Lecture 4

#### Analysis Necessities & Steps ...

Photon reconstruction Photon identification Photon isolation Primary vertex Energy calibration Background modeling

Event categories

Limits & signal strength



# **Energy Resolution**



## **Energy Resolution**

Test Beam Result Fractional Energy Resolution



#### Resolution @ 60 GeV: $\sigma_E \approx 0.014 \text{ [FWHM} = 3.3 \%]$

Event numbers and mass resolution for the H  $\rightarrow$   $\gamma\gamma$  ATLAS analysis ...

[Mass range: 100 - 160]

| $\sqrt{s}$                                  | 7 Te           | eV          |                | 8 TeV       |       |
|---------------------------------------------|----------------|-------------|----------------|-------------|-------|
| $\sigma \times B(H \to \gamma \gamma)$ [fb] |                | 39          |                | 50          | FWHM  |
| Category                                    | N <sub>D</sub> | $N_{\rm S}$ | N <sub>D</sub> | $N_{\rm S}$ | [GeV] |
| Unconv. central, low $p_{\text{Tt}}$        | 2054           | 10.5        | 2945           | 14.2        | 3.4   |
| Unconv. central, high $p_{Tt}$              | 97             | 1.5         | 173            | 2.5         | 3.2   |
| Unconv. rest, low $p_{\text{Tt}}$           | 7129           | 21.6        | 12136          | 30.9        | 3.7   |
| Unconv. rest, high $p_{\text{Tt}}$          | 444            | 2.8         | 785            | 5.2         | 3.6   |
| Conv. central, low $p_{\text{Tt}}$          | 1493           | 6.7         | 2015           | 8.9         | 3.9   |
| Conv. central, high $p_{\text{Tt}}$         | 77             | 1.0         | 113            | 1.6         | 3.5   |
| Conv. rest, low $p_{\text{Tt}}$             | 8313           | 21.1        | 11099          | 26.9        | 4.5   |
| Conv. rest, high $p_{\text{Tt}}$            | 501            | 2.7         | 706            | 4.5         | 3.9   |
| Conv. transition                            | 3591           | 9.5         | 5140           | 12.8        | 6.1   |
| 2-jet                                       | 89             | 2.2         | 139            | 3.0         | 3.7   |
| All categories (inclusive)                  | 23788          | 79.6        | 35251          | 110.5       | 3.9   |

[ATLAS, Phys. Lett. B 716 (21012) 1 ]

## **Energy Calibration**

Monte Carlo based calibration

Monte Carlo simulation tuned with Test Beam data.

Accurate description of materials is confirmed by measurements in data.

Energy scale corrections using  $Z \rightarrow$  ee decay data ...

Energy scale correction applied to data ... Correction from a fit to the 2010  $Z \rightarrow$  ee data ... Extrapolation of energy scale correction from electron to photon is treated as uncertainty ... MC energy is smeared to match the energy resolution determined from data ...



#### **Reconstructed Vertex Distribution**



# **Energy Calibration**



Excellent stability with time and pileup ! Di-photon mass resolution around 1 %

#### **Di-Photon Vertex Selection**



Likelihood combining calorimeter pointing, conversion vertex and track-based vertex selection used ...



## **Di-Photon Vertex Selection**



Likelihood combining calorimeter pointing, conversion vertex and track-based vertex selection used ...



#### ATLAS Result Observation of a New Particle [ $H \rightarrow \gamma \gamma$ ]

[Summer 2012]



#### ATLAS Result Observation of a New Particle [ $H \rightarrow \gamma \gamma$ ]

[Spring 2013]



ATLAS-CONF-2013-012

## Signal Model

Signal modeled using Crystal Ball function plus a broad Gaussian ...

[Width dominated by detector resolution; Gaussian account for poorly measured energy]

Taken from Monte Carlo ... [POWHEG and PYTHIA]



invariant mass of a simulated 120 GeV mass Higgs signal

#### Background Model

Background obtained from fit to observed di-photon invariant mass distribution ... [Exponential, 4<sup>th</sup>-order Bernstein polynomial, 4<sup>th</sup> order polynomial, exponential function of a 2<sup>nd</sup>-order polynomial]

Different parametrization chosen for different event categories ...

[Limit potential bias while keeping good statistical power]

Uncertainty estimated using Monte Carlo ...



## **Event Categorization**

#### 10 Categories

with different S/B and resolution increases expected signal sensitivity by 25% ...

make use of conversion status, |η|, p<sub>Tt</sub> [≥ 60 GeV], 2 jets category

Unconverted central, low p<sub>Tt</sub> Unconverted central, high p<sub>Tt</sub> Unconverted rest, low p<sub>Tt</sub> Unconverted rest, high p<sub>Tt</sub> Converted central, low p<sub>Tt</sub> Converted central, high p<sub>Tt</sub> Converted rest, low p<sub>Tt</sub> Converted rest, high p<sub>Tt</sub> Converted transition region 2-jet category





# Higgs $\rightarrow \gamma\gamma + 2$ jets

# **ATLAS** EXPERIMENT

Run Number: 204769, Event Number: 24947130

Date: 2012-06-10 08:17:12 UTC

#### Mass Spectra for Different Categories

[2011 & 2012]



#### Mass Spectra for Different Categories

[2011 & 2012]



#### Observation or Fluctuation?



#### Signal Model Parameters

 $N \cdot \begin{cases} e^{-t^2/2} & \text{if } t > -\alpha \\ (\frac{n}{|\alpha|})^n \cdot e^{-|\alpha|^2/2} \cdot (\frac{n}{|\alpha|} - |\alpha| - t)^{-n} & \text{otherwise} \end{cases}$ with  $t=(m_{\gamma\gamma}-m_H-\delta_{m_H})/\sigma_{CB}$ 

| Category                                | $\sigma_{CB}$ | FWHM  | Observed        | S               | В               |
|-----------------------------------------|---------------|-------|-----------------|-----------------|-----------------|
|                                         | [GeV]         | [GeV] | $[N_{\rm evt}]$ | $[N_{\rm evt}]$ | $[N_{\rm evt}]$ |
| Inclusive                               | 1.63          | 3.87  | 3693            | 100.4           | 3635            |
| Unconverted central, low $p_{Tt}$       | 1.45          | 3.42  | 235             | 13.0            | 215             |
| Unconverted central, high $p_{Tt}$      | 1.37          | 3.23  | 15              | 2.3             | 14              |
| Unconverted rest, low $p_{Tt}$          | 1.57          | 3.72  | 1131            | 28.3            | 1133            |
| Unconverted rest, high $p_{Tt}$         | 1.51          | 3.55  | 75              | 4.8             | 68              |
| Converted central, low $p_{Tt}$         | 1.67          | 3.94  | 208             | 8.2             | 193             |
| Converted central, high $p_{\text{Tt}}$ | 1.50          | 3.54  | 13              | 1.5             | 10              |
| Converted rest, low $p_{Tt}$            | 1.93          | 4.54  | 1350            | 24.6            | 1346            |
| Converted rest, high $p_{\text{Tt}}$    | 1.68          | 3.96  | 69              | 4.1             | 72              |
| Converted transition                    | 2.65          | 6.24  | 880             | 11.7            | 845             |
| 2-jets                                  | 1.57          | 3.70  | 18              | 2.6             | 12              |

#### Estimating the Significance ...

#### Naive approach:

| $N_S$ | ≈ 200   | [120 - 130 GeV] |
|-------|---------|-----------------|
| NΒ    | ≈ 60000 | [100 - 160 GeV] |
|       |         |                 |

$$S = 2$$
 [= 200/ $\sqrt{10000}$ ]

as  $N_{\text{B}}$  needs to be corrected to 10 GeV range



| $\sqrt{s}$                                  | 7 Te           | eV          |                | 8 TeV       |       |
|---------------------------------------------|----------------|-------------|----------------|-------------|-------|
| $\sigma \times B(H \to \gamma \gamma)$ [fb] |                | 39          |                | 50          | FWHM  |
| Category                                    | N <sub>D</sub> | $N_{\rm S}$ | N <sub>D</sub> | $N_{\rm S}$ | [GeV] |
| Unconv. central, low $p_{Tt}$               | 2054           | 10.5        | 2945           | 14.2        | 3.4   |
| Unconv. central, high $p_{\text{Tt}}$       | 97             | 1.5         | 173            | 2.5         | 3.2   |
| Unconv. rest, low $p_{Tt}$                  | 7129           | 21.6        | 12136          | 30.9        | 3.7   |
| Unconv. rest, high $p_{\text{Tt}}$          | 444            | 2.8         | 785            | 5.2         | 3.6   |
| Conv. central, low $p_{\text{Tt}}$          | 1493           | 6.7         | 2015           | 8.9         | 3.9   |
| Conv. central, high $p_{\text{Tt}}$         | 77             | 1.0         | 113            | 1.6         | 3.5   |
| Conv. rest, low $p_{\text{Tt}}$             | 8313           | 21.1        | 11099          | 26.9        | 4.5   |
| Conv. rest, high $p_{\text{Tt}}$            | 501            | 2.7         | 706            | 4.5         | 3.9   |
| Conv. transition                            | 3591           | 9.5         | 5140           | 12.8        | 6.1   |
| 2-jet                                       | 89             | 2.2         | 139            | 3.0         | 3.7   |
| All categories (inclusive)                  | 23788          | 79.6        | 35251          | 110.5       | 3.9   |

Use of extra information by performing a fit to the background ...

and optimizing by channel categorization ...

Needs procedure to combine ...

#### Background Model Systematics

| Category                                 | Parametrization        | Uncertainty [N <sub>evt</sub> ] |                            |
|------------------------------------------|------------------------|---------------------------------|----------------------------|
|                                          |                        | $\sqrt{s} = 7 \text{ TeV}$      | $\sqrt{s} = 8 \text{ TeV}$ |
| Inclusive                                | 4th order pol.         | 7.3                             | 10.6                       |
| Unconverted central, low $p_{\text{Tt}}$ | Exp. of 2nd order pol. | 2.1                             | 3.0                        |
| Unconverted central, high $p_{Tt}$       | Exponential            | 0.2                             | 0.3                        |
| Unconverted rest, low $p_{Tt}$           | 4th order pol.         | 2.2                             | 3.3                        |
| Unconverted rest, high $p_{Tt}$          | Exponential            | 0.5                             | 0.8                        |
| Converted central, low $p_{Tt}$          | Exp. of 2nd order pol. | 1.6                             | 2.3                        |
| Converted central, high $p_{Tt}$         | Exponential            | 0.3                             | 0.4                        |
| Converted rest, low $p_{\text{Tt}}$      | 4th order pol.         | 4.6                             | 6.8                        |
| Converted rest, high $p_{Tt}$            | Exponential            | 0.5                             | 0.7                        |
| Converted transition                     | Exp. of 2nd order pol. | 3.2                             | 4.6                        |
| 2-jets                                   | Exponential            | 0.4                             | 0.6                        |

#### Discovery ...

A deviation from the expectation, i.e. the background only hypothesis ...

p-value: probability that a result is as or less compatible with expectation ...

Control region  $\alpha$  (or size  $\alpha$ ) defines the significance level ...

If  $p < \alpha$  hypothesis is rejected ...

Exclusion:  $\alpha = 5\%$  [typical] i.e. exclusion with 95% CL ...

Test statistics Q for e.g. background only hypothesis

Discovery:  $\alpha = 2.87 \times 10^{-7}$  [corresponds to 5 $\sigma$ ]



[e.g. Dulat et al., arXiv:1204.3851v2]

| $X = \{X_i\}$   | Set of measurements, e.g. number of observed event in specific phase space region                                  |
|-----------------|--------------------------------------------------------------------------------------------------------------------|
| $g(X_i \mu, u)$ | Probability density of X <sub>i</sub><br>with model parameters µ<br>with nuisance parameters v = {v <sub>j</sub> } |

Probability to measure the values X in an single experiment:

$$P = \prod_{i=1}^{N} P(X_i) = \prod_{i=1}^{N} g(X_i|\mu,\nu) dX_i = L(X|\mu,\nu) \prod_{i=1}^{N} dX_i,$$

with

$$P(X_i)$$
: probability to find the measurement within  $X_i \pm dX_i$   
 $L(X|\mu,\nu) = \prod_{i=1}^N g(X_i|\mu,\nu)$ : likelihood, or joint probability density

independent input, e.g. lumi

[e.g. Dulat et al., arXiv:1204.3851v2]

#### Furthermore:

$$g(X_i \mid \mu, \nu) = e^{-\lambda_i} \lambda_i^{X_i} / X_i!$$

$$\lambda_i = \lambda_i(\mu, \nu)$$
$$\lambda(\mu, \nu) = \{\lambda_i(\mu, \nu)\}$$

 $\pi(\tilde{\nu}|\nu)$ 

Poisson distribution [as X<sub>i</sub> very low compared to total event number]

Expectation value Depends on parameters  $\mu$  and  $\nu$  ...

Likelihood for nuisance parameters [includes uncertainties on values of  $v = \{v_j\}$ ]

Thus:

$$\mathcal{L}(X|\mu,\nu) = \prod_{i} \frac{e^{-\lambda_i(\mu,\nu)}\lambda_i^{X_i}(\mu,\nu)}{X_i!} \times \prod_{j} \pi_j(\tilde{\nu}_j|\nu_j).$$

[e.g. Dulat et al., arXiv:1204.3851v2]

#### Likelihood ratio:

$$LR = \frac{\mathcal{L}(X|\mu,\nu)}{\mathcal{L}(X|\mu',\nu')}$$
Quantifies agreement of X  
with prediction  $\lambda(\mu,\nu)$  relativ to  $\lambda(\mu',\nu')$ 

Profiled log-likelihood ratio:

Get's large if X disagrees with prediction ...

$$q_{\mu}(X) = \begin{cases} -2\log \frac{\mathcal{L}(X|\mu, \hat{\nu}_{\mu})}{\mathcal{L}(X|\mu', \hat{\nu}_{\mu'})} \ , \ \mu \geq \mu' \geq 0\\ 0 \qquad \qquad , \ \text{else} \end{cases}$$

with

$$\mathcal{L}(X|\mu, \hat{\nu}_{\mu}) \ge \mathcal{L}(X|\mu, \nu) \quad \forall \quad \nu.$$
$$\mathcal{L}(X|\mu', \hat{\nu}_{\mu'}) \ge \mathcal{L}(X|\mu, \nu) \quad \forall \quad \mu, \nu.$$

Maximized  $\boldsymbol{\mathcal{L}}$  for a fixed  $\boldsymbol{\mu}$  ... Globally maximized  $\boldsymbol{\mathcal{L}}$  ...









[e.g. Dulat et al., arXiv:1204.3851v2]

Log-likelihood ratio LEP CL<sub>S</sub> Method ... 0.5 f(q) Penalization in case of small sensitivity ... f(qlb)  $CL_S(\mu) \equiv \frac{CL_{S+B}(\mu)}{1 - CL_B(\mu)}$ f(qls+b 0.4  $\mathsf{q}_{_{\mathrm{obs}}}$ 0.3 p<sub>b</sub> 0.2 i.e.: Penalization by dividing by 1-CLB 0.1 Wide separation:  $1-CL_B \approx 1$  no penalty p<sub>s+b</sub> Overlap: strong penalty. By this one prevents exclusion of 0 models for which there is low sensitivity ... -8 -6 -2 -10 -4 0 q

[CL<sub>s</sub> for mu=1]



 $[CL_s \text{ for } mu=1]$ 





