Lecture 3

Observation of a New Particle

in Search for the SM Higgs

The Discovery Channel

The Discovery Channel

Invariant Mass:

$$m_{\gamma\gamma}^2 = 2E_1E_2 (1-\cos\theta)$$

Invariant Mass:

$$m_{\gamma\gamma}^2 = 2E_1E_2 (1-\cos\theta)$$

Reminder: Higgs Branching Ratios ...

How to Make a Discovery

Maximizing the Significance S

- 1. Choose channels with low SM background
 - not possible: $H \rightarrow bb$... without associated production ...

 - possible: $H \rightarrow \gamma \gamma$... despite of small branching ratio ...
 - $H \rightarrow ZZ$... with at least one Z decaying leptonically ...
 - tt $H \rightarrow ttbb$... via additional top selection ...
- 2. Optimize detector resolution

Example: mass resolution σ_m increases by a factor of 2; thus: peak region has to be increased by a factor 2 and number N_B of background events increases by factor of 2

3. Maximize luminosity L

Signal: $N_{\rm S} \sim L$ Background: $N_{\rm B} \sim L$ \rightarrow $S \sim \sqrt{L}$

Analysis Necessities & Steps ...

Photon reconstruction Photon identification Photon isolation Primary vertex Energy calibration Background modeling

Event categories

Limits & signal strength

Analysis Necessities & Steps ...

Photon reconstruction Photon identification Photon isolation Primary vertex Energy calibration Background modeling

Event categories

Limits & signal strength

Photon & Object Reconstruction

Photons

isolated EM clusters, identified using shower shape variables [use rack or calorimeter isolation cone $\Delta R < 0.2$ or 0.4]

converted (two matched tracks, or single with no inner layer hit) and un-converted photon categories utilized

Jets

reconstructed with R = 0.4 anti- k_T algorithm [inputs noise-suppressed topological clusters ...]

 $p_T > 25$ (30) GeV in central (forward, 2.4 $\leq |\eta| \leq 4.5$) region, jet vertex fraction (JVF) to suppress pileup jets

pile-up correction based on NPV, energy density, jet area

b-tagging using NN-based combination of impact parameter and secondary vertex information

Photon & Object Reconstruction

Photons

isolated EM clusters, identified using shower shape variables [use rack or calorimeter isolation cone $\Delta R < 0.2$ or 0.4]

converted (two matched tracks, or single with no inner layer hit) and un-converted photon categories utilized

Jets

reconstructed with R = 0.4 anti- k_T algorithm [inputs noise-suppressed topological clusters ...]

 $p_T > 25$ (30) GeV in central (forward, $2.4 \le |\eta| \le 4.5$) region, jet vertex fraction (JVF) to suppress pileup jets

pile-up correction based on NPV, energy density, jet area

b-tagging using NN-based combination of impact parameter and secondary vertex information

Sketch of ECAL Barrel Module

Shower Comparison ...

Electromagnetic shower

consists of visible electromagnetic energy only

is very compact ($X_0 \approx 2$ cm)

can be simulated with high precision since mostly electromagnetic processes need to be calculated allows high accuracy calibration

Hadronic shower

consists of EM and hadronic energy (some invisible) is very large ($\lambda_0 \approx 20$ cm) is difficult to simulate since it involves QCD limits the accuracy for calibration (mostly due to large fluctuations)

Examples show 50 GeV showers of an electron and a pion in iron ...

2γ-Channel – Signal and Background

Signal: $\sigma \cdot BR = 50 \text{ fb } [m_H = 100 \text{ GeV}]$

very demanding channel due to huge irreducible background ...

very harsh requirements on calorimeter performance [acceptance, E and θ -resolution, separation of γ from jets and π^0]

Di-Photon Invariant Mass Distribution

Photon Reconstruction

Category	Description	Name	Loose	Tight
Acceptance	$ \eta < 2.37, 1.37 < \eta < 1.52$ excluded	_		$\overline{\checkmark}$
Hadronic leakage	Ratio of E_T in the first sampling of the hadronic calorimeter to E_T of the EM cluster (used over the range $ \eta < 0.8$ and $ \eta > 1.37$)	R_{had_1}	V	\checkmark
	Ratio of E_T in all the hadronic calorimeter to E_T of the EM cluster (used over the range $0.8 < \eta < 1.37$)	<i>R</i> _{had}	\checkmark	\checkmark
EM Middle layer	Ratio in η of cell energies in 3 × 7 versus 7 × 7 cells	R_η	\checkmark	\checkmark
	Lateral width of the shower	w_2	\checkmark	\checkmark
	Ratio in ϕ of cell energies in 3×3 and 3×7 cells	R_{ϕ}		\checkmark
EM Strip layer	Shower width for three strips around maximum strip	w_{s3}		\checkmark
	Total lateral shower width	$w_{s tot}$		\checkmark
	Fraction of energy outside core of three central strips but within seven strips	F _{side}		\checkmark
	Difference between the energy associated with the second maximum in the strip layer, and the energy re- constructed in the strip with the minimal value found between the first and second maxima	ΔE		\checkmark
	Ratio of the energy difference associated with the largest and second largest energy deposits over the sum of these energies	E _{ratio}		\checkmark

Photon Reconstruction

Variables & Positions

	Strips	2nd	Had.
Ratios	f ₁ , f _{side}	R_η *, R_ϕ	$R_{Had.}*$
Widths	W _{s,3} , W _{s,tot}	$w_{\eta,2}^*$	-
Shapes	ΔE , $E_{\rm ratio}$	* Used in PhotonLoose.	

Energy & Ratios

Shower Shapes & Width

Hadronic Leakage

Energy Ratio in EM Strip Layer

Pile-Up Robustness

Finding Isolated Photons ...

Proton-Proton Scattering at LHC

Extreme Pile-up Event

Cell Based Calorimeter Isolation

Transverse isolation energy within R =0.4 from cell energies ... energy in core excluded ...

Pile-up and underlying event correction using ambient transverse energy density ...

Event-by-event estimate of ambient transverse energy density using topological clusters ...

To avoid correlations with E_T of photon use <u>median</u> of jet transverse energy density in each event ...

Topological Cluster Finding

Goal:

Reconstruct group of calorimeter cells topologically interconnected ...

Algorithm:

Select by energy significance ...

Seed cell: $|E_{cell}| > 4\sigma$ noise Neighboring cells: $|E_{cell}| > 2\sigma$ noise

Add All cells surrounding the cluster

Algorithm tries to match the shape of an EM shower ...

No Cluster

Out-of-Time Pile-up

Isolation Based on Topological Clusters

Consistent approach ...

