
Analysis Necessities & Steps …

Photon reconstruction  
Photon identification  
Photon isolation  
Primary vertex  
Energy calibration  
Background modeling  
!
!
Event categories !
Limits & signal strength
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Energy Resolution

New resonance  
peak H ➛ γγ

signal  
region

signal; width due to 
detector resolution

Signal  
significance:

NS: # signal events 
NB: # background events

... in peak region

S =
NSp

NB + NS

σHγγ 	 ~ 50 fb   
σγγ 		 ~ 2 pb/GeV   [ΓH ~ negligible …]    
!
L 	 =    20 fb-1     
Ns 	 =    50 fb × 20  fb-1 = 1000    
Nb 	 =    4 pb × 20 fb-1 = 80.000   !
S	 =   3.5    !
	 	 	 	 [assuming: σ(mγγ)/mγγ ~ 1%]                

Estimate 
[assuming 1% resolution; MH ≈ 120 GeV]
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Test Beam Result 
Fractional Energy Resolution

Table 4: Number of events in the data (ND) and expected number of
signal events (NS) for mH = 126.5 GeV from the H→ γγ analysis, for
each category in the mass range 100−160 GeV. The mass resolution
FWHM (see text) is also given for the 8 TeVdata. The Higgs boson
production cross section multiplied by the branching ratio into two
photons (σ×B(H → γγ)) is listed formH = 126.5 GeV. The statistical
uncertainties on NS and FWHM are less than 1 %.

√
s 7 TeV 8 TeV

σ × B(H → γγ) [fb] 39 50 FWHM
Category ND NS ND NS [GeV]
Unconv. central, low pTt 2054 10.5 2945 14.2 3.4
Unconv. central, high pTt 97 1.5 173 2.5 3.2
Unconv. rest, low pTt 7129 21.6 12136 30.9 3.7
Unconv. rest, high pTt 444 2.8 785 5.2 3.6
Conv. central, low pTt 1493 6.7 2015 8.9 3.9
Conv. central, high pTt 77 1.0 113 1.6 3.5
Conv. rest, low pTt 8313 21.1 11099 26.9 4.5
Conv. rest, high pTt 501 2.7 706 4.5 3.9
Conv. transition 3591 9.5 5140 12.8 6.1
2-jet 89 2.2 139 3.0 3.7
All categories (inclusive) 23788 79.6 35251 110.5 3.9

one converted photon are separated into converted cen-
tral (|η| < 0.75 for both candidates), converted transi-
tion (at least one photon with 1.3 < |η| < 1.75) and
converted rest (all other events). Except for the con-
verted transition category, each category is further di-
vided by a cut at pTt= 60 GeV into two categories, low
pTt and high pTt. MC studies show that signal events,
particularly those produced via VBF or associated pro-
duction (WH/ZH and t  tH), have on average larger pTt
than background events. The number of data events in
each category, as well as the sum of all the categories,
which is denoted inclusive, are given in Table 4.

5.4. Signal modelling
The description of the Higgs boson signal is obtained

from MC, as described in Section 3. The cross sections
multiplied by the branching ratio into two photons are
given in Table 4 for mH = 126.5 GeV. The number of
signal events produced via the ggF process is rescaled
to take into account the expected destructive interfer-
ence between the gg→ γγ continuum background and
ggF [103], leading to a reduction of the production rate
by 2−5% depending on mH and the event category. For
both the 7 TeV and 8 TeV MC samples, the fractions of
ggF, VBF, WH, ZH and t  tH production are approxi-
mately 88%, 7%, 3%, 2% and 0.5%, respectively, for
mH = 126.5 GeV.

In the simulation, the shower shape distributions
are shifted slightly to improve the agreement with the
data [97], and the photon energy resolution is broad-
ened (by approximately 1% in the barrel calorimeter

and 1.2−2.1% in the end-cap regions) to account for
small differences observed between Z→ e+e− data and
MC events. The signal yields expected for the 7 TeV
and 8 TeV data samples are given in Table 4. The over-
all selection efficiency is about 40%.

The shape of the invariant mass of the signal in each
category is modelled by the sum of a Crystal Ball func-
tion [104], describing the core of the distribution with
a width σCB, and a Gaussian contribution describing
the tails (amounting to <10%) of the mass distribution.
The expected full-width-at-half-maximum (FWHM) is
3.9 GeV and σCB is 1.6 GeV for the inclusive sample.
The resolution varies with event category (see Table 4);
the FWHM is typically a factor 2.3 larger than σCB.

5.5. Background modelling

The background in each category is estimated from
data by fitting the diphoton mass spectrum in the mass
range 100−160 GeV with a selected model with free pa-
rameters of shape and normalisation. Different models
are chosen for the different categories to achieve a good
compromise between limiting the size of a potential bias
while retaining good statistical power. A fourth-order
Bernstein polynomial function [105] is used for the un-
converted rest (low pTt), converted rest (low pTt) and in-
clusive categories, an exponential function of a second-
order polynomial for the unconverted central (low pTt),
converted central (low pTt) and converted transition cat-
egories, and an exponential function for all others.

Studies to determine the potential bias have been per-
formed using large samples of simulated background
events complemented by data-driven estimates. The
background shapes in the simulation have been cross-
checked using data from control regions. The poten-
tial bias for a given model is estimated, separately for
each category, by performing a maximum likelihood fit
to large samples of simulated background events in the
mass range 100−160 GeV, of the sum of a signal plus
the given background model. The signal shape is taken
to follow the expectation for a SM Higgs boson; the sig-
nal yield is a free parameter of the fit. The potential bias
is defined by the largest absolute signal yield obtained
from the likelihood fit to the simulated background sam-
ples for hypothesised Higgs boson masses in the range
110−150 GeV. A pre-selection of background parame-
terisations is made by requiring that the potential bias,
as defined above, is less than 20% of the statistical un-
certainty on the fitted signal yield. The pre-selected pa-
rameterisation in each category with the best expected
sensitivity for mH = 125 GeV is selected as the back-
ground model.
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Resolution @ 60 GeV:
σΕ ≈ 0.014 [FWHM = 3.3 %] 

Event numbers and mass resolution  
for the H ➛ γγ ATLAS analysis … !
[Mass range: 100 - 160]

[ATLAS, Phys. Lett. B 716 (21012) 1 ]

[NIM
 A568 (2006) 601]



Energy Calibration

Calibrated Z→e+e- invariant mass: (left) all pairs; (right) all pairs with |η|<  1.37

All pairs Barrel-Barrel only

Reconstructed  Z→e + e− invariant mass after electron energy calibration

Monte Carlo 
based calibration
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using Z ➛ ee decay data … 

Energy scale correction applied to data … 
Correction from a fit to the 2010 Z ➛ ee data … !
Extrapolation of energy scale correction  
from electron to photon is treated as uncertainty … !
MC energy is smeared to match the  
energy resolution determined from data …



Reconstructed Vertex Distribution
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Energy Calibration

Bruno Lenzi (CERN) Search for the Higgs boson in the diphoton decay channel with the ATLAS detector SUSY2012

Photon energy measurement

• MC based calibration using energy in the calorimeter and conversion radius

• Energy scale fixed by Z ➝ ee, W ➝ eν, J/Ψ ➝ ee at 0.3% precision

• Checked with Z ➝ℓℓγ
• Excellent stability with time and pileup

• e ➝ γ extrapolation depends on the knowledge of material

• Uncertainty on diphoton mass scale ~0.6%

• Diphoton mass resolution around 1.6 GeV, uncertainty ~14%
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Bruno Lenzi (CERN) Search for the Higgs boson in the diphoton decay channel with the ATLAS detector SUSY2012

Photon energy measurement

• MC based calibration using energy in the calorimeter and conversion radius
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• Excellent stability with time and pileup
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Excellent stability with time and pileup !

Relative Energy Scale  
as function of time

Relative Energy Scale  
as function of interactions

Di-photon mass resolution around 1 %



Bruno Lenzi (CERN) Search for the Higgs boson in the diphoton decay channel with the ATLAS detector SUSY2012

Diphoton vertex selection

• Likelihood combining calorimeter pointing (longitudinal segmentation), 
conversion vertex and track-based vertex selection used

• Pointing (~1.5 cm) + conversion (~0.6 cm) enough for mass measurement

• Robust against pileup

• Tracking info used to reject jets from pileup...
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Di-Photon Vertex Selection

Likelihood combining calorimeter pointing, conversion vertex  
and track-based vertex selection used …
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Kerstin Tackmann (DESY) Physics at the LHC (3) 13 / 37
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Photon

Improved resolution …



Di-Photon Vertex Selection

Likelihood combining calorimeter pointing, conversion vertex  
and track-based vertex selection used …

Bruno Lenzi (CERN) Search for the Higgs boson in the diphoton decay channel with the ATLAS detector SUSY2012

Diphoton vertex selection

• Likelihood combining calorimeter pointing (longitudinal segmentation), 
conversion vertex and track-based vertex selection used

• Pointing (~1.5 cm) + conversion (~0.6 cm) enough for mass measurement

• Mass reconstruction robust against pileup
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Bruno Lenzi (CERN) Search for the Higgs boson in the diphoton decay channel with the ATLAS detector SUSY2012

Diphoton invariant mass spectra
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ATLAS Result 
Observation of a New Particle [H ➛ γγ]
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Signal Model

Signal modeled using Crystal Ball function plus a broad Gaussian … 
[Width dominated by detector resolution; Gaussian account for poorly measured energy]  !
Taken from Monte Carlo … 
[POWHEG and PYTHIA]  !
!
Crystal Ball function: 
used to model various lossy processes  
in high-energy physics !
	 Asymmetric PDF 
	 Central part: Gaussian  
	 Low-end tail: power law 
	 [below threshold -α]

The ATLAS Collaboration / Physics Letters B 705 (2011) 452–470 455

Fig. 1. Distribution of the reconstructed diphoton invariant mass of a simulated
120 GeV mass Higgs boson signal, for all categories together. The line shows the
fit of the mass resolution using the function described in the text. The core compo-
nent of the mass resolution is 1.7 GeV.

Fig. 1 shows the invariant mass distribution for simulated Higgs
boson events with mass 120 GeV. The mass resolution for the sig-
nal is modelled by the sum of a Crystal Ball function [44] (for
the bulk of the events which have a narrow Gaussian spectrum
in the peak region and tails toward lower reconstructed mass) and
a Gaussian distribution with a wide sigma (to model the far out-
liers in the distribution). The Crystal Ball function is defined as:

N ·
{

e−t2/2 if t > −αCB,

( nCB
αCB

)nCB · e−α2
CB/2 · ( nCB

αCB
− αCB − t)−nCB otherwise

where t = (mγ γ − µCB)/σCB , N is a normalisation parameter, µCB
is the peak of the narrow Gaussian distribution, σCB represents
the Gaussian resolution for the core component, and nCB and αCB
parametrise the non-Gaussian tail.

The core component of the mass resolution, σCB , ranges from
1.4 GeV in the “Unconverted central” category to 2.1 GeV in the
“Converted transition” category. The non-Gaussian contributions to
the mass resolution arise mostly from converted photons with at
least one electron losing a significant fraction of its energy through
bremsstrahlung in the inner detector material.

4.4. Sample composition

The main background components are the diphoton production,
the photon-jet production with one fake photon from jets frag-
menting into a high energy π0, the dijet production with two fake
photons, and Drell–Yan events where both electrons are misidenti-
fied as photons. A measurement of the diphoton production cross-
section with 2010 ATLAS data can be found in Ref. [45], where the
techniques used to estimate the purity of the sample are described
in more detail. Although the final result does not rely on it, a quan-
titative understanding of the sample composition is an important
cross-check of the diphoton selection procedure.

A method based on the use of control regions for two discrim-
inating variables is applied to measure the contributions of fake
photon background directly from the data. This method exploits
relaxed isolation and photon identification cuts to estimate the
fake components, by relying on the fact that the rejections from
these two cuts are almost independent. It is a generalisation of the
method used in Ref. [42]. The Drell–Yan background is estimated
by measuring the probability for an electron to be reconstructed
as a photon candidate with Z events and applying this probability
to the observed yield of Drell–Yan events at high mass.

The number of diphoton events in the 100–160 GeV mass range
is found to be 3650 ± 100 ± 290, where the first uncertainty is sta-

Fig. 2. Diphoton, photon-jet, dijet and Drell–Yan contributions to the diphoton can-
didate invariant mass distribution, as obtained from a data-driven method. The
various components are stacked on top of each other. The error bars correspond
to the uncertainties on each component separately.

tistical and the second is systematic. The systematic uncertainty
arises from the definition of the relaxed identification control re-
gion, the possible correlations between isolation and identification
variables, and the fraction of real photons leaking into the back-
ground control regions. The extracted yields of photon-jet and dijet
are 1110 ± 60 ± 270 and 220 ± 20 ± 130 events respectively. The
Drell–Yan background, which is most prominent in the categories
with at least one converted photon, is estimated to be 86 ± 1 ± 14
events in the mass range of 100–160 GeV.

Fig. 2 shows the extracted components of the diphoton, photon-
jet, dijet and Drell–Yan processes. The purity of the sample (frac-
tion of diphoton events) is about 72%. The measurement of the
purity has also been made separately in each category, and ranges
from 69% to 83%.

Other methods have been used to cross-check the purity esti-
mate, in particular using template fits of the photon isolation dis-
tribution, where both signal and background templates are derived
from data. The results are in agreement with the results quoted
here.

5. Systematic uncertainties

Experimental systematic uncertainties affecting the extraction
of the signal from the diphoton invariant mass distribution related
to the modelling of the signal can be classified in two types: un-
certainties affecting the predicted yield and uncertainties affecting
the modelling of the mass resolution.

The uncertainties on the event yield are the following:

• The uncertainty from the photon reconstruction and identifi-
cation efficiency amounts to ±11% per event. It is estimated
from data and MC differences in shower shape variables, the
impact of additional material in front of the calorimeter and
the impact of pileup on the photon shower shape variables.

• The uncertainty on the isolation cut efficiency is taken as the
difference between data and MC found in Z → ee decays and
amounts to ±3% per event.

• The uncertainty on the photon trigger efficiency is ±1%. It
comes from the uncertainty in the measurement of the trig-
ger efficiency for diphoton candidates using control triggers
and from possible differences between the trigger efficiency
for photons from Higgs boson decays and all diphoton candi-
dates.

• The uncertainty on the kinematic cut acceptance from the
modelling of the Higgs boson transverse momentum distribu-

Distribution of the reconstructed di-photon  
invariant mass of a simulated 120 GeV mass Higgs signal



Background Model

Background model

Background obtained from fits to the observed diphoton invariant mass distribution:

di↵erent functions for di↵erent categories (exponential, fourth-order Bernstein

polynomial, 4th order polynomial, exponential function of a second-order polynomial)

parametrization chosen to limit potential bias while keeping good statistical power
uncertainty estimated with high-statistics samples Sherpa, Diphox and Resbos (��),
Sherpa (�j), Pythia (jj)
uncertainty express in term of spurious signal. The categories mainly a↵ected by

background parametrization bias are the high-statistics categories, which also have a lower

signal to background ratio, for example inclusive gives ⇠ 11 events uncertainty on the

spurious signal for
p
s = 8TeV (⇠ 110 H ! �� expected) at 126.5GeV
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Background model

Background obtained from fits to the observed diphoton invariant mass distribution:

di↵erent functions for di↵erent categories (exponential, fourth-order Bernstein

polynomial, 4th order polynomial, exponential function of a second-order polynomial)

parametrization chosen to limit potential bias while keeping good statistical power
uncertainty estimated with high-statistics samples Sherpa, Diphox and Resbos (��),
Sherpa (�j), Pythia (jj)
uncertainty express in term of spurious signal. The categories mainly a↵ected by

background parametrization bias are the high-statistics categories, which also have a lower

signal to background ratio, for example inclusive gives ⇠ 11 events uncertainty on the

spurious signal for
p
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Background obtained from fit to observed di-photon invariant mass distribution … 
[Exponential, 4th-order Bernstein polynomial, 4th order polynomial, exponential function of a 2nd-order polynomial]  !
Different parametrization chosen for different event categories … 
[Limit potential bias while keeping good statistical power]  !
Uncertainty estimated using Monte Carlo …



Event Categorization

Bruno Lenzi (CERN) Search for the Higgs boson in the diphoton decay channel with the ATLAS detector SUSY2012

Event categories

• Categories based on:

• New: 2-jet category for VBF (next...)

• Presence of photon conversions

• Impact point on calorimeter

• Diphoton PTt (related to PT)

• Different resolutions, different S/B

• 25% increase in expected sensitivity

• Good vs. not so good category: 

• S/B ~ 0.16

• S/B ~ 0.02

• Uncertainties in Pt modeling / conversion rates as migrations between cats.
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To increase sensitivity 10 categories are introduced:

categories using the conversion status ⌦ |⌘|
⌦ pTt ? 60GeV (strongly correlated with the

diphoton transverse momentum, but it has a better

detector resolution)

� 2 jets category requiring 2 energetic and well
separated hadronic jets
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Higgs ➛ γγ + 2 jets

Event Reconstruction

Photons
isolated EM clusters, identified using shower shape variables

use track or calorimeter isolation cone �R < 0.2 or 0.4
converted (two matched tracks, or single with no inner layer hit) and
un-converted photon categories utilised

Jets
reconstructed with R = 0.4 anti-kT algorithm

inputs noise-suppressed topological clusters
pT > 25 (30) GeV in central (forward, 2.4 Æ |÷| Æ 4.5) region, jet vertex
fraction (JVF) to suppress pileup jets
correct for pileup based on NPV and event energy density fl, jet area A
b-tagging using NN-based combination of impact parameter and
secondary vertex information

H æ ““ + 2j candidate event (VBF category)
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Mass Spectra for Different Categories

Krisztian Peters ATLAS H → γγ 

Mass spectrum
Mass spectra of the individual categories consisting the final result
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Figure 6: Background-only fits to the diphoton invariant mass spectra for categories Unconverted central,

low pTt, Unconverted central, high pTt, Unconverted rest, low pTt and Unconverted rest, high pTt. The

bottom inset displays the residual of the data with respect to the background fit. The Higgs boson

expectation for a mass hypothesis of 126.5 GeV corresponding to the SM cross section is also shown.

All figures on the left side correspond to the
√

s = 7 TeV data sample and the ones on the right to the√
s = 8 TeV data sample
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Signal Model Parameters
Table 2: Number of expected signal S and background events B in mass a window around mH =

126.5 GeV that would contain 90% of the expected signal events, along with the observed number of

events in this window. In addition, σCB, the Gaussian width of the Crystal Ball function describing the

invariant mass distribution (see Sec. 6), and the FWHM of the distribution, are given. The numbers are

given for the data and simulation at
√

s = 8 TeV for different categories and the inclusive sample.

Category σCB FWHM Observed S B

[GeV] [GeV] [Nevt] [Nevt] [Nevt]

Inclusive 1.63 3.87 3693 100.4 3635

Unconverted central, low pTt 1.45 3.42 235 13.0 215

Unconverted central, high pTt 1.37 3.23 15 2.3 14

Unconverted rest, low pTt 1.57 3.72 1131 28.3 1133

Unconverted rest, high pTt 1.51 3.55 75 4.8 68

Converted central, low pTt 1.67 3.94 208 8.2 193

Converted central, high pTt 1.50 3.54 13 1.5 10

Converted rest, low pTt 1.93 4.54 1350 24.6 1346

Converted rest, high pTt 1.68 3.96 69 4.1 72

Converted transition 2.65 6.24 880 11.7 845

2-jets 1.57 3.70 18 2.6 12

NDY
γγ = 270 ± 4(stat) ± 24(syst). The lower level of Drell-Yan background in the

√
s = 8 TeV data is

due to the improvements in the reconstruction of converted photons. The background from Drell-Yan

processes is located in the low invariant mass region as can be seen in Fig. 4 for the
√

s = 8 TeV sample

and is very small in the invariant mass region used in this analysis.

5.2 Background modeling

For statistical analysis of the measured diphoton spectrum, the background is parametrized by an an-

alytic function for each category, where the normalization and the shape are obtained from fits to the

diphoton invariant mass distribution. Different parametrizations are chosen for the different event cat-

egories to achieve a good compromise between limiting the size of a potential bias introduced by the

chosen parametrization and retaining good statistical power. Depending on the category, an exponential

function, a fourth-order Bernstein polynomial or an exponential function of a second-order polynomial

is used (see Table 3). For the analysis of the inclusive sample, a fourth-order Bernstein polynomial is

used.

Potential biases from the choice of background parametrization are estimated using three different

sets of high statistics background-only MC models. The prompt diphoton background is obtained from

the three generators RESBOS [30], DIPHOX [31], and SHERPA [21], while the same reducible back-

ground samples are used for all three models. These are based on SHERPA for the γ-jet background

and on PYTHIA6 [32] for the jet-jet background. Detector effects are included in some samples with

with weighting and smearing techniques. In the SHERPA and PYTHIA samples, detector effects are

taken into account, including photon identification efficiency, photon energy resolution, the process of

photons being faked by jets, and the fraction of converted photons in the different detector regions. In

the RESBOS and DIPHOX samples, the effect of photon identification efficiency is taken into account.

In addition, the Drell-Yan background component is taken into account; the shape and number of events

for this background is extracted from data-driven studies (see above). Each of these MC models is mixed
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Figure 5: Invariant mass distributions for a Higgs boson with mH = 125 GeV, for the best-resolution cat-

egory (Unconverted central, high pTt) shown in blue and for a category with lower resolution (Converted

rest, low pTt) shown in red (see Table 2), for the
√

s = 8 TeV simulation. The invariant mass distribution

is parametrized by the sum of a Crystal Ball function and a broad Gaussian, where the latter accounts for

fewer than 12% of events in all categories (fewer than 4% in most categories).

6.3 Diphoton mass modeling

The probability density function for the signal is modeled by the sum of a Crystal Ball function (CB) [77]

(taking into account the core resolution and a non-Gaussian tail towards lower mass values) and a small,

wider Gaussian component (taking into account outliers in the distribution). The CB function is defined

as

N ·

⎧

⎪

⎪

⎨

⎪

⎪

⎩

e−t2/2 if t > −α
( n
|α| )

n · e−|α|
2/2 · ( n

|α| − |α| − t)−n otherwise
(1)

where t = (mγγ − mH − δmH )/σCB, N is a normalization parameter, mH is the hypothesized Higgs boson

mass, δmH is a category dependent offset, σCB represents the diphoton invariant mass resolution, and

n and α parametrize the non-Gaussian tail. Table 2 shows the expected mass resolution for a Higgs

boson with mH = 126.5 GeV for the different categories. Fig. 5 shows the resolution function for the

categories with the best resolution and another with lower resolution. To extract the parameters from the

signal simulation, a simultaneous fit to samples for different Higgs boson masses for each category is

performed, exploiting the fact that the shape parameters are either linearly dependent on the Higgs boson

mass, or to a good approximation independent of the Higgs boson mass.

6.3.1 Systematic uncertainty on the diphoton mass resolution

The following systematic uncertainties on the invariant mass resolution are considered:

• Uncertainty on the constant term. The parametrization of the calorimeter resolution is described

in [12], and includes a constant term and a sampling term. The constant term amounts to about

1% in the calorimeter barrel region and between 1.2% and up to 2.1% in the calorimeter end-

caps. It is treated as having an uncertainty as given in [12] and varied within these uncertainties,
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(taking into account the core resolution and a non-Gaussian tail towards lower mass values) and a small,

wider Gaussian component (taking into account outliers in the distribution). The CB function is defined
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where t = (mγγ − mH − δmH )/σCB, N is a normalization parameter, mH is the hypothesized Higgs boson

mass, δmH is a category dependent offset, σCB represents the diphoton invariant mass resolution, and

n and α parametrize the non-Gaussian tail. Table 2 shows the expected mass resolution for a Higgs

boson with mH = 126.5 GeV for the different categories. Fig. 5 shows the resolution function for the

categories with the best resolution and another with lower resolution. To extract the parameters from the

signal simulation, a simultaneous fit to samples for different Higgs boson masses for each category is

performed, exploiting the fact that the shape parameters are either linearly dependent on the Higgs boson

mass, or to a good approximation independent of the Higgs boson mass.

6.3.1 Systematic uncertainty on the diphoton mass resolution

The following systematic uncertainties on the invariant mass resolution are considered:

• Uncertainty on the constant term. The parametrization of the calorimeter resolution is described

in [12], and includes a constant term and a sampling term. The constant term amounts to about

1% in the calorimeter barrel region and between 1.2% and up to 2.1% in the calorimeter end-

caps. It is treated as having an uncertainty as given in [12] and varied within these uncertainties,
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Estimating the Significance …

Table 4: Number of events in the data (ND) and expected number of
signal events (NS) for mH = 126.5 GeV from the H→ γγ analysis, for
each category in the mass range 100−160 GeV. The mass resolution
FWHM (see text) is also given for the 8 TeVdata. The Higgs boson
production cross section multiplied by the branching ratio into two
photons (σ×B(H → γγ)) is listed formH = 126.5 GeV. The statistical
uncertainties on NS and FWHM are less than 1 %.

√
s 7 TeV 8 TeV

σ × B(H → γγ) [fb] 39 50 FWHM
Category ND NS ND NS [GeV]
Unconv. central, low pTt 2054 10.5 2945 14.2 3.4
Unconv. central, high pTt 97 1.5 173 2.5 3.2
Unconv. rest, low pTt 7129 21.6 12136 30.9 3.7
Unconv. rest, high pTt 444 2.8 785 5.2 3.6
Conv. central, low pTt 1493 6.7 2015 8.9 3.9
Conv. central, high pTt 77 1.0 113 1.6 3.5
Conv. rest, low pTt 8313 21.1 11099 26.9 4.5
Conv. rest, high pTt 501 2.7 706 4.5 3.9
Conv. transition 3591 9.5 5140 12.8 6.1
2-jet 89 2.2 139 3.0 3.7
All categories (inclusive) 23788 79.6 35251 110.5 3.9

one converted photon are separated into converted cen-
tral (|η| < 0.75 for both candidates), converted transi-
tion (at least one photon with 1.3 < |η| < 1.75) and
converted rest (all other events). Except for the con-
verted transition category, each category is further di-
vided by a cut at pTt= 60 GeV into two categories, low
pTt and high pTt. MC studies show that signal events,
particularly those produced via VBF or associated pro-
duction (WH/ZH and t  tH), have on average larger pTt
than background events. The number of data events in
each category, as well as the sum of all the categories,
which is denoted inclusive, are given in Table 4.

5.4. Signal modelling
The description of the Higgs boson signal is obtained

from MC, as described in Section 3. The cross sections
multiplied by the branching ratio into two photons are
given in Table 4 for mH = 126.5 GeV. The number of
signal events produced via the ggF process is rescaled
to take into account the expected destructive interfer-
ence between the gg→ γγ continuum background and
ggF [103], leading to a reduction of the production rate
by 2−5% depending on mH and the event category. For
both the 7 TeV and 8 TeV MC samples, the fractions of
ggF, VBF, WH, ZH and t  tH production are approxi-
mately 88%, 7%, 3%, 2% and 0.5%, respectively, for
mH = 126.5 GeV.

In the simulation, the shower shape distributions
are shifted slightly to improve the agreement with the
data [97], and the photon energy resolution is broad-
ened (by approximately 1% in the barrel calorimeter

and 1.2−2.1% in the end-cap regions) to account for
small differences observed between Z→ e+e− data and
MC events. The signal yields expected for the 7 TeV
and 8 TeV data samples are given in Table 4. The over-
all selection efficiency is about 40%.

The shape of the invariant mass of the signal in each
category is modelled by the sum of a Crystal Ball func-
tion [104], describing the core of the distribution with
a width σCB, and a Gaussian contribution describing
the tails (amounting to <10%) of the mass distribution.
The expected full-width-at-half-maximum (FWHM) is
3.9 GeV and σCB is 1.6 GeV for the inclusive sample.
The resolution varies with event category (see Table 4);
the FWHM is typically a factor 2.3 larger than σCB.

5.5. Background modelling

The background in each category is estimated from
data by fitting the diphoton mass spectrum in the mass
range 100−160 GeV with a selected model with free pa-
rameters of shape and normalisation. Different models
are chosen for the different categories to achieve a good
compromise between limiting the size of a potential bias
while retaining good statistical power. A fourth-order
Bernstein polynomial function [105] is used for the un-
converted rest (low pTt), converted rest (low pTt) and in-
clusive categories, an exponential function of a second-
order polynomial for the unconverted central (low pTt),
converted central (low pTt) and converted transition cat-
egories, and an exponential function for all others.

Studies to determine the potential bias have been per-
formed using large samples of simulated background
events complemented by data-driven estimates. The
background shapes in the simulation have been cross-
checked using data from control regions. The poten-
tial bias for a given model is estimated, separately for
each category, by performing a maximum likelihood fit
to large samples of simulated background events in the
mass range 100−160 GeV, of the sum of a signal plus
the given background model. The signal shape is taken
to follow the expectation for a SM Higgs boson; the sig-
nal yield is a free parameter of the fit. The potential bias
is defined by the largest absolute signal yield obtained
from the likelihood fit to the simulated background sam-
ples for hypothesised Higgs boson masses in the range
110−150 GeV. A pre-selection of background parame-
terisations is made by requiring that the potential bias,
as defined above, is less than 20% of the statistical un-
certainty on the fitted signal yield. The pre-selected pa-
rameterisation in each category with the best expected
sensitivity for mH = 125 GeV is selected as the back-
ground model.
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Use of extra information by 
performing a fit to the background … 

[= 200/√10000] 

Bruno Lenzi (CERN) Search for the Higgs boson in the diphoton decay channel with the ATLAS detector SUSY2012

Diphoton invariant mass spectra

13

2011 + 2012

 w
ei

gh
ts

 / 
2 

G
eV

Y

20

40

60

80

100

aaAH

Data S/B Weighted
Sig+Bkg Fit

Bkg (4th order polynomial)

ATLAS

-1Ldt=4.8fb0=7 TeV, s
-1Ldt=5.9fb0=8 TeV, s

=126.5 GeV)
H

(m

 [GeV]aam
100 110 120 130 140 150 160   

w
ei

gh
ts

 - 
Bk

g
Y

-8
-4
0
4
8

Ev
en

ts
 / 

2 
G

eV

500

1000

1500

2000

2500

3000

3500

aaAH

Data
Sig+Bkg Fit

Bkg (4th order polynomial)

-1Ldt=4.8fb0=7 TeV, s
-1Ldt=5.9fb0=8 TeV, s

ATLAS
=126.5 GeV)

H
(m

 [GeV]aam
100 110 120 130 140 150 160

Ev
en

ts
 - 

Bk
g

-200
-100

0
100
200

“Inclusive” “Weighted”

Weights given by expected 
log(1 + S/B) for each category

and optimizing by channel categorization …

Needs procedure to combine …

Naive approach:



Background Model SystematicsTable 3: Systematic uncertainty on the number of signal events fitted due to the background parametriza-

tion, given in number of events. Three different background parametrizations are used depending on the

category, an exponential function, a fourth-order Bernstein polynomial and the exponential of a second-

order polynomial.

Category Parametrization Uncertainty [Nevt]√
s = 7 TeV

√
s = 8 TeV

Inclusive 4th order pol. 7.3 10.6

Unconverted central, low pTt Exp. of 2nd order pol. 2.1 3.0

Unconverted central, high pTt Exponential 0.2 0.3

Unconverted rest, low pTt 4th order pol. 2.2 3.3

Unconverted rest, high pTt Exponential 0.5 0.8

Converted central, low pTt Exp. of 2nd order pol. 1.6 2.3

Converted central, high pTt Exponential 0.3 0.4

Converted rest, low pTt 4th order pol. 4.6 6.8

Converted rest, high pTt Exponential 0.5 0.7

Converted transition Exp. of 2nd order pol. 3.2 4.6

2-jets Exponential 0.4 0.6

Table 4: Higgs boson production cross section σ (total and the contributions from gluon fusion and VBF)

in pb for a SM Higgs boson with mH = 125 GeV for
√

s = 7 TeV and
√

s = 8 TeV [67], as well as the

branching ratio B of Higgs boson decaying to two photons [67].

√
s mH B(H → γγ) σ(pp→ H) σ(gg→ H) σVBF

7 TeV 125 GeV 2.3 × 10−3 17.5 pb 15.3 pb 1.2 pb

8 TeV 125 GeV 2.3 × 10−3 22.3 pb 19.5 pb 1.6 pb

tuning and finite mass effects are taken into account directly in POWHEG [47]. The next-to-leading order

(NLO) EW corrections are applied [48,49]. These results are compiled in [50–52] assuming factorization

between QCD and EW corrections. The cross sections for the VBF process are calculated with full NLO

QCD and EW corrections [53–55], and approximate NNLO QCD corrections are applied [56]. The

W/ZH processes are calculated at NLO [57] and at NNLO [58], and NLO EW radiative corrections [59]

are applied. The full NLO QCD corrections for tt̄H are calculated [60–63]. The Higgs boson cross

sections, branching ratios [64–66] and their uncertainties are compiled in [47, 67].

The production cross section for a Higgs boson with mH = 125 GeV is given in Table 4, which also

details the contributions from gluon fusion and vector-boson fusion and the Higgs boson decay branching

fraction to two photons. The yields for gluon fusion are, in the following, corrected for destructive

interference with the gg→ γγ process [68]. These corrections range between −2% and −5%, depending

on the diphoton invariant mass.

6.2 Signal efficiency and yield

The expected Higgs boson signal efficiency and yields are computed and summarized in Table 5. The

expected signal yield for the different production processes is normalized to an integrated luminosity

of 4.8 fb−1 for the
√

s = 7 TeV data and to 5.9 fb−1 for the
√

s = 8 TeV data, along with the selection
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Limit Setting Procedure

PDF
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A deviation from the expectation, 
i.e. the background only hypothesis ... !
p-value: probability that a result is  
as or less compatible with expectation … !
Control region α (or size α)  
defines the significance level … !
If p < α hypothesis is rejected …

Test statistics Q  
for e.g. background only hypothesis

Exclusion: α = 5% [typical] 
i.e. exclusion with 95% CL … 
!
Discovery: α = 2.87 × 10-7 [corresponds to 5σ]



Limit Setting Procedure

that is used as parameter of interest [7, 8]. This parameter is referred to as signal-strength

modifier. The CL
S

method is then used to constrain the value of µ [4]. The standard

model Higgs boson hypothesis for a certain Higgs mass is said to be excluded, if µ is found

to be less than one with a certain confidence. We point out that this procedure entails

some conceptual problems.

• A separation between Higgs (signal) and non-Higgs (background) contributions is

only valid if the Higgs width is small with respect to its mass. For low Higgs masses,

m
h

< 400 GeV, such an approximation is valid, as interference terms can safely be

neglected. However, in the high Higgs mass regime, m
h

> 400GeV, sizable corrections

[9] have to be taken into account. In general, these corrections will have a di↵erent

scaling behavior with µ than the signal contributions.

• The standard model does not provide a free parameter that could be used to uni-

formly rescale the cross-section of processes involving the Higgs boson. One way to

introduce a physical parameter of interest is to consider more complex Higgs models,

such as the strongly interacting light Higgs model [10], which contains additional free

parameters. The cross-section should be evaluated consistently from the model, tak-

ing into account non-linear scaling of the cross-section from higher order corrections.

Model predictions for hadron colliders are hindered by several obstacles.

• Observables are obtained using a perturbative expansion. This introduces an uncer-

tainty due to missing higher order corrections.

• Parton distribution functions cannot be extracted from perturbation theory and are

obtained from complementary measurements. Consequently, the statistical and sys-

tematic uncertainties of these measurements must be propagated to any calculated

cross-section.

The results of theoretical calculations are commonly stated in combination with the cor-

responding perturbative uncertainty and an overall parton density function uncertainty

[11, 12]. Theoretical cross-section uncertainties must be propagated through limit-setting

procedures. In the CL
S

method they are taken into account using nuisance parameters. In

the section 2.1 the treatment of nuisance parameters in the CLs method in general is dis-

cussed. In section 3 we discuss the use of nuisance parameters for the specific uncertainties

stated above.

Experimental collaborations use additional nuisance parameters to account for exper-

iment specific uncertainties, such as detector e�ciencies. The focus of this article is on

theoretical uncertainties and we will neglect other uncertainties and their nuisance param-

eters.

2.1 Likelihood ratios

Let X = {X
i

} be a set of measurements and g(X
i

|µ, ⌫) be the probability density for the

observation X
i

according to a model with parameters of interest µ and nuisance parameters
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Probability to measure the values X 
in an single experiment:⌫ = {⌫
j

}. Then the probability to measure the values X in a single experiment is

P =
NY

i=1

P (X
i

) =
NY

i=1

g(X
i

|µ, ⌫)dX
i

= L(X|µ, ⌫)
NY

i=1

dX
i

, (2.1)

where P (X
i

) is the probability to find a measurement in an infinitesimal interval around

X
i

. The quantity

L(X|µ, ⌫) =
NY

i=1

g(X
i

|µ, ⌫), (2.2)

which appears as a joint probability density function, is the likelihood [13–19].

In the case of a collider experiment, X
i

is the number of observed events in an ex-

perimentally defined region i of the phase-space. The cross-section for an event that the

experiments are interested in is very low compared to the total cross-section of any scat-

tering event happening. Therefore the number of interesting events is Poisson distributed

and g(X
i

| µ, ⌫) = e��i�Xi
i

/X
i

! is the Poisson probability of observing X
i

events given

the model prediction �
i

= �
i

(µ, ⌫). The functional dependence of g on �
i

is not written

explicitly as we want to stress the implicit dependence on µ and ⌫. The set of predictions

for all phase-space regions is in the following denoted by �(µ, ⌫) = {�
i

(µ, ⌫)}.
In order to compute �(µ, ⌫) all input parameters are set to specific values. The value

of a nuisance parameter is usually constrained by independent experiments or by physical

assumptions. These constraints are modeled as outcomes of an auxiliary measurement

by defining the likelihood ⇡(⌫̃|⌫), with a predicted value ⌫, of the outcome that assigns

a probability to every value ⌫̃ of a nuisance parameter. If a nuisance parameter, such

as the parton density function uncertainty, has been obtained from a real experiment

the confidence intervals and associated distributions are used to determine ⇡. For an

unmeasured parameter such as the perturbative uncertainty, the distribution ⇡ has to be

modeled from assumptions.

In the CL
S

method we define the likelihood for a specific outcome of a measurement

as the product of the likelihood to observe the measured number of events X times the

likelihood to observe a nuisance parameter value ⌫̃ in an independent experiment.

L(X|µ, ⌫) =
Y
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i
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X
i

!
⇥
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j

⇡
j

(⌫̃
j

|⌫
j

). (2.3)

The left product runs over all regions of the phase-space, while the right product enumerates

all nuisance parameters used. We drop the dependence on ⌫̃ on the left-hand side of 2.3

and for this section fix ⌫̃ to the default value of the parameter, e.g. the world-average for a

parameter that has been measured in independent experiments or the most plausible value

for a theoretical parameter. We explain below how to obtain ⌫ in the CL
S

method.

We assess the agreement of the measurements X with one prediction �(µ, ⌫) relative

to the agreement with another prediction �(µ0, ⌫ 0) and therefore define the likelihood ratio

(LR).

LR =
L(X|µ, ⌫)
L(X|µ0, ⌫ 0)

. (2.4)
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the confidence intervals and associated distributions are used to determine ⇡. For an

unmeasured parameter such as the perturbative uncertainty, the distribution ⇡ has to be

modeled from assumptions.

In the CL
S

method we define the likelihood for a specific outcome of a measurement

as the product of the likelihood to observe the measured number of events X times the

likelihood to observe a nuisance parameter value ⌫̃ in an independent experiment.

L(X|µ, ⌫) =
Y

i

e��i(µ,⌫)�Xi
i

(µ, ⌫)

X
i

!
⇥
Y

j

⇡
j

(⌫̃
j

|⌫
j

). (2.3)
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Furthermore:
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as the product of the likelihood to observe the measured number of events X times the

likelihood to observe a nuisance parameter value ⌫̃ in an independent experiment.

L(X|µ, ⌫) =
Y

i

e��i(µ,⌫)�Xi
i

(µ, ⌫)

X
i

!
⇥
Y

j

⇡
j

(⌫̃
j

|⌫
j

). (2.3)
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all nuisance parameters used. We drop the dependence on ⌫̃ on the left-hand side of 2.3

and for this section fix ⌫̃ to the default value of the parameter, e.g. the world-average for a

parameter that has been measured in independent experiments or the most plausible value

for a theoretical parameter. We explain below how to obtain ⌫ in the CL
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method.

We assess the agreement of the measurements X with one prediction �(µ, ⌫) relative

to the agreement with another prediction �(µ0, ⌫ 0) and therefore define the likelihood ratio
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which appears as a joint probability density function, is the likelihood [13–19].
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as the parton density function uncertainty, has been obtained from a real experiment

the confidence intervals and associated distributions are used to determine ⇡. For an

unmeasured parameter such as the perturbative uncertainty, the distribution ⇡ has to be

modeled from assumptions.

In the CL
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as the product of the likelihood to observe the measured number of events X times the
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all nuisance parameters used. We drop the dependence on ⌫̃ on the left-hand side of 2.3
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for a theoretical parameter. We explain below how to obtain ⌫ in the CL
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method.

We assess the agreement of the measurements X with one prediction �(µ, ⌫) relative

to the agreement with another prediction �(µ0, ⌫ 0) and therefore define the likelihood ratio
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L(X|µ0, ⌫ 0)
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modeled from assumptions.

In the CL
S

method we define the likelihood for a specific outcome of a measurement

as the product of the likelihood to observe the measured number of events X times the
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for a theoretical parameter. We explain below how to obtain ⌫ in the CL
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perimentally defined region i of the phase-space. The cross-section for an event that the

experiments are interested in is very low compared to the total cross-section of any scat-

tering event happening. Therefore the number of interesting events is Poisson distributed

and g(X
i

| µ, ⌫) = e��i�Xi
i

/X
i

! is the Poisson probability of observing X
i

events given

the model prediction �
i

= �
i

(µ, ⌫). The functional dependence of g on �
i

is not written

explicitly as we want to stress the implicit dependence on µ and ⌫. The set of predictions

for all phase-space regions is in the following denoted by �(µ, ⌫) = {�
i

(µ, ⌫)}.
In order to compute �(µ, ⌫) all input parameters are set to specific values. The value
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by defining the likelihood ⇡(⌫̃|⌫), with a predicted value ⌫, of the outcome that assigns
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as the parton density function uncertainty, has been obtained from a real experiment

the confidence intervals and associated distributions are used to determine ⇡. For an

unmeasured parameter such as the perturbative uncertainty, the distribution ⇡ has to be
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In the CL
S
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Quantifies agreement of X 
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Profiled log-likelihood ratio:

A quantity, such as the likelihood ratio, that distinguishes two predictions based on

their agreement with a set of data is referred to as test-statistic. In general there are

multiple ways of defining the test-statistic used in the CL
S

method [20, 21] that di↵er

from analysis to analysis. In this work, we follow the prescription by ATLAS and CMS

outlined in [7, 8] and define our test-statistic, called profiled log-likelihood ratio (LLR), as

q
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(X) =

(
�2 log L(X|µ,⌫̂µ)

L(X|µ0
,⌫̂µ0 )

, µ � µ0 � 0

0 , else
(2.5)

We choose the nuisance parameters in this definition such that the likelihood of the ob-

servation is maximized. This means we obtain ⌫̂
µ

by performing a constrained maximum

likelihood fit, i.e. by finding ⌫̂
µ

for a given µ such that

L(X|µ, ⌫̂
µ

) � L(X|µ, ⌫) 8 ⌫. (2.6)

µ0 is the value of the parameter of interest that corresponds to the global maximum of the

likelihood function given X, i.e. µ0 and ⌫̂
µ

0 are obtained such that

L(X|µ0, ⌫̂
µ

0) � L(X|µ, ⌫) 8 µ, ⌫. (2.7)

The profiled LLR is a positive quantity. The larger it is the more X disagrees with the

prediction �(µ, ⌫̂
µ

) compared to �(µ0, ⌫̂
µ

0). To ensure that only positively scaled cross-

sections are considered, we constrain µ0 to be non-negative. The fact that the test-statistic

is defined to be non-zero only for µ0  µ implies that the limits on the signal strength are

one-sided, i.e. only upper limits are considered.

2.2 Probability density function of the test-statistic

As the outcome X of a measurement is subject to statistical fluctuations q
µ

(X) will assume

di↵erent values in independent measurements. The distribution of these values, assuming

that the prediction �(µ, ⌫̂
µ

) describes the expectation value of the measurement outcome

X, is referred to as f(q
µ

|µ, ⌫̂
µ

).

Analytic evaluation of f(q
µ

|µ, ⌫̂
µ

) is in general impossible. One way to approximate f

is to evaluate q for a large number of simulated toy measurements or replicas [7]. First, a

replica measurement XR is obtained by Monte-Carlo generating Poissonian random num-

bers XR

i

for every considered phase-space region i with an expected number of events

�
i

(µ, ⌫̂
µ

). We find the values of the nuisance parameters used to derive �
i

(µ, ⌫̂
µ

) by per-

forming the fit of equation 2.6 to X for a given value of µ. Next we consider the statistical

fluctuation in the auxiliary measurement of the nuisance parameters as in [8]. Therefore

we generate random numbers ⌫̃R distributed according to ⇡(⌫̃R|⌫̂
µ

) using a Monte-Carlo.

In the next step the replicated values XR and ⌫̃R are treated as if they were the

outcome of a measurement that is entirely independent of the original measurement. For

these values we want to compute the test-statistic. The constrained likelihood fit for the

given value µ as in equation 2.6 is performed to obtain ⌫̂R
µ

. From the unconstrained fit of

equation 2.7 we obtain the values µ0R and ⌫̂R
µ

0R . Finally, the test-statistic q
µ

(XR) can be

calculated as defined in equation 2.5.
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ATLAS Statistics Forum
5 July, 2011

The CLs method: information for conference speakers

This note provides a brief description of the CLs procedure used for setting upper limits.
More information can be found in the original references for the method [1]. This is one of the
three methods for setting limits mentioned in the Review of Particle Physics by the PDG [2],
and has been widely used in HEP in recent years. The primary motivation for using CLs at
this time in ATLAS is to allow for comparison with other experiments (CMS and Tevatron).

As with all (frequentist) upper limits, those from the CLs method are desiged to be greater
than the true value of the parameter with a probability at least equal to the stated confidence
level (CL), taken by convention to be 95%. The CLs method is conservative in the sense that
this coverage probability can, depending on the true value of the parameter, be greater than
95% (see below).

Upper limits from the CLs procedure are the same as those from the Bayesian method in
two important special cases, namely, for limits on the mean value of a Poisson or Gaussian
distributed measurement. In both cases, a Bayesian limit based on a constant prior for the
mean leads to the same limit as CLs.

Background information

We assume that the analyst has constructed a test statistic q used to distinguish between the
hypothesis that the data contain signal and background (s + b) and that of background only
(b). These correspond to the distributions f(q|s + b) and f(q|b), as indicated in Fig. 1. For
the moment we leave open the details of how the test statistic q is defined.
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Figure 1: Distributions of the test vari-
able q under the s+b and b hypotheses (see
text).

Suppose the actual data result in a value qobs of the test variable. The p-value of the s+ b
hypothesis is defined as the probability, under assumption of this hypothesis, to find a value
of q with equal or lesser compatibility with the s + b model relative to what is found with
qobs. As the background-only distribution f(q|b) is here shifted to the right, one takes the
p-value of s+b to be the probability to find q greater than or equal to qobs, under assumption
of the s + b hypothesis, i.e.,

1
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As the outcome X of a measurement is subject to statistical fluctuations q
µ

(X) will assume

di↵erent values in independent measurements. The distribution of these values, assuming

that the prediction �(µ, ⌫̂
µ

) describes the expectation value of the measurement outcome

X, is referred to as f(q
µ

|µ, ⌫̂
µ

).

Analytic evaluation of f(q
µ

|µ, ⌫̂
µ

) is in general impossible. One way to approximate f

is to evaluate q for a large number of simulated toy measurements or replicas [7]. First, a

replica measurement XR is obtained by Monte-Carlo generating Poissonian random num-

bers XR

i

for every considered phase-space region i with an expected number of events

�
i

(µ, ⌫̂
µ

). We find the values of the nuisance parameters used to derive �
i

(µ, ⌫̂
µ

) by per-

forming the fit of equation 2.6 to X for a given value of µ. Next we consider the statistical

fluctuation in the auxiliary measurement of the nuisance parameters as in [8]. Therefore

we generate random numbers ⌫̃R distributed according to ⇡(⌫̃R|⌫̂
µ

) using a Monte-Carlo.

In the next step the replicated values XR and ⌫̃R are treated as if they were the

outcome of a measurement that is entirely independent of the original measurement. For

these values we want to compute the test-statistic. The constrained likelihood fit for the

given value µ as in equation 2.6 is performed to obtain ⌫̂R
µ

. From the unconstrained fit of

equation 2.7 we obtain the values µ0R and ⌫̂R
µ

0R . Finally, the test-statistic q
µ

(XR) can be

calculated as defined in equation 2.5.
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The CLs method: information for conference speakers

This note provides a brief description of the CLs procedure used for setting upper limits.
More information can be found in the original references for the method [1]. This is one of the
three methods for setting limits mentioned in the Review of Particle Physics by the PDG [2],
and has been widely used in HEP in recent years. The primary motivation for using CLs at
this time in ATLAS is to allow for comparison with other experiments (CMS and Tevatron).

As with all (frequentist) upper limits, those from the CLs method are desiged to be greater
than the true value of the parameter with a probability at least equal to the stated confidence
level (CL), taken by convention to be 95%. The CLs method is conservative in the sense that
this coverage probability can, depending on the true value of the parameter, be greater than
95% (see below).

Upper limits from the CLs procedure are the same as those from the Bayesian method in
two important special cases, namely, for limits on the mean value of a Poisson or Gaussian
distributed measurement. In both cases, a Bayesian limit based on a constant prior for the
mean leads to the same limit as CLs.

Background information

We assume that the analyst has constructed a test statistic q used to distinguish between the
hypothesis that the data contain signal and background (s + b) and that of background only
(b). These correspond to the distributions f(q|s + b) and f(q|b), as indicated in Fig. 1. For
the moment we leave open the details of how the test statistic q is defined.
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Figure 1: Distributions of the test vari-
able q under the s+b and b hypotheses (see
text).

Suppose the actual data result in a value qobs of the test variable. The p-value of the s+ b
hypothesis is defined as the probability, under assumption of this hypothesis, to find a value
of q with equal or lesser compatibility with the s + b model relative to what is found with
qobs. As the background-only distribution f(q|b) is here shifted to the right, one takes the
p-value of s+b to be the probability to find q greater than or equal to qobs, under assumption
of the s + b hypothesis, i.e.,

1

Log-likelihood ratio …

Hypothesis 
Signal+Background

Hypothesis 
Background only

P-value:  !
Probability, of qμ with equal or lesser  
compatibility with the hypothesis relative  
to what is found with qobs. 

for μ = 1

Log-likelihood ratio LEP

ps+b = P (q ≥ qobs|s + b) =
∫ ∞

qobs

f(q|s + b) dq . (1)

In a similar way, one takes the p-value of the background-only hypothesis to be

pb = P (q ≤ qobs|b) =
∫ qobs

−∞
f(q|b) dq . (2)

In what is called the “CLs+b” method, one carries out a standard statistical test of the
s + b hypothesis based on its p-value, ps+b. The signal model is regarded as excluded at a
confidence level of 1 − α = 95% if one finds

ps+b < α , (3)

where, e.g., α = 0.05. A confidence interval at confidence level CL = 1−α for the rate of the
signal process can be constructed from those values of the rate s (or cross section) that are
not excluded, and the upper limit sup is the largest value of s not excluded. By construction,
the interval [0, sup] will cover s with a probability of at least 95%, regardless of the value of
s.

The problem with the CLs+b procedure is that one will exclude, with probability close to
α (i.e, 5%) hypotheses to which one has little or no sensitivity. This corresponds to the case
where the expected number of signal events is much less than that of background. Such a
scenario is illustrated in Fig. 2, and corresponds to having the distributions of q under both
the b and s + b hypotheses almost overlapping with each other.

If, for example, the expected numbers of signal and background events are s and b,
respectively, and one has s ≪ b, then if the observed number of events has a sufficient
downward fluctuation relative to s + b (which is approximately equal to b), then this value
of s will be excluded. In the limit where s ≪ b, one might want intuitively this exclusion
probability to go to zero, but in fact in the CLs+b procedure it approaches α = 5%. Given
that one carries out many tests for different signal models, it is not desirable that one out of
twenty searches where one has no sensitivity should result in exclusion.
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not excluded, and the upper limit sup is the largest value of s not excluded. By construction,
the interval [0, sup] will cover s with a probability of at least 95%, regardless of the value of
s.

The problem with the CLs+b procedure is that one will exclude, with probability close to
α (i.e, 5%) hypotheses to which one has little or no sensitivity. This corresponds to the case
where the expected number of signal events is much less than that of background. Such a
scenario is illustrated in Fig. 2, and corresponds to having the distributions of q under both
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If, for example, the expected numbers of signal and background events are s and b,
respectively, and one has s ≪ b, then if the observed number of events has a sufficient
downward fluctuation relative to s + b (which is approximately equal to b), then this value
of s will be excluded. In the limit where s ≪ b, one might want intuitively this exclusion
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[e.g. Dulat et al., arXiv:1204.3851v2]



Limit Setting Procedure

Log-likelihood ratio …

P-value:  !
Probability, of qμ with equal or lesser  
compatibility with the hypothesis relative  
to what is found with qobs. 

104

103

102

0 5 10 15 20
Test statistic qμ

Nu
m

be
r o

f t
oy

s
Observed value

f(qμ=1| μ=0)
f(qμ=1| μ=1)

Log-likelihood ratio ATLASProfiled

By repeating this procedure for di↵erent replicas, we sample the distribution f(q
µ

|µ, ⌫̂
µ

).

In principle, it is possible to determine the distribution with arbitrary precision. However,

computational costs increase with the number of considered replicas.

Additionally, the statistical fluctuation of the test-statistic, if the observation follows

the background-only (µ = 0) prediction, is considered. Consequently, we determine the

distribution f(q
µ

|0, ⌫̂0) analogue to f(q
µ

|µ, ⌫̂
µ

). The only di↵erence being that the replicas

are generated from the prediction �(0, ⌫̂0).

Another computationally less expensive alternative to obtain the distribution f(q
µ

|µ, ⌫̂
µ

)

is to use an approximate analytical expression as described in [22]. This approach, referred

to as the Asimov method, is based on results of [23, 24] stating that for a large number of

samples N in the measurement X the likelihood ratio can be approximated by

q
µ

(X) ⇠
✓
µ� µ0

�

◆2

+O
✓

1p
N

◆
. (2.8)

The assumption underlying this approximation is that µ0 is Gaussian distributed around

its true mean µ0 with a standard deviation �. We obtain the standard deviation � by using

�2 ⇡ (µ� µ0)2

q
µ

(XA)
, (2.9)

where q
µ

(XA) is the test-statistic evaluated for the so-called Asimov set. The Asimov set is

defined as a set with infinite statistics corresponding to the prediction �(µ, ⌫̂
µ

). Therefore,

observables evaluated using the Asimov set will equal their true values, i.e. µ0 = µ0. We can

determine the Asimov set by either calculating the expected values of the hypothesis exactly

or approximate it by performing a su�ciently high statistics Monte-Carlo simulation of the

prediction.

The test-statistic can then be shown [22] to follow a non-central �2-distribution

f(q
µ

|µ, ⌫̂
µ

) =
1

2
p
2⇡q

µ

⇣
e�

1
2(

p
qµ+

p
⇤)2 + e�

1
2(

p
qµ�

p
⇤)2

⌘
, (2.10)

with

⇤ =

✓
µ� µ0

�

◆2

. (2.11)

Similarly, it is possible to obtain the distribution f(q
µ

|0, ⌫̂0) using the Asimov method.

2.3 The CLS value and exclusion limits

Given a measurement X and the corresponding observed value q
µ

(X) of the test-statistic

as well as the corresponding distributions f(q
µ

|µ, ⌫̂
µ

) and f(q
µ

|0, ⌫̂0), the statistical signifi-
cance of the observation, i.e. whether it arose by chance, needs to be determined. For that

purpose, the p-value with respect to the prediction is evaluated:

CL
S+B

(µ) =

Z 1

qµ(X)
dq

µ

f(q
µ

|µ, ⌫̂
µ

) (2.12)
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The p-value CL
S+B

is the cumulative probability of observing a measurement X 0 with

q
µ

(X 0) � q
µ

(X), assuming that the prediction �(µ, ⌫̂
µ

) correctly describes the measurement

outcome. Therefore, large values of CL
S+B

suggest a high chance that the observation is

compatible with �(µ, ⌫̂
µ

).

The probability to observe a measurement that has a larger q
µ

than the observed one, if

the background-only prediction describes the observation, is given by the p-value 1�CL
B

.

1� CL
B

(µ) =

Z 1

qµ(X)
dq

µ

f(q
µ

|0, ⌫̂0) (2.13)

This probability is a measure for the disagreement of X with the background-only predic-

tion �(0, ⌫̂0). For Higgs boson searches this quantity gives an insight into how frequently a

measurement suggesting a higher signal contribution than X would be obtained by back-

ground fluctuations.

We define the ratio

CL
S

(µ) ⌘ CL
S+B

(µ)

1� CL
B

(µ)
. (2.14)

as measure of how well �(µ, ⌫̂
µ

) can be statistically distinguished from �(µ0, ⌫̂
µ

0) based on

X. In the literature, this is referred to as CL
S

confidence level. Small values of CL
S

(µ)

suggest that X strongly favors �(µ0, ⌫̂
µ

0) over �(µ, ⌫̂
µ

). Normalizing to 1 � CL
B

ensures

su�ciently confident statements, even in the case that fluctuations of the background-only

prediction are likely to be similar to the best-fit prediction �(µ0, ⌫̂
µ

0).

We want to find the minimum µ↵% of the parameter of interest corresponding to a

prediction �(µ↵%, ⌫̂
µ

↵%) that can be distinguished from �(µ0, ⌫̂
µ

0) at an ↵% CL
S

confidence

level. To achieve this, we invert the relation CL
S

(µ) = 1� ↵% [25], such that

µ↵% = CL�1
S

(1� ↵%). (2.15)

Given some measurement X, we can define a prediction of the model with µ < µ↵% to

be indistinguishable from the best-fit prediction at an ↵% CL
S

confidence level. Conversely,

a prediction corresponding to µ > µ↵% is said to be statistically distinguished and excluded

at an ↵% CL
S

confidence level. µ↵% is referred to as exclusion limit for the parameter of

interest µ.

3 Nuisance parameters for theoretical uncertainties

The renormalization and factorization scale uncertainty and parton distribution uncertainty

have large e↵ects on cross-section predictions for the LHC. We include these uncertainties

in our analysis using nuisance parameters. We consider nuisance parameters that directly

a↵ect the prediction of the signal cross-section:

�
S

= �0
S

⇥ ⌫
scale

⇥ ⌫
pdf

(3.1)

�0
S

is the signal cross-section predicted when choosing the default values for all pa-

rameters, ⌫
scale

is the perturbative uncertainty nuisance parameter and ⌫
pdf

is the parton

density nuisance parameter.
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ps+b = P (q ≥ qobs|s + b) =
∫ ∞

qobs

f(q|s + b) dq . (1)

In a similar way, one takes the p-value of the background-only hypothesis to be

pb = P (q ≤ qobs|b) =
∫ qobs

−∞
f(q|b) dq . (2)

In what is called the “CLs+b” method, one carries out a standard statistical test of the
s + b hypothesis based on its p-value, ps+b. The signal model is regarded as excluded at a
confidence level of 1 − α = 95% if one finds

ps+b < α , (3)

where, e.g., α = 0.05. A confidence interval at confidence level CL = 1−α for the rate of the
signal process can be constructed from those values of the rate s (or cross section) that are
not excluded, and the upper limit sup is the largest value of s not excluded. By construction,
the interval [0, sup] will cover s with a probability of at least 95%, regardless of the value of
s.

The problem with the CLs+b procedure is that one will exclude, with probability close to
α (i.e, 5%) hypotheses to which one has little or no sensitivity. This corresponds to the case
where the expected number of signal events is much less than that of background. Such a
scenario is illustrated in Fig. 2, and corresponds to having the distributions of q under both
the b and s + b hypotheses almost overlapping with each other.

If, for example, the expected numbers of signal and background events are s and b,
respectively, and one has s ≪ b, then if the observed number of events has a sufficient
downward fluctuation relative to s + b (which is approximately equal to b), then this value
of s will be excluded. In the limit where s ≪ b, one might want intuitively this exclusion
probability to go to zero, but in fact in the CLs+b procedure it approaches α = 5%. Given
that one carries out many tests for different signal models, it is not desirable that one out of
twenty searches where one has no sensitivity should result in exclusion.
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The p-value CL
S+B

is the cumulative probability of observing a measurement X 0 with

q
µ

(X 0) � q
µ

(X), assuming that the prediction �(µ, ⌫̂
µ

) correctly describes the measurement

outcome. Therefore, large values of CL
S+B

suggest a high chance that the observation is

compatible with �(µ, ⌫̂
µ
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The probability to observe a measurement that has a larger q
µ

than the observed one, if

the background-only prediction describes the observation, is given by the p-value 1�CL
B

.
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This probability is a measure for the disagreement of X with the background-only predic-

tion �(0, ⌫̂0). For Higgs boson searches this quantity gives an insight into how frequently a

measurement suggesting a higher signal contribution than X would be obtained by back-

ground fluctuations.

We define the ratio

CL
S

(µ) ⌘ CL
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1� CL
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as measure of how well �(µ, ⌫̂
µ

) can be statistically distinguished from �(µ0, ⌫̂
µ

0) based on

X. In the literature, this is referred to as CL
S

confidence level. Small values of CL
S

(µ)

suggest that X strongly favors �(µ0, ⌫̂
µ

0) over �(µ, ⌫̂
µ

). Normalizing to 1 � CL
B

ensures

su�ciently confident statements, even in the case that fluctuations of the background-only

prediction are likely to be similar to the best-fit prediction �(µ0, ⌫̂
µ

0).

We want to find the minimum µ↵% of the parameter of interest corresponding to a

prediction �(µ↵%, ⌫̂
µ

↵%) that can be distinguished from �(µ0, ⌫̂
µ

0) at an ↵% CL
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confidence

level. To achieve this, we invert the relation CL
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(µ) = 1� ↵% [25], such that

µ↵% = CL�1
S

(1� ↵%). (2.15)

Given some measurement X, we can define a prediction of the model with µ < µ↵% to

be indistinguishable from the best-fit prediction at an ↵% CL
S

confidence level. Conversely,

a prediction corresponding to µ > µ↵% is said to be statistically distinguished and excluded

at an ↵% CL
S

confidence level. µ↵% is referred to as exclusion limit for the parameter of

interest µ.

3 Nuisance parameters for theoretical uncertainties

The renormalization and factorization scale uncertainty and parton distribution uncertainty

have large e↵ects on cross-section predictions for the LHC. We include these uncertainties

in our analysis using nuisance parameters. We consider nuisance parameters that directly

a↵ect the prediction of the signal cross-section:

�
S

= �0
S

⇥ ⌫
scale

⇥ ⌫
pdf

(3.1)

�0
S

is the signal cross-section predicted when choosing the default values for all pa-

rameters, ⌫
scale

is the perturbative uncertainty nuisance parameter and ⌫
pdf

is the parton

density nuisance parameter.
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Probability of observing Xʹ with qμ(Xʹ) ≥ qμ(X) 
Large: observation compatible with λ(μ, …)

Probability of observing Xʹ with qμ(Xʹ) ≥ qμ(X) 
Large: observation disagrees with λ(0, …)

[e.g. Dulat et al., arXiv:1204.3851v2]
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CLS Method …
Penalization in case of small sensitivity …

ps+b = P (q ≥ qobs|s + b) =
∫ ∞

qobs

f(q|s + b) dq . (1)

In a similar way, one takes the p-value of the background-only hypothesis to be

pb = P (q ≤ qobs|b) =
∫ qobs

−∞
f(q|b) dq . (2)

In what is called the “CLs+b” method, one carries out a standard statistical test of the
s + b hypothesis based on its p-value, ps+b. The signal model is regarded as excluded at a
confidence level of 1 − α = 95% if one finds

ps+b < α , (3)

where, e.g., α = 0.05. A confidence interval at confidence level CL = 1−α for the rate of the
signal process can be constructed from those values of the rate s (or cross section) that are
not excluded, and the upper limit sup is the largest value of s not excluded. By construction,
the interval [0, sup] will cover s with a probability of at least 95%, regardless of the value of
s.

The problem with the CLs+b procedure is that one will exclude, with probability close to
α (i.e, 5%) hypotheses to which one has little or no sensitivity. This corresponds to the case
where the expected number of signal events is much less than that of background. Such a
scenario is illustrated in Fig. 2, and corresponds to having the distributions of q under both
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Figure 2: Distributions of the test vari-
able q under the s + b and b hypotheses in
an example where one has very little sen-
sitivity to the signal model.
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The p-value CL
S+B

is the cumulative probability of observing a measurement X 0 with
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µ
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(X), assuming that the prediction �(µ, ⌫̂
µ

) correctly describes the measurement

outcome. Therefore, large values of CL
S+B

suggest a high chance that the observation is

compatible with �(µ, ⌫̂
µ
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The probability to observe a measurement that has a larger q
µ

than the observed one, if

the background-only prediction describes the observation, is given by the p-value 1�CL
B

.
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This probability is a measure for the disagreement of X with the background-only predic-

tion �(0, ⌫̂0). For Higgs boson searches this quantity gives an insight into how frequently a

measurement suggesting a higher signal contribution than X would be obtained by back-

ground fluctuations.

We define the ratio
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(µ)

1� CL
B

(µ)
. (2.14)

as measure of how well �(µ, ⌫̂
µ

) can be statistically distinguished from �(µ0, ⌫̂
µ

0) based on

X. In the literature, this is referred to as CL
S

confidence level. Small values of CL
S
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suggest that X strongly favors �(µ0, ⌫̂
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0) over �(µ, ⌫̂
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). Normalizing to 1 � CL
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ensures

su�ciently confident statements, even in the case that fluctuations of the background-only

prediction are likely to be similar to the best-fit prediction �(µ0, ⌫̂
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0).

We want to find the minimum µ↵% of the parameter of interest corresponding to a

prediction �(µ↵%, ⌫̂
µ

↵%) that can be distinguished from �(µ0, ⌫̂
µ
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level. To achieve this, we invert the relation CL
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µ↵% = CL�1
S
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Given some measurement X, we can define a prediction of the model with µ < µ↵% to

be indistinguishable from the best-fit prediction at an ↵% CL
S

confidence level. Conversely,

a prediction corresponding to µ > µ↵% is said to be statistically distinguished and excluded

at an ↵% CL
S

confidence level. µ↵% is referred to as exclusion limit for the parameter of

interest µ.

3 Nuisance parameters for theoretical uncertainties

The renormalization and factorization scale uncertainty and parton distribution uncertainty

have large e↵ects on cross-section predictions for the LHC. We include these uncertainties

in our analysis using nuisance parameters. We consider nuisance parameters that directly

a↵ect the prediction of the signal cross-section:

�
S

= �0
S

⇥ ⌫
scale

⇥ ⌫
pdf

(3.1)

�0
S

is the signal cross-section predicted when choosing the default values for all pa-

rameters, ⌫
scale

is the perturbative uncertainty nuisance parameter and ⌫
pdf

is the parton

density nuisance parameter.
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i.e.: 
!Penalization by dividing by 1−CLB 
Wide separation: 1−CLB ≈ 1 no penalty  
Overlap: strong penalty. 
!
By this one prevents exclusion of 
models for which there is low sensitivity …

Log-likelihood ratio LEP

[e.g. Dulat et al., arXiv:1204.3851v2]
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