu,\vec{\theta}) = \prod_{i}^{N_{bins}} P\left(N_i \mid \mu\left(\epsilon S_{0^+,i}(\vec{\theta}) + (1-\epsilon)S_{2^+,i}(\vec{\theta})\right) + b_i(\vec{\theta})\right) \times \prod_{j}^{N_{sys}} \mathcal{R}(\tilde{\theta}_j \mid \theta_j)$$

Test statistic q:

Spin 0

Spin 2

$$q = \log \frac{\mathcal{L}(H_{0^+})}{\mathcal{L}(H_{2_m^+})} = \log \frac{\mathcal{L}(\epsilon = 1, \hat{\hat{\mu}}_{\epsilon=1}, \hat{\hat{\theta}}_{\epsilon=1})}{\mathcal{L}(\epsilon = 0, \hat{\hat{\mu}}_{\epsilon=0}, \hat{\hat{\theta}}_{\epsilon=0})}$$

Results given in terms of p₀-values and as normalized CL_S...

$$\operatorname{CL}_{S}(J^{P} = 2^{+}) = \frac{p_{0}(J^{P} = 2^{+})}{1 - p_{0}(J^{P} = 0^{+})}$$

Confidence level for exclusion of $J^P = 2^+$

ATLAS

Spin correlations between the two W bosons, and hence the final leptons, depend on the spin assignment of the decaying resonance X ...

Kinematic distributions for the di-lepton pair discriminate between different spin hypotheses ...

Preselection:

Re-use criteria from well-established rate measurement but:

loosen selection cuts looking only at the $e\mu/0\mbox{-jet}$ final state

Selection via BDT ...

Input variables:

- $m_{{\ensuremath{\mathbb N}}}$: di-lepton invariant mass
- p_{T,II} : di-lepton transverse momentum
- $\Delta \varphi_{II}$: di-lepton angular difference
- $m_{T}\,$: transverse mass of system

Variable	Spin analysis	Rate analysis [5]
С	ommon <i>eµ/µe</i> l	epton selection
$E_{\rm T,rel}^{\rm miss}$	> 20 GeV	> 25 GeV
N_{jets}	0 jets	$0, 1, \ge 2$ jet selections
$p_{\mathrm{T}}^{\ell\ell}$	> 20 GeV	> 30 GeV
$m_{\ell\ell}$	< 80 GeV	< 50 GeV
$\Delta \phi_{\ell\ell}$	< 2.8	< 1.8

BDT Input Variables in Control Region

BDT Input Variables in Signal Region

ATLAS

Use both BDTs in 2-dimensional fit ...

ATLAS

BDT Output in Signal Region

200 ATLAS H→WW→IVIV

ATLAS

Spin 1

BDT Output in Signal Region

400

200

0

Use 2-dimensional log-likelihood fit to get test statistic q and determination of CL_S ...

Use 2-dimensional log-likelihood fit to get test statistic q and determination of CL_S ...

ATLAS

Use 2-dimensional log-likelihood fit to get test statistic q and determination of CL_S ...

$f_{q\bar{q}}$	$2^+ \text{ assumed} \\ \text{Exp. } p_0(J^P = 0^+)$	0 ⁺ assumed Exp. $p_0(J^P = 2^+)$	Obs. $p_0(J^P = 0^+)$	Obs. $p_0(J^P = 2^+)$	$CL_{\rm s}(J^P=2^+)$
100%	0.013	$3.6 \cdot 10^{-4}$	0.541	$1.7 \cdot 10^{-4}$	$3.6 \cdot 10^{-4}$
75%	0.028	0.003	0.586	0.001	0.003
50%	0.042	0.009	0.616	0.003	0.008
25%	0.048	0.019	0.622	0.008	0.020
0%	0.086	0.054	0.731	0.013	0.048

 $H \rightarrow WW^*$

Excess easier to reconcile with a spin 0 signal! Spin 2 looks too flat. Sensitivities between 2σ and 3σ according to fraction f_{qq}.

 $[f_{qq} = fraction of quark anti-quark annihilation ...]$

Expected and observed confidence level for $J^P = 2^+ \dots$

ATLAS – Higgs → γγ

Discriminating variable: distribution of the polar angle θ ...

Best discrimination power ... Impact of ISR minimal ... g

Topological differences before acceptance cuts:

Spin 0: Isotropic decay Spin 2: distribution depends on the qq-fraction, f_{qq}

→ 100% qq: dN ~ 1 + cos⁴θ* + 6cos²θ*
 100% gg: dN ~ 1 - cos⁴θ*

ATLAS

ATLAS – Higgs $\rightarrow \gamma \gamma$

Event selection:

- two photons, ET > 35, 25 GeV ... - di-photon inv. mass: $105 < m_{\gamma\gamma} < 160$ 120 - 130 GeV : signal region 105 - 122 GeV : sideband 130 - 160 GeV : sideband

Minimal correlations between $m_{\gamma\gamma}$ and $\cos\theta^*$:

$$rac{p_T^{\gamma_1}}{m_{\gamma\gamma}} > 0.35$$
 , $rac{p_T^{\gamma_2}}{m_{\gamma\gamma}} > 0.25$

Likelihood:

$$-\ln \mathcal{L} = (n_{S} + n_{B}) - \sum_{\text{events}} \ln \left[n_{S} \cdot f_{S} \left(|\cos \theta^{*}| \right) \cdot f_{S} (m_{\gamma\gamma}) + n_{B} \cdot f_{B} (|\cos \theta^{*}|) \cdot f_{B} (m_{\gamma\gamma}) \right]$$

$$signal \\ mass pdf \\ [different for spin 0 and 2]$$
from sidebands from
sidebands \\ from \\ sidebands \\ from \\ background \\ mass pdf \\ [5^{th} degree poly.]

ATLAS

ATLAS – Higgs $\rightarrow \gamma \gamma$

Observed values of the test statistic q ...

ATLAS – Higgs Spin & Parity ...

$H \rightarrow \gamma \gamma$							
f	2 ⁺ assumed	0 ⁺ assumed	Obs. $p_0(I^p - 0^+)$	Obs. $n_{0}(I^{P} - 2^{+})$	$CI_{(I^{P}-2^{+})}$		
Jqq	Exp. $p_0(J^P = 0^+)$	Exp. $p_0(J^P = 2^+)$	$005. p_0(J = 0)$	$003. p_0(3 - 2)$	$\operatorname{CL}_{\mathrm{S}}(J = 2)$		
100%	0.148	0.135	0.798	0.025	0.124		
75%	0.319	0.305	0.902	0.033	0.337		
50%	0.198	0.187	0.708	0.076	0.260		
25%	0.052	0.039	0.609	0.021	0.054		
0%	0.012	0.005	0.588	0.003	0.007		

τī

 $H \rightarrow ZZ^*$

$f_{q\bar{q}}$	2 ⁺ assumed assumed Exp. $p_0(J^P = 0^+)$	0^+ assumed Exp. $p_0(J^P = 2^+)$	Obs. $p_0(J^P = 0^+)$	Obs. $p_0(J^P = 2^+)$	$CL_{s}(J^{P} = 2^{+})$
100%	0.102	0.082	0.962	0.001	0.026
75%	0.117	0.099	0.923	0.003	0.039
50%	0.129	0.113	0.943	0.002	0.035
25%	0.125	0.107	0.944	0.002	0.036
0%	0.099	0.092	0.532	0.079	0.169

 $H \to WW^*$

$f_{q\bar{q}}$	2 ⁺ assumed Exp. $p_0(J^P = 0^+)$	0^+ assumed Exp. $p_0(J^P = 2^+)$	Obs. $p_0(J^P = 0^+)$	Obs. $p_0(J^P = 2^+)$	$CL_{\rm s}(J^P = 2^+)$
100%	0.013	$3.6 \cdot 10^{-4}$	0.541	$1.7 \cdot 10^{-4}$	$3.6 \cdot 10^{-4}$
75%	0.028	0.003	0.586	0.001	0.003
50%	0.042	0.009	0.616	0.003	0.008
25%	0.048	0.019	0.622	0.008	0.020
0%	0.086	0.054	0.731	0.013	0.048

ATLAS – Higgs Spin & Parity ...

