Observation of a New Particle

in Search for the SM Higgs

The Discovery Channel

The Discovery Channel

Basic Analysis Principle

Example:
$H \rightarrow \gamma Y$

Invariant Mass:

$$
m_{w v}^{2}=2 \mathrm{E}_{1} \mathrm{E}_{2}(1-\cos \vartheta)
$$

Basic Analysis Principle

Invariant Mass:

$$
m_{Y Y}^{2}=2 E_{1} E_{2}(1-\cos \vartheta)
$$

Basic Analysis Principle

Events / 2 GeV

Invariant Mass:
$m_{Y \gamma}^{2}=2 E_{1} E_{2}(1-\cos 9)$

Basic Analysis Principle

Invariant Mass:
$m_{Y V}^{2}=2 E_{1} E_{2}(1-\cos 9)$

Basic Analysis Principle

Invariant Mass:
$m_{Y V}^{2}=2 E_{1} E_{2}(1-\cos 9)$

The Discovery Channel

Fermilab SSC

Reminder: Higgs Branching Ratios ...

How to Make a Discovery

Signal
significance:

$$
S=\frac{N_{S}}{\sqrt{N_{B}+N_{S}}}
$$

Ns: \# signal events
NB: \# background events
... in peak region
$S>5:$
Signal $N_{S}=N_{\text {tot }}-N_{B}$ is 5 times larger than statistical uncertainty on $\mathrm{N}_{\mathrm{B}}+\mathrm{Ns}_{\mathrm{s}}$...
Gaussian probability that upward fluctuation by more than 5σ is observed ...

$$
P_{5 \sigma}=10^{-7} .
$$

Maximizing the Significance S

1. Choose channels with low SM background

$$
\text { not possible: } \mathrm{H} \rightarrow \mathrm{bb} \quad \text {... without associated production ... }
$$

possible: $\mathrm{H} \rightarrow \gamma \gamma \quad$... despite of small branching ratio ...
$H \rightarrow Z Z \quad$... with at least one Z decaying leptonically ...
$\mathrm{tt} \mathrm{H} \rightarrow \mathrm{ttbb} \quad . .$. via additional top selection ...
2. Optimize detector resolution

Example: mass resolution σ_{m} increases by a factor of 2; thus: peak region has to be increased by a factor 2 and number N_{B} of background events increases by factor of 2

$$
\mathrm{S} \approx \mathrm{~N}_{\mathrm{S}} / \sqrt{ } \mathrm{N}_{\mathrm{B}} \text { decreases by } \sqrt{ } 2 \rightarrow S \sim \frac{1}{\sqrt{\sigma_{m}}}
$$

3. Maximize luminosity L
$\left.\begin{array}{l}\text { Signal: } \quad N_{s} \sim L \\ \text { Background: } N_{B} \sim L\end{array}\right\} \rightarrow S \sim \sqrt{L}$

Analysis Necessities \& Steps ...

Photon reconstruction
Photon identification
Photon isolation
Primary vertex
Energy calibration
Background modeling

Event categories
Limits \& signal strength

Analysis Necessities \& Steps ...

Photon reconstruction
Photon identification
Photon isolation
Primary vertex
Energy calibration
Background modeling

Event categories
Limits \& signal strength

Photon \& Object Reconstruction

Photons

isolated EM clusters, identified using shower shape variables
[use rack or calorimeter isolation cone $\Delta R<0.2$ or 0.4]
converted (two matched tracks, or single with no inner layer hit) and un-converted photon categories utilized

Jets
reconstructed with $\mathrm{R}=0.4$ anti- k_{T} algorithm
[inputs noise-suppressed topological clusters ...]
$\mathrm{p}_{\mathrm{T}}>25$ (30) GeV in central (forward, $2.4 \leq|\eta| \leq 4.5$) region, jet vertex fraction (JVF) to suppress pileup jets
pile-up correction based on NPV, energy density, jet area
b-tagging using NN-based combination of impact parameter and secondary vertex information

Photon \& Object Reconstruction

Photons
isolated EM clusters, identified using shower shape variables
[use rack or calorimeter isolation cone $\Delta R<0.2$ or 0.4]
converted (two matched tracks, or single with no inner layer hit) and un-converted photon categories utilized

Jets
reconstructed with $R=0.4$ anti- k_{T} algorithm
[inputs noise-suppressed topological clusters ...]
Dт $^{\prime}>25$ (30) GeV in central (forward, $2.4 \leq|n| \leq 4.5$) region,
jet vertex fraction (JVF) to suppress pileup jets
pile-up correction based on NPV, energy density, jet area
b-tagging using NN-based combination of impact parameter
and secondary vertex information

The ATLAS Calorimeter

\qquad

ECAL: $\quad \sigma / E \approx 10 \% / \sqrt{E} \oplus 0.7 \%$
HCAL: $\quad \sigma / E \approx 50 \% / \sqrt{ } E \oplus 3 \%$

Sketch of ECAL Barrel Module

Shower Comparison ...

Electromagnetic shower

consists of visible electromagnetic energy only is very compact ($X_{0} \approx 2 \mathrm{~cm}$)
can be simulated with high precision since mostly electromagnetic processes need to be calculated
allows high accuracy calibration

2γ-Channel - Signal and Background

Signal: $\sigma \cdot B R=50 \mathrm{fb}\left[\mathrm{m}_{\mathrm{H}}=100 \mathrm{GeV}\right]$
very demanding channel due to huge irreducible background ...

very harsh requirements on calorimeter performance [acceptance, E and θ-resolution, separation of γ from jets and π^{0}]

Two main background sources:
2γ-production: irreducible background

$$
\begin{aligned}
& \sigma_{v N} \sim 2 \mathrm{pb} / \mathrm{GeV} \text { and } \Gamma_{H} \sim \mathrm{MeV} \\
& \text { implies } \sigma\left(\mathrm{m}_{v w}\right) / \mathrm{m}_{v v} \sim 1 \%
\end{aligned}
$$

γ-jet and di-jet production: reducible background

$$
\sigma_{\gamma j+j j} \sim 10^{6} \sigma_{\gamma p} ; \text { jet rejection of }>10^{3} \text { needed }
$$

Di-Photon Invariant Mass Distribution

Photon Reconstruction

Category	Description	Name	Loose	Tight
Acceptance	$\|\eta\|<2.37,1.37<\|\eta\|<1.52$ excluded	-		\checkmark
Hadronic leakage	Ratio of E_{T} in the first sampling of the hadronic calorimeter to E_{T} of the EM cluster (used over the range $\|\eta\|<0.8$ and $\|\eta\|>1.37$)	$R_{\text {had }_{1}}$	\checkmark	\checkmark
	Ratio of E_{T} in all the hadronic calorimeter to E_{T} of the EM cluster (used over the range $0.8<\|\eta\|<1.37$)	$R_{\text {had }}$	\checkmark	\checkmark
EM Middle layer	Ratio in η of cell energies in 3×7 versus 7×7 cells	R_{η}	\checkmark	\checkmark
	Lateral width of the shower	w_{2}	\checkmark	\checkmark
	Ratio in ϕ of cell energies in 3×3 and 3×7 cells	R_{ϕ}		\checkmark
EM Strip layer	Shower width for three strips around maximum strip	$w_{s 3}$		\checkmark
	Total lateral shower width	$w_{\text {s tot }}$		\checkmark
	Fraction of energy outside core of three central strips but within seven strips	$F_{\text {side }}$		\checkmark
	Difference between the energy associated with the second maximum in the strip layer, and the energy reconstructed in the strip with the minimal value found between the first and second maxima	ΔE		\checkmark
	Ratio of the energy difference associated with the largest and second largest energy deposits over the sum of these energies	$E_{\text {ratio }}$		\checkmark

Photon Reconstruction

Variables \＆Positions

	Strips	2nd	Had．
Ratios	$f_{1}, f_{\text {side }}$	$R_{\eta}{ }^{*}, R_{\phi}$	$R_{\text {Had．}}{ }^{*}$
Widths	$w_{s, 3}, w_{s, \text { tot }}$	$w_{\eta, 2}{ }^{*}$	-
Shapes	$\Delta E, E_{\text {ratio }}$	${ }^{*}$, Used in PhotonLoose．	

Energy \＆Ratios

$$
R_{\eta}=\frac{E_{3 \times 7}^{S 2}}{E_{7 \times 7}^{S 2}} R_{\phi} R_{\phi}=\frac{E_{3 \times 3}^{S 2}}{E_{3 \times 7}^{S 2}} ⿻ 弓 ⿰ 丿 丨 二 殳{ }^{\#}
$$

Strips

Shower Shapes \＆Width

$w_{\eta, 2}=\sqrt{\frac{\sum E_{i} \eta_{i}^{2}}{\sum E_{i}}-\left(\frac{\sum E_{i} \eta_{i}}{\sum E_{i}}\right)^{2}}$

$$
\eta
$$

Hadronic Leakage

Energy Ratio in EM Strip Layer

Middle Layer Cell Energy η-Ratio

$$
R_{\eta}=\frac{E_{3 \times 7}^{S 2}}{E_{7 \times 7}^{S 2}}
$$

Pile-Up Robustness

Finding Isolated Photons ...

Proton-Proton Scattering at LHC

Hard interaction: qq, gg, qg fusion
Initial State Radiation (ISR)
Secondary Interaction ["underlying event"]

Extreme Pile-up Event

CMS

Cell Based Calorimeter Isolation

Transverse isolation energy within $R=0.4$ from cell energies ... energy in core excluded ...

Pile-up and underlying event correction using ambient transverse energy density

Event-by-event estimate of ambient transverse energy density using topological clusters ...

To avoid correlations with E_{T} of photon use median of jet transverse energy density in each event ...

Topological Cluster Finding

Goal:

Reconstruct group of calorimeter cells topologically interconnected ...

Algorithm:
Select by energy significance ...
Seed cell: $\left|E_{\text {cell }}\right|>4 \sigma$ noise
Neighboring cells: $\left|E_{\text {cell }}\right|>2 \sigma$ noise
Add All cells surrounding the cluster

Algorithm tries to

No Cluster match the shape of an EM shower ...

Out-of-Time Pile-up

Isolation Based on Topological Clusters

Topological Cluster

Consistent approach ...

Cell Based Calorimeter Isolation
Dependence on Pileup

Topo-Cluster Based Calorimeter Isolation Dependence on Pileup

