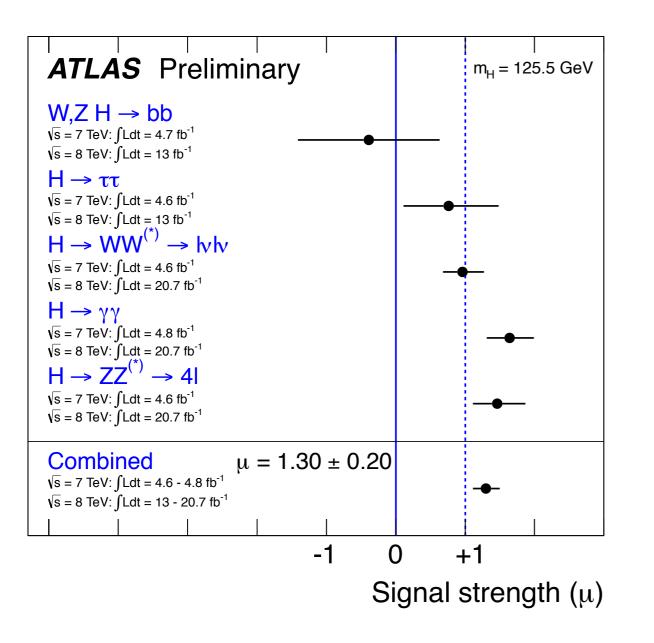

Lecture 8

Experimental Aspects of Higgs Coupling Determination

Couplings – Present Status



ATLAS: $\mu = 1.30 \pm 0.20$

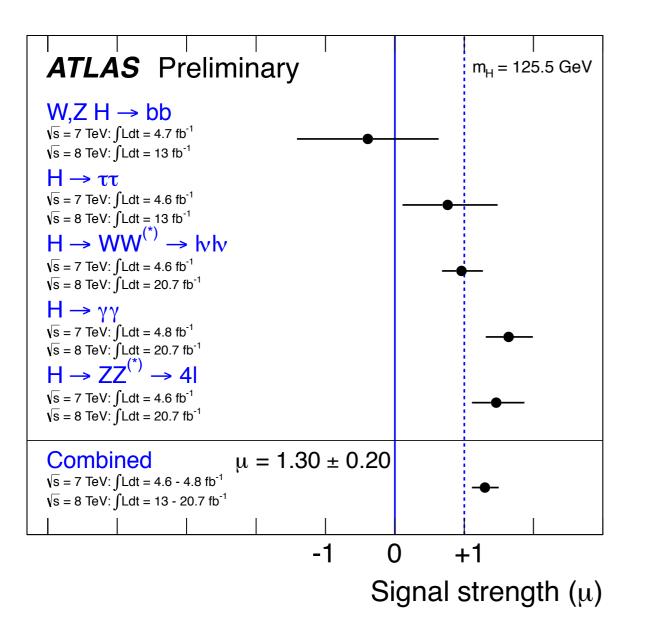
CMS: $\mu = 0.80 \pm 0.14$

Couplings – Present Status

[ATLAS-CONF-2013-034]

ATLAS: $\mu = 1.30 \pm 0.20$

$$\mu_i = \sigma_i / \sigma_{i,\rm SM}$$
$$\mu_f = B_f / B_{f,\rm SM}$$


$$\mu = \mu_{if} = \mu_i \times \mu_f$$

Measurements of the signal strength parameter μ

for $m_H = 125.5 \text{ GeV} \dots$ for the individual channels \dots for their combination \dots

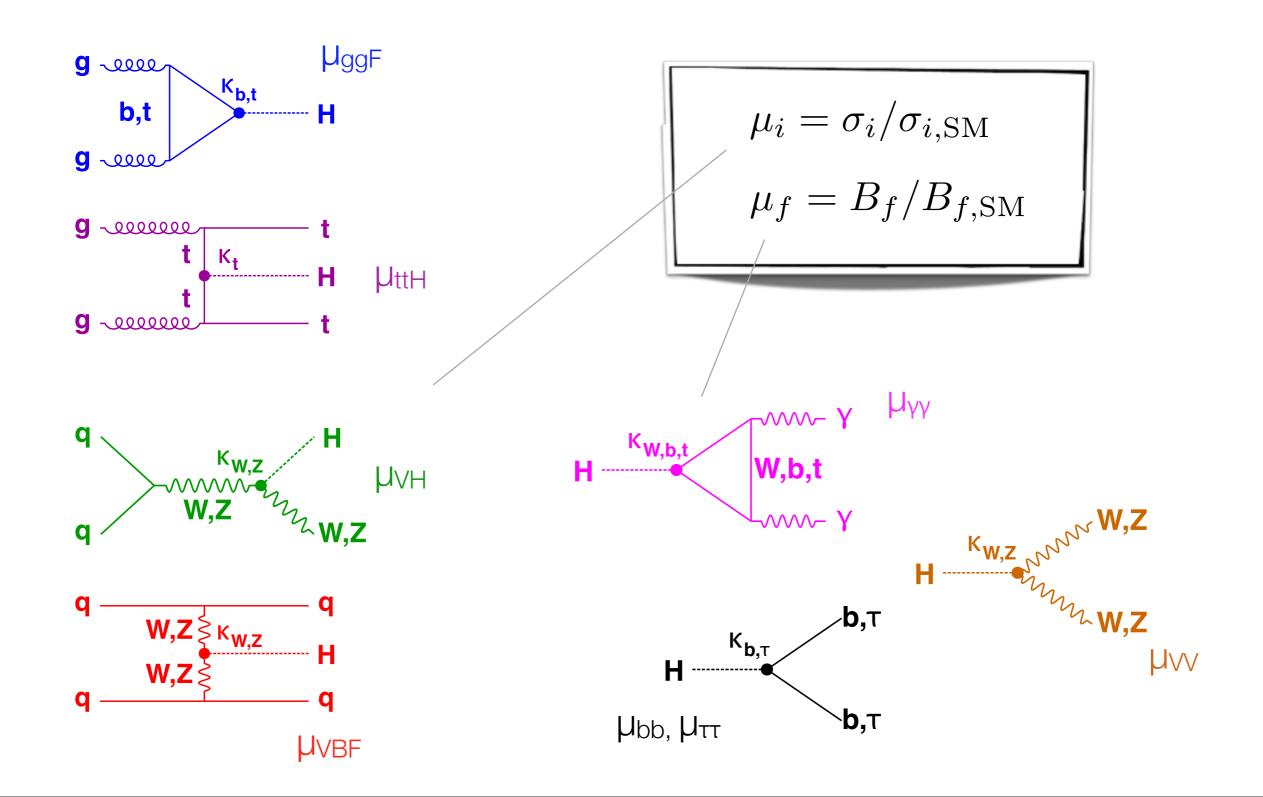
Couplings – Present Status

[ATLAS-CONF-2013-034]


```
ATLAS: \mu = 1.30 \pm 0.20
```

$$\mu_i = \sigma_i / \sigma_{i,\rm SM}$$
$$\mu_f = B_f / B_{f,\rm SM}$$

_ / _


$$\mu = \mu_{if} = \mu_i \times \mu_f$$

Signal production strength for individual decay modes ...

Choose all µ the same ...

Combined: $\mu = \mu_i = \mu_f$ for all channels Individual : $\mu = \mu_i = \mu_f$ for particular channel only

Higgs Boson Production and Decay

Higgs Boson Search Channels

[arXiv:1209.0040]

Channel	$m_{ m H}(~{ m GeV})$	gg	H	VB	F	VI	Η	$t\overline{t}I$	H
		ATLAS	CMS	ATLAS	CMS	ATLAS	CMS	ATLAS	CMS
$\mathrm{H} \to \gamma \gamma$	110–150					-	-	-	_
$\mathrm{H} \to \tau^+ \tau^-$	110–145							-	-
$H \rightarrow b\overline{b}$	110–130	-	-	-	-			-	
$H \to ZZ^{(*)} \to \ell^+ \ell^- \ell^+ \ell^-$	110-600	\checkmark		-	-	-	-	_	-
$\mathrm{H} \to \mathrm{WW}^{(*)} \to \ell^+ \nu \ell^- \overline{\nu}$	110-600	\checkmark						-	-

Higgs boson search channels in the ATLAS and CMS experiments by July 2012.

The $\sqrt{\text{symbol}}$ indicates exclusive searches targeting the inclusive gg \rightarrow H production, the associated production processes or the vector boson fusion production process.

Categories for Coupling Determination

[September 2012]

Higgs Boson Decay	Subsequent Decay	Sub-Channels		Ref.				
DecayDecaySub-Channels[fb ⁻¹] $2011 \sqrt{s} = 7 \text{ TeV}$								
$H \rightarrow ZZ^{(*)}$	4ℓ	$\{4e, 2e2\mu, 2\mu2e, 4\mu\}$	4.8	[10]				
$H \rightarrow \gamma \gamma$	_	10 categories $\{p_{\text{Tt}} \otimes \eta_{\gamma} \otimes \text{conversion}\} \oplus \{2\text{-jet}\}$	4.8	[11]				
$H \to WW^{(*)}$	lvlv	$\{ee, e\mu, \mu\mu\} \otimes \{0\text{-jet}, 1\text{-jet}, 2\text{-jet}\} \otimes \{\text{low, high pile-up}\}$	4.7	[12]				
	$ au_{ m lep} au_{ m lep}$	$\{e\mu\} \otimes \{0\text{-jet}\} \oplus \{\ell\ell\} \otimes \{1\text{-jet}, 2\text{-jet}, VH\}$	4.7					
$H \to \tau \tau$	$H \to \tau \tau$ $\tau_{\rm lep} \tau_{\rm had}$	$ \{e, \mu\} \otimes \{0\text{-jet}\} \otimes \{E_{\mathrm{T}}^{\mathrm{miss}} < 20 \text{ GeV}, E_{\mathrm{T}}^{\mathrm{miss}} \ge 20 \text{ GeV} \} \\ \oplus \{e, \mu\} \otimes \{1\text{-jet}\} \oplus \{\ell\} \otimes \{2\text{-jet}\} $		[13]				
	$ au_{ m had} au_{ m had}$	{1-jet}	4.7					
$VH \rightarrow Vbb$	$Z \to \nu \nu$ $W \to \ell \nu$ $Z \to \ell \ell$	$E_{\rm T}^{\rm miss} \in \{120 - 160, 160 - 200, \ge 200 \text{ GeV}\}\$ $p_{\rm T}^W \in \{<50, 50 - 100, 100 - 200, \ge 200 \text{ GeV}\}\$ $p_{\rm T}^Z \in \{<50, 50 - 100, 100 - 200, \ge 200 \text{ GeV}\}\$		[14]				
		2012 $\sqrt{s} = 8 \text{ TeV}$						
$H \rightarrow ZZ^{(*)}$	4ℓ	$\{4e, 2e2\mu, 2\mu 2e, 4\mu\}$	5.8	[10]				
$H o \gamma \gamma$	_	10 categories $\{p_{\text{Tt}} \otimes \eta_{\gamma} \otimes \text{conversion}\} \oplus \{2\text{-jet}\}$	5.9	[11]				
$H \rightarrow WW^{(*)}$	evμv	$\{e\mu, \mu e\} \otimes \{0\text{-jet}, 1\text{-jet}, 2\text{-jet}\}$	5.8	[15]				

[ATLAS-CONF-2012-127]

Categories for Coupling Determination

Higgs Boson Subsequent $\int L dt$ Sub-Channels Ref. $[fb^{-1}]$ Decay Decay 2011 $\sqrt{s} = 7 \text{ TeV}$ $H \rightarrow ZZ^{(*)}$ 4ℓ $\{4e, 2e2\mu, 2\mu 2e, 4\mu, 2\text{-jet VBF}, \ell\text{-tag}\}$ 4.6 [8] 10 categories $H \rightarrow \gamma \gamma$ 4.8 [7] $\{p_{\mathrm{Tt}} \otimes \eta_{\gamma} \otimes \text{conversion}\} \oplus \{2\text{-jet VBF}\}$ $H \rightarrow WW^{(*)}$ $\ell \nu \ell \nu$ $\{ee, e\mu, \mu e, \mu\mu\} \otimes \{0\text{-jet}, 1\text{-jet}, 2\text{-jet VBF}\}$ 4.6 [9] 4.6 $\{e\mu\} \otimes \{0\text{-jet}\} \oplus \{\ell\ell\} \otimes \{1\text{-jet}, 2\text{-jet}, p_{\mathrm{T},\tau\tau} > 100 \text{ GeV}, VH\}$ $\tau_{\rm lep} \tau_{\rm lep}$ $\{e, \mu\} \otimes \{0\text{-jet}, 1\text{-jet}, p_{T,\tau\tau} > 100 \text{ GeV}, 2\text{-jet}\}$ 4.6 [10] $au_{\rm lep} au_{\rm had}$ $H \to \tau \tau$ {1-jet, 2-jet} 4.6 $au_{
m had} au_{
m had}$ $E_{T}^{\text{miss}} \in \{120 - 160, 160 - 200, \ge 200 \text{ GeV}\} \otimes \{2\text{-jet}, 3\text{-jet}\}$ $Z \rightarrow \nu \nu$ 4.6 $p_{\rm T}^{W} \in \{< 50, 50 - 100, 100 - 150, 150 - 200, \ge 200 \text{ GeV}\}$ $W \rightarrow \ell \nu$ 4.7 $VH \rightarrow Vbb$ [11] $p_{\rm T}^{\tilde{Z}} \in \{< 50, 50 - 100, 100 - 150, 150 - 200, \ge 200 \,\,{\rm GeV}\}\$ $Z \rightarrow \ell \ell$ 4.7 2012 $\sqrt{s} = 8 \text{ TeV}$ $H \rightarrow ZZ^{(*)}$ 4ℓ 20.7 $\{4e, 2e2\mu, 2\mu 2e, 4\mu, 2\text{-jet VBF}, \ell\text{-tag}\}\}$ [8] 14 categories 20.7 [7] $H \rightarrow \gamma \gamma$ $\{p_{\text{Tt}} \otimes \eta_{\gamma} \otimes \text{conversion}\} \oplus \{2\text{-jet VBF}\} \oplus \{\ell\text{-tag}, E_{\text{T}}^{\text{miss}}\text{-tag}, 2\text{-jet VH}\}$ $H \rightarrow WW^{(*)}$ [9] $\ell \nu \ell \nu$ $\{ee, e\mu, \mu e, \mu\mu\} \otimes \{0\text{-jet}, 1\text{-jet}, 2\text{-jet VBF}\}$ 20.7 13 $\{\ell\ell\} \otimes \{1\text{-jet}, 2\text{-jet}, p_{T,\tau\tau} > 100 \text{ GeV}, VH\}$ $\tau_{\rm lep} \tau_{\rm lep}$ $\{e, \mu\} \otimes \{0\text{-jet}, 1\text{-jet}, p_{T,\tau\tau} > 100 \text{ GeV}, 2\text{-jet}\}$ 13 [10] $\tau_{\rm lep} \tau_{\rm had}$ $H \rightarrow \tau \tau$ 13 {1-jet, 2-jet} $au_{
m had} au_{
m had}$ $E_{\rm T}^{\rm miss} \in \{120 - 160, 160 - 200, \ge 200 \text{ GeV}\} \otimes \{2\text{-jet}, 3\text{-jet}\}$ 13 $Z \rightarrow \nu \nu$ $p_{\rm T}^{W} \in \{< 50, 50 - 100, 100 - 150, 150 - 200, \ge 200 \text{ GeV}\}$ 13 $W \to \ell \nu$ $VH \rightarrow Vbb$ [11] $p_{\rm T}^{\tilde{Z}} \in \{< 50, 50 - 100, 100 - 150, 150 - 200, \ge 200 \text{ GeV}\}$ $Z \rightarrow \ell \ell$ 13

[March 2013]

[ATLAS-CONF-2013-034]

Decay	Sub-channel	Nobs	$\langle N_B \rangle$	$\langle N_{ggF} \rangle$	$\langle N_{VBF} \rangle$	$\langle N_{WH} \rangle$	$\langle N_{ZH} \rangle$	$\langle N_{ttH} \rangle$
	low- p_{Tt}	7013	6820	138	6.3	3.1	1.8	0.4
$H \rightarrow \gamma \gamma$	high- p_{Tt}	320	291	14.0	2.9	1.8	1.0	0.4
	2-jet	36	24.2	1.3	3.4	0.0	0.0	0.0
$H \rightarrow ZZ^{(*)} \rightarrow 4\ell$	_	14	5.4	5.6	0.5	0.1	0.1	0.0
	0-jet	667	573	75.3	0.8	0.3	0.4	0.0
$H \to WW^{(*)} \to \ell \nu \ell \nu$	1-jet	183	141	16.7	1.7	0.3	0.2	0.0
	2-jet	3	3.7	0.3	1.3	0.0	0.0	0.0
	0-jet	9277	9305	17.6	0.6	0.1	0.3	0.0
$H \rightarrow \tau^+ \tau^-$	1-jet	393	406	3.6	1.0	0.1	0.2	0.0
$\Pi \to \tau^+ \tau$	2-jet	22	28.2	0.3	0.9	0.0	0.0	0.0
	VH	164	152	0.7	0.1	0.2	0.3	0.0
$H \rightarrow b\bar{b}$	ZH	322	321	0.0	0.0	0.0	4.0	0.0
	WH	1266	1311	0.0	0.0	11.1	0.0	0.0

Fall 2012 Analysis – Summary of the number of selected events, background and expected SM signal contributions for a 126 GeV Higgs boson

Statistical Procedure

Likelihood [depends on µi, m_H ...]

$$\mathcal{L}(\text{data}|\mu,\nu) = \prod_{k} \frac{(\mu_k s_k + b_k)^{n_k}}{n_k!} e^{-(\mu_k s_k + b_k)} \times \prod_{j} \pi_j(\tilde{\nu}_j|\nu_j)$$

Likelihood ratio ... [and test statistic ...]

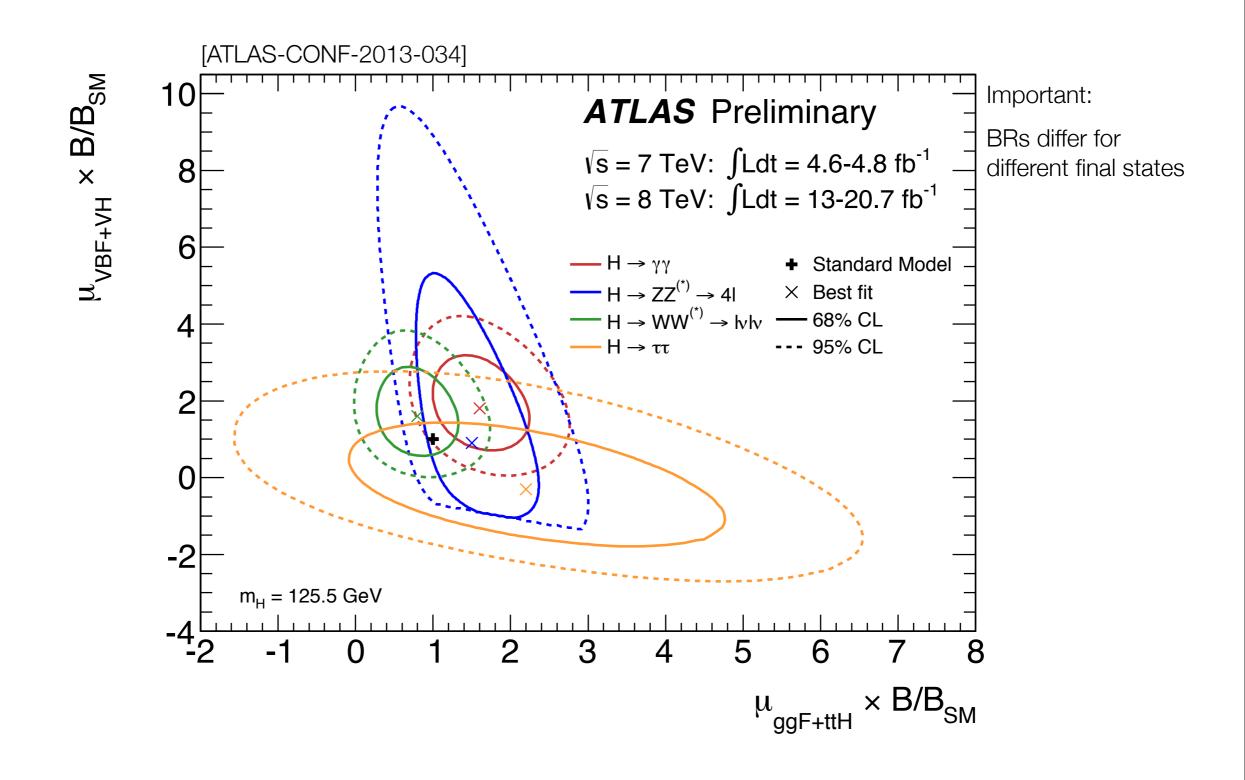
$$\Lambda(\mu) = \frac{\mathcal{L}(\mu, \hat{\nu}_{\mu})}{\mathcal{L}(\mu', \hat{\nu}_{\mu'})} \qquad \& \qquad q = -2\ln\Lambda(\mu)$$

Asymptotically distributed as a χ^2 distribution with n degrees of freedom, where n is the dimensionality of the vector μ .

Statistical Procedure

Likelihood [depends on μ_i, m_H ...]

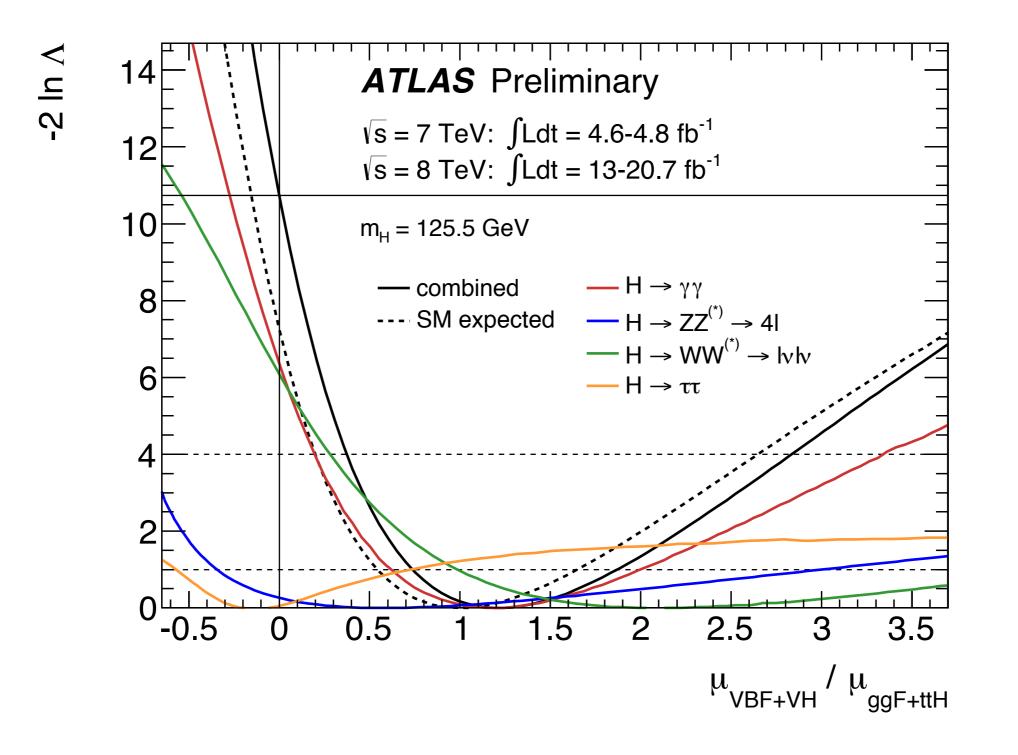
$$\mathcal{L}(\text{data}|\mu,\nu) = \prod_{k} \frac{(n_{\text{signal}}^{k} + b_{k})^{n_{k}}}{n_{k}!} e^{-(n_{\text{signal}}^{k} + b_{k})} \times \prod_{j} \pi_{j}(\tilde{\nu}_{j}|\nu_{j})$$


Likelihood ratio ... [and test statistic ...]

$$\Lambda(\mu) = \frac{\mathcal{L}(\mu, \hat{\nu}_{\mu})}{\mathcal{L}(\mu', \hat{\nu}_{\mu'})} \qquad \& \qquad q = -2\ln\Lambda(\mu)$$

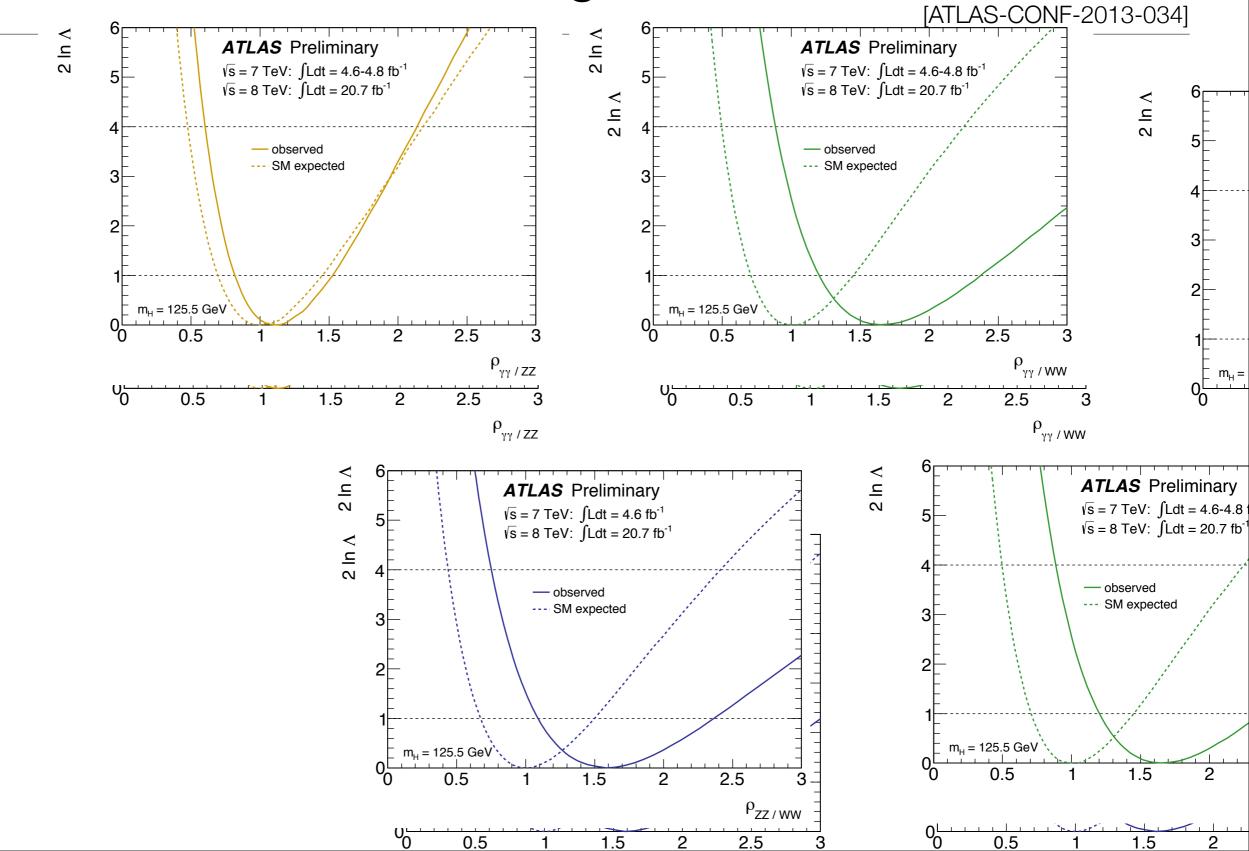
Asymptotically distributed as a χ^2 distribution with n degrees of freedom, where n is the dimensionality of the vector μ .

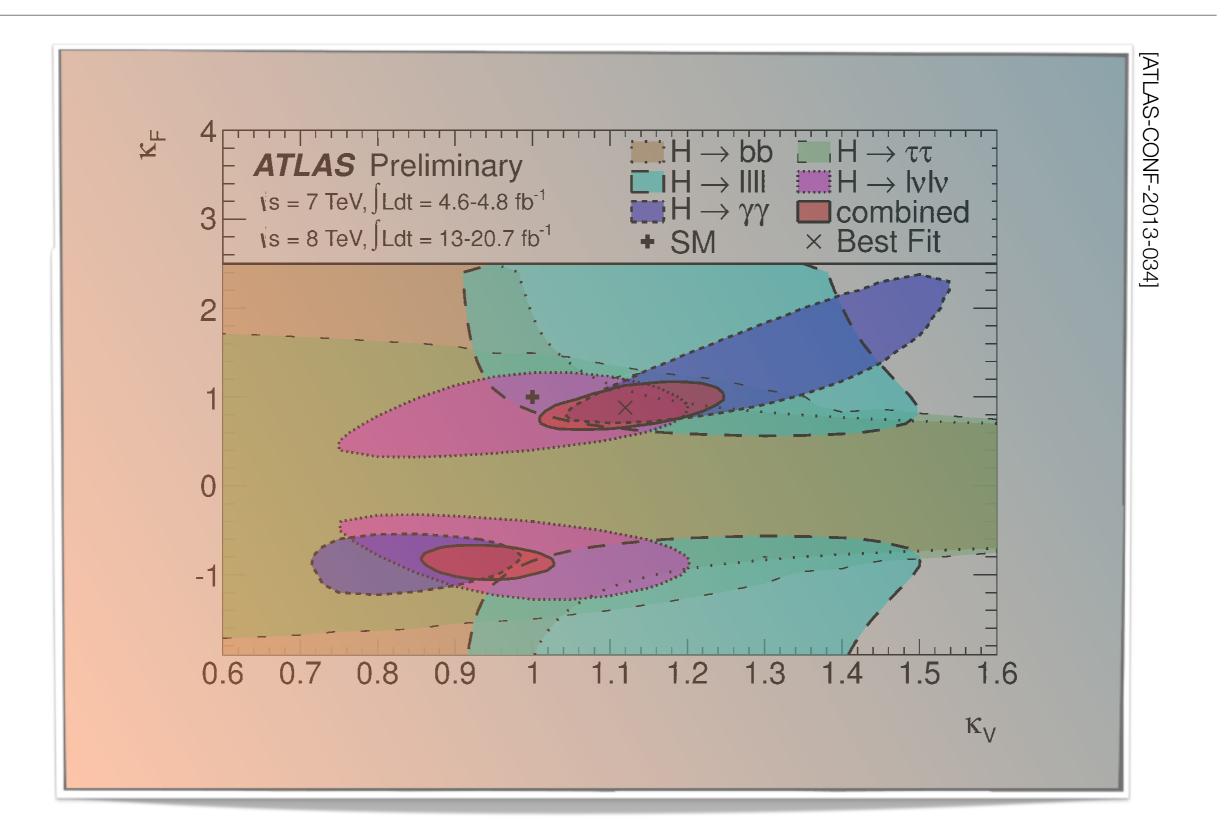
$$n_{\text{signal}}^{k} = \left(\sum_{i} \mu_{i} \sigma_{i,\text{SM}} \times A_{if}^{k} \times \varepsilon_{if}^{k}\right) \times \mu_{f} \times \mathcal{B}_{f,\text{SM}} \times \mathcal{L}^{k}$$


k analysis category =production mode = decay final state = n_k^{signal} number of selected signal events in final state k = integrated luminosity =production cross section $\sigma_{i,SM}$ =final state branching ratio B_{f,SM} =production mode signal strength μ_i =final state branching ratio strength μ_f =detector acceptance A = reconstruction and selection efficiency ${\mathcal E}$ =

Compatibility Test between Channels

$$\begin{split} \sigma(qg \to H) * \mathrm{BR}(H \to \gamma\gamma) &\sim \mu_{\mathrm{ggF}+t\bar{t}H;H \to \gamma\gamma} \\ \sigma(qq' \to qq'H) * \mathrm{BR}(H \to \gamma\gamma) &\sim \mu_{\mathrm{ggF}+t\bar{t}H;H \to \gamma\gamma} \cdot \mu_{\mathrm{VBF}+VH}/\mu_{\mathrm{ggF}+t\bar{t}H} \\ \sigma(gg \to H) * \mathrm{BR}(H \to ZZ^{(*)}) &\sim \mu_{\mathrm{ggF}+t\bar{t}H;H \to ZZ^{(*)}} \\ \sigma(qq' \to qq'H) * \mathrm{BR}(H \to ZZ^{(*)}) &\sim \mu_{\mathrm{ggF}+t\bar{t}H;H \to ZZ^{(*)}} \cdot \mu_{\mathrm{VBF}+VH}/\mu_{\mathrm{ggF}+t\bar{t}H} \\ \sigma(gg \to H) * \mathrm{BR}(H \to WW^{(*)}) &\sim \mu_{\mathrm{ggF}+t\bar{t}H;H \to WW^{(*)}} \\ \sigma(qq' \to qq'H) * \mathrm{BR}(H \to WW^{(*)}) &\sim \mu_{\mathrm{ggF}+t\bar{t}H;H \to WW^{(*)}} \\ \sigma(qg \to H) * \mathrm{BR}(H \to WW^{(*)}) &\sim \mu_{\mathrm{ggF}+t\bar{t}H;H \to WW^{(*)}} \cdot \mu_{\mathrm{VBF}+VH}/\mu_{\mathrm{ggF}+t\bar{t}H} \\ \sigma(qg \to H) * \mathrm{BR}(H \to WW^{(*)}) &\sim \mu_{\mathrm{ggF}+t\bar{t}H;H \to WW^{(*)}} \cdot \mu_{\mathrm{VBF}+VH}/\mu_{\mathrm{ggF}+t\bar{t}H} \\ \sigma(qq' \to qq'H) * \mathrm{BR}(H \to \tau\tau) &\sim \mu_{\mathrm{ggF}+t\bar{t}H;H \to \tau\tau} \cdot \mu_{\mathrm{VBF}+VH}/\mu_{\mathrm{ggF}+t\bar{t}H} \end{split}$$


$$\mu_{\text{ggF}+t\bar{t}H;H\to XX} = \frac{\sigma(\text{ggF}) \cdot \text{BR}(H \to XX)}{\sigma_{\text{SM}}(\text{ggF}) \cdot \text{BR}_{\text{SM}}(H \to XX)} = \frac{\sigma(t\bar{t}H) \cdot \text{BR}(H \to XX)}{\sigma_{\text{SM}}(t\bar{t}H) \cdot \text{BR}_{\text{SM}}(H \to XX)}$$


$$\begin{aligned} \sigma(qg \to H) * \mathrm{BR}(H \to \gamma\gamma) &\sim \mu_{\mathrm{ggF}+t\bar{t}H;H \to ZZ^{(*)}} \cdot \rho_{\gamma\gamma/ZZ} \\ \sigma(qq' \to qq'H) * \mathrm{BR}(H \to \gamma\gamma) &\sim \mu_{\mathrm{ggF}+t\bar{t}H;H \to ZZ^{(*)}} \cdot \mu_{\mathrm{VBF}+VH}/\mu_{\mathrm{ggF}+t\bar{t}H} \cdot \rho_{\gamma\gamma/ZZ} \\ \sigma(gg \to H) * \mathrm{BR}(H \to ZZ^{(*)}) &\sim \mu_{\mathrm{ggF}+t\bar{t}H;H \to ZZ^{(*)}} \\ \sigma(qq' \to qq'H) * \mathrm{BR}(H \to ZZ^{(*)}) &\sim \mu_{\mathrm{ggF}+t\bar{t}H;H \to ZZ^{(*)}} \cdot \mu_{\mathrm{VBF}+VH}/\mu_{\mathrm{ggF}+t\bar{t}H} \end{aligned}$$

$$\rho_{\gamma\gamma/ZZ} = \frac{\mathrm{BR}(H \to \gamma\gamma)}{\mathrm{BR}(H \to ZZ^{(*)})} \times \frac{\mathrm{BR}_{\mathrm{SM}}(H \to ZZ^{(*)})}{\mathrm{BR}_{\mathrm{SM}}(H \to \gamma\gamma)} \dots$$

Ratio of Relative Branching Ratios

Global Coupling Fits

Signal Cross Section

$$(\sigma \cdot \mathbf{BR}) (ii \to \mathbf{H} \to ff) = \frac{\sigma_{ii} \cdot \Gamma_{ff}}{\Gamma_{\mathbf{H}}}$$

σ_{ii}	=	production cross section
$\Gamma_{\rm ff}$	=	partial decay width into final state ff
Гн	=	total Higgs decay width

Assumptions:

The signals observed in the different search channels originate from a single narrow resonance with a mass near 125 GeV. The case of several, possible overlapping, resonances in this mass region is not considered.

The width of the assumed Higgs boson near 125 GeV is neglected, i.e. the zero-width approximation for this state is used.

Signal Cross Section

$$(\sigma \cdot \mathbf{BR}) (ii \to \mathbf{H} \to ff) = \frac{\sigma_{ii} \cdot \Gamma_{ff}}{\Gamma_{\mathbf{H}}}$$

 σ_{ii} =production cross section Γ_{ff} =partial decay width into final state ff Γ_H =total Higgs decay width

Scale factors

Example:

Higgs boson production in the WH channel with decay to ZZ ... Dress SM predictions with scale factors κ_i to parametrize possible coupling deviations ...

$$\sigma_{WH} \times \text{BR}(H \to ZZ) =$$

$$= \sigma_{WH}^{\text{SM}} \times \text{BR}^{\text{SM}}(H \to ZZ) \times \frac{\kappa_W^2 \kappa_Z^2}{\kappa_H^2} \qquad \text{Scale factor}$$
for total width ...

Higgs Scale Factors

$$\begin{split} \frac{\sigma_{\rm ggH}}{\sigma_{\rm ggH}^{\rm SM}} &= \begin{cases} \kappa_{\rm g}^2(\kappa_{\rm b}, \kappa_{\rm t}, m_{\rm H}) \\ \kappa_{\rm g}^2 \\ \frac{\sigma_{\rm VBF}}{\sigma_{\rm VBF}^{\rm SM}} &= \kappa_{\rm VBF}^2(\kappa_{\rm W}, \kappa_{\rm Z}, m_{\rm H}) \\ \frac{\sigma_{\rm WH}}{\sigma_{\rm WH}^{\rm SM}} &= \kappa_{\rm W}^2 \\ \frac{\sigma_{\rm ZH}}{\sigma_{\rm ZH}^{\rm SM}} &= \kappa_{\rm Z}^2 \\ \frac{\sigma_{\rm t\bar{t}\,\rm H}}{\sigma_{\rm t\bar{t}\,\rm H}^{\rm SM}} &= \kappa_{\rm t}^2 \\ \frac{\sigma_{\rm t\bar{t}\,\rm H}}{\sigma_{\rm t\bar{t}\,\rm H}^{\rm SM}} &= \kappa_{\rm t}^2 \\ \frac{\sigma_{\rm t\bar{t}\,\rm H}}{\sigma_{\rm t\bar{t}\,\rm H}^{\rm SM}} &= \kappa_{\rm t}^2 \\ \frac{\Gamma_{\rm H}}{\Gamma_{\rm H}^{\rm SM}} &= \begin{cases} \kappa_{\rm H}^2(\kappa_i, m_{\rm H}) \\ \kappa_{\rm H}^2 \\ \kappa_{\rm H}^2 \end{cases} \end{split}$$

 $\begin{array}{llll} \displaystyle \frac{\Gamma_{WW^{(*)}}}{\Gamma_{WW^{(*)}}^{SM}} & = & \kappa_W^2 \\ \\ \displaystyle \frac{\Gamma_{ZZ^{(*)}}}{\Gamma_{ZZ^{(*)}}^{SM}} & = & \kappa_Z^2 \end{array}$ Detectable decay modes $\frac{\Gamma_{b\overline{b}}}{\Gamma_{b\overline{b}}^{\underline{SM}}} \ = \ \kappa_b^2$ $\frac{\Gamma_{\tau^-\tau^+}}{\Gamma^{SM}_{\tau^-\tau^+}} = \kappa_{\tau}^2$ $\frac{\Gamma_{\gamma\gamma}}{\Gamma_{\gamma\gamma}^{SM}} = \begin{cases} \kappa_{\gamma}^{2}(\kappa_{\rm b}, \kappa_{\rm t}, \kappa_{\rm \tau}, \kappa_{\rm W}, m_{\rm H}) \\ \kappa_{\gamma}^{2} \end{cases}$ $\frac{\Gamma_{Z\gamma}}{\Gamma_{Z\gamma}^{SM}} = \begin{cases} \kappa_{(Z\gamma)}^2(\kappa_{\rm b}, \kappa_{\rm t}, \kappa_{\rm \tau}, \kappa_{\rm W}, m_{\rm H}) \\ \kappa_{(Z\gamma)}^2 \end{cases}$

Total width

Higgs Scale Factors

Gluon Fusion Cross Section:

$$\kappa_{g}^{2}(\kappa_{b}, \kappa_{t}, m_{H}) = \frac{\kappa_{t}^{2} \cdot \sigma_{ggH}^{tt}(m_{H}) + \kappa_{b}^{2} \cdot \sigma_{ggH}^{bb}(m_{H}) + \kappa_{t}\kappa_{b} \cdot \sigma_{ggH}^{tb}(m_{H})}{\sigma_{ggH}^{tt}(m_{H}) + \sigma_{ggH}^{bb}(m_{H}) + \sigma_{ggH}^{tb}(m_{H})}$$

VBF Cross Section:

$$\kappa_{\rm VBF}^2(\kappa_{\rm W},\kappa_{\rm Z},m_{\rm H}) = \frac{\kappa_{\rm W}^2 \cdot \sigma_{\rm WF}(m_{\rm H}) + \kappa_{\rm Z}^2 \cdot \sigma_{\rm ZF}(m_{\rm H})}{\sigma_{\rm WF}(m_{\rm H}) + \sigma_{\rm ZF}(m_{\rm H})}$$

Partial γγ-Decay Width:

$$\kappa_{\gamma}^{2}(\kappa_{\rm b},\kappa_{\rm t},\kappa_{\rm \tau},\kappa_{\rm W},m_{\rm H}) = \frac{\sum_{i,j}\kappa_{i}\kappa_{j}\cdot\Gamma_{\gamma\gamma}^{ij}(m_{\rm H})}{\sum_{i,j}\Gamma_{\gamma\gamma}^{ij}(m_{\rm H})}$$

Scale Factor for Total Higgs Width ...

$$\kappa_{\rm H}^2(\kappa_i, m_H) = \sum_j \frac{\Gamma_j(\kappa_i, m_{\rm H})}{\Gamma_{\rm H}^{\rm SM}(m_{\rm H})}$$

with j = WW, ZZ, bb, $\tau\tau$, $\gamma\gamma$...

But:

At LHC we do not measure the all Higgs boson production cross sections; and we don't measure the Higgs width, Γ_H !

Thus: need to use measured cross section to estimate κ_H ...

Two possibilities:

Make assumptions on $\Gamma_H \rightarrow$ model dependent measurement ... Make ratio of measurements, given that they are Γ_H independent ...

Recommendations on Benchmark Parameterization

[arXiv:1209.0040]

Benchmark parameterization without further assumptions and maximum degrees of freedom; not used. [Black: common factors; blue: production factors; red: decay factors]

Gener	General parametrization allowing other couplings to float														
Free par	$ \text{Free parameters: } \kappa_{\mathrm{gZ}}(=\kappa_{\mathrm{g}}\cdot\kappa_{\mathrm{Z}}/\kappa_{\mathrm{H}}), \lambda_{\gamma\mathrm{Z}}(=\kappa_{\gamma}/\kappa_{\mathrm{Z}}), \lambda_{\mathrm{WZ}}(=\kappa_{\mathrm{W}}/\kappa_{\mathrm{Z}}), \lambda_{\mathrm{bZ}}(=\kappa_{\mathrm{b}}/\kappa_{\mathrm{Z}}), \lambda_{\mathrm{tZ}}(=\kappa_{\mathrm{t}}/\kappa_{\mathrm{g}}), \lambda_{\mathrm{tg}}(=\kappa_{\mathrm{t}}/\kappa_{\mathrm{g}}), \lambda_{\mathrm{tg}}(=\kappa_{\mathrm{t}}/\kappa_{\mathrm{g}}), \lambda_{\mathrm{tg}}(=\kappa_{\mathrm{t}}/\kappa_{\mathrm{g}}), \lambda_{\mathrm{tg}}(=\kappa_{\mathrm{t}}/\kappa_{\mathrm{g}}), \lambda_{\mathrm{tg}}(=\kappa_{\mathrm{t}}/\kappa_{\mathrm{g}}), \lambda_{\mathrm{tg}}(=\kappa_{\mathrm{tg}}/\kappa_{\mathrm{tg}}), \lambda_{\mathrm{tg}}(=\kappa_{\mathrm{tg}}/\kappa_$														
	$H \rightarrow \gamma \gamma$ $H \rightarrow ZZ^{(*)}$				$H \rightarrow WW^{(*)}$			$H \to b\overline{b}$			$H\to\tau^-\tau^+$				
ggH	$\kappa_{\rm gZ}^2$	1	$\lambda_{ m \gamma Z}^2$	$\kappa_{\rm gZ}^2$	1	1	$\kappa_{\rm gZ}^2$	1	$\lambda_{ m WZ}^2$	$\kappa_{\rm gZ}^2$	1	$\lambda_{ m bZ}^2$	κ_{gZ}^2	1	$\lambda_{ au ext{Z}}^2$
$t\overline{t}H$	$\kappa_{\rm gZ}^2$	$\lambda_{ m tg}^2$	$\lambda_{\gamma Z}^2$	$\kappa_{\rm gZ}^2$	$\lambda_{ m tg}^2$	1	$\kappa_{\rm gZ}^2$	$\lambda_{ m tg}^2$	$\lambda_{ m WZ}^2$	$\kappa_{\rm gZ}^2$	$\lambda_{ m tg}^2$	$\lambda_{ m bZ}^2$	$\kappa_{\rm gZ}^2$	$\lambda_{ m tg}^2$	$\lambda_{ au Z}^2$
VBF															
WH	$\kappa_{\rm gZ}^2$	$\lambda^2_{ m Zg}\lambda^2_{ m WZ}$	$\lambda_{\gamma Z}^2$	$\kappa_{\rm gZ}^2$	$\lambda^2_{ m Zg}\lambda^2_{ m WZ}$	1	$\kappa_{\rm gZ}^2$	$\lambda^2_{ m Zg}\lambda^2_{ m WZ}$	$\lambda_{ m WZ}^2$	$\kappa_{\rm gZ}^2$	$\lambda^2_{ m Zg}\lambda^2_{ m WZ}$	$\lambda_{ m bZ}^2$	$\kappa_{\rm gZ}^2$	$\lambda_{ m Zg}^2\lambda_{ m WZ}^2$	$\lambda_{ au Z}^2$
ZH	$\kappa_{\rm gZ}^2$	$\lambda_{ m Zg}^2$	$\lambda_{ m \gamma Z}^2$	$\kappa_{\rm gZ}^2$	$\lambda^2_{ m Zg}$	1	$\kappa_{\rm gZ}^2$	$\lambda^2_{ m Zg}$	$\lambda_{ m WZ}^2$	$\kappa_{\rm gZ}^2$	$\lambda^2_{ m Zg}$	$\lambda_{ m bZ}^2$	$\kappa_{\rm gZ}^2$	$\lambda^2_{ m Zg}$	$\lambda_{ au Z}^2$
	$\kappa_i^2 = \Gamma_{ii} / \Gamma_{ii}^{\rm SM}$														

Simplest possible benchmark parametrization where a single scale factor applies to all production and decay modes.

Comn	Common scale factor										
Free parameter: κ (= κ _t = κ _b = κ _t = κ _W = κ _Z).											
	$\mathrm{H}\to\gamma\gamma$	$H \to ZZ^{(*)}$	$H \to WW^{(*)}$	$\mathrm{H} \to \mathrm{b} \overline{\mathrm{b}}$	$\mathrm{H} \to \tau^- \tau^+$						
ggH			-								
$t\overline{t}H$											
VBF			κ^2								
WH											
ZH											

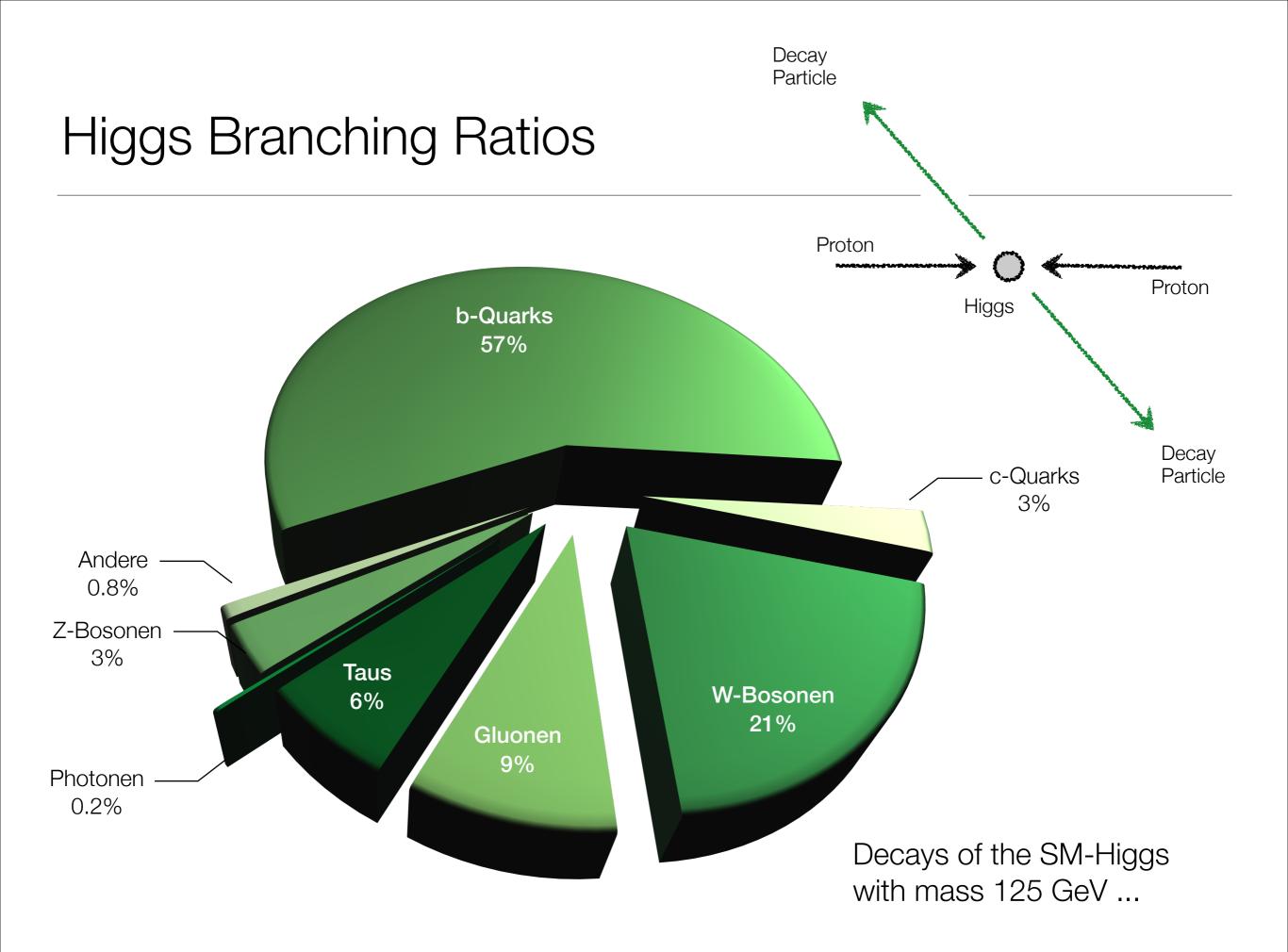
Recommendations on Benchmark Parameterization

[arXiv:1209.0040]

Benchmark parametrization where custodial symmetry is assumed and vector boson couplings are scaled together (κ_v) and fermions are assumed to scale with a single parameter (κ_f).

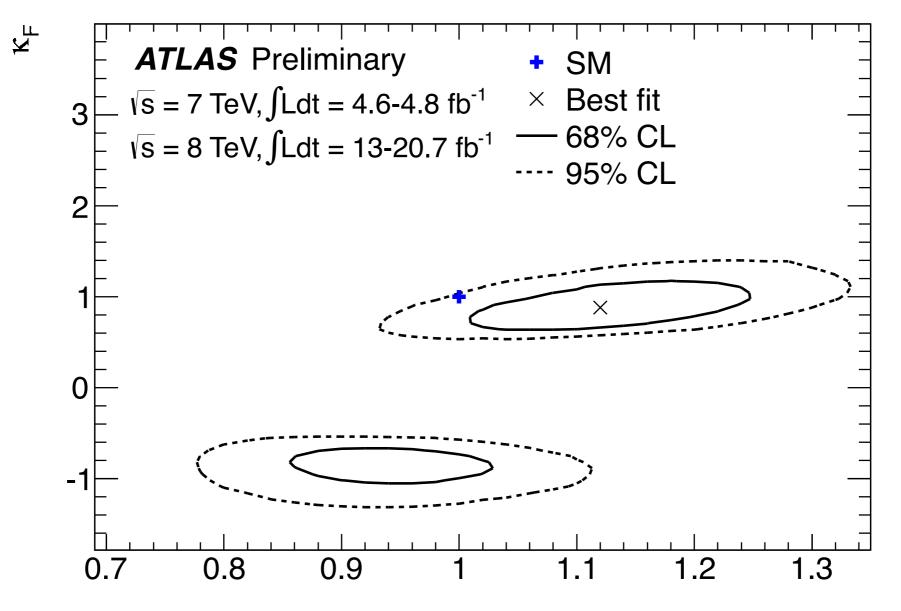
Boson	Boson and fermion scaling assuming no invisible or undetectable widths											
Free par	rameters: $\kappa_{\rm V}(=\kappa_{\rm W}=\kappa_{\rm Z}), \kappa_{\rm f}(=\kappa_{\rm t}=\kappa_{\rm b})$	$\kappa_{ au} = \kappa_{ au}).$										
	$\mathrm{H} \to \gamma \gamma$	$\mathrm{H} \to \mathrm{ZZ}^{(*)}$	$H \to WW^{(*)}$	$H \rightarrow b\overline{b}$	$\mathrm{H} \to \tau^- \tau^+$							
ggH	$\kappa_{\mathrm{f}}^2{\cdot}\kappa_{\gamma}^2(\kappa_{\mathrm{f}},\!\kappa_{\mathrm{f}},\!\kappa_{\mathrm{f}},\!\kappa_{\mathrm{V}})$	-	$f^2 \cdot \kappa_V^2$		${}_{\rm f}^2 \cdot \kappa_{\rm f}^2$							
$t\overline{t}H$	$\kappa_{ m H}^2(\kappa_i)$	$\kappa_{\rm H}^2$	$\frac{2}{4}(\kappa_i)$	$\overline{\kappa_{ m H}^2(\kappa_i)}$								
VBF	$\begin{array}{c c} \mathbf{BF} \\ \mathbf{\kappa}_{\mathrm{V}}^{2} \cdot \kappa_{\gamma}^{2}(\kappa_{\mathrm{f}}, \kappa_{\mathrm{f}}, \kappa_{\mathrm{f}}, \kappa_{\mathrm{f}}, \kappa_{\mathrm{f}}, \kappa_{\mathrm{f}}) \\ \mathbf{\kappa}_{\mathrm{V}}^{2} \cdot \kappa_{\mathrm{V}}^{2} \\ \end{array} \qquad \qquad$											
WH	$\frac{\frac{\kappa_{\rm V} \kappa_{\rm \gamma} (\kappa_{\rm i},\kappa_{\rm i},\kappa_{\rm V})}{\kappa_{\rm H}^2(\kappa_{\rm i})}$		$\frac{V K V}{P_{H}(\kappa_i)}$		$\frac{V \kappa_{\rm f}}{2 (\kappa_i)}$							
ZH	$H(\mathbf{r}_{t})$		1()		1()							
Boson and fermion scaling without assumptions on the total width												
Free par	rameters: $\kappa_{\rm VV} (= \kappa_{\rm V} \cdot \kappa_{\rm V} / \kappa_{\rm H}), \lambda_{\rm fV} (= \kappa_{\rm f}$	$/\kappa_{ m V}).$										
	$\mathrm{H}\to\gamma\gamma$	$\mathrm{H} \to \mathrm{ZZ}^{(*)}$	$H \to WW^{(*)}$	$H \rightarrow b\overline{b}$	$\mathrm{H} \to \tau^- \tau^+$							
ggH	$\kappa_{\rm VV}^2 \cdot \lambda_{\rm fV}^2 \cdot \kappa_{\gamma}^2(\lambda_{\rm fV},\lambda_{\rm fV},\lambda_{\rm fV},1)$	K ²	$_{_{ m V}}\cdot\lambda_{ m fV}^2$	K ²	$\lambda_{ m fV}^2\cdot\lambda_{ m fV}^2$							
$t\overline{t}H$	$\mathbf{K}_{VV} \rightarrow \mathbf{f}_{V} \rightarrow \mathbf{K}_{\gamma} \rightarrow \mathbf{K}_{\gamma}$		/ refv		fv rfv							
VBF												
WH	$\kappa_{ m VV}^2 \cdot \kappa_{\gamma}^2(\lambda_{ m fV},\lambda_{ m fV},\lambda_{ m fV},1)$	К	2 VV	$\kappa_{\rm VV}^2$	$_{_{ m V}}\cdot\lambda_{ m fV}^2$							
ZH												
$\kappa_i^2 = \Gamma_{ii} / \Gamma_{ii}^{\rm SM}$												

Fermion vs. Vector Coupling Standard Model only contributions to total width


Expressions for

Higgs production and decays:

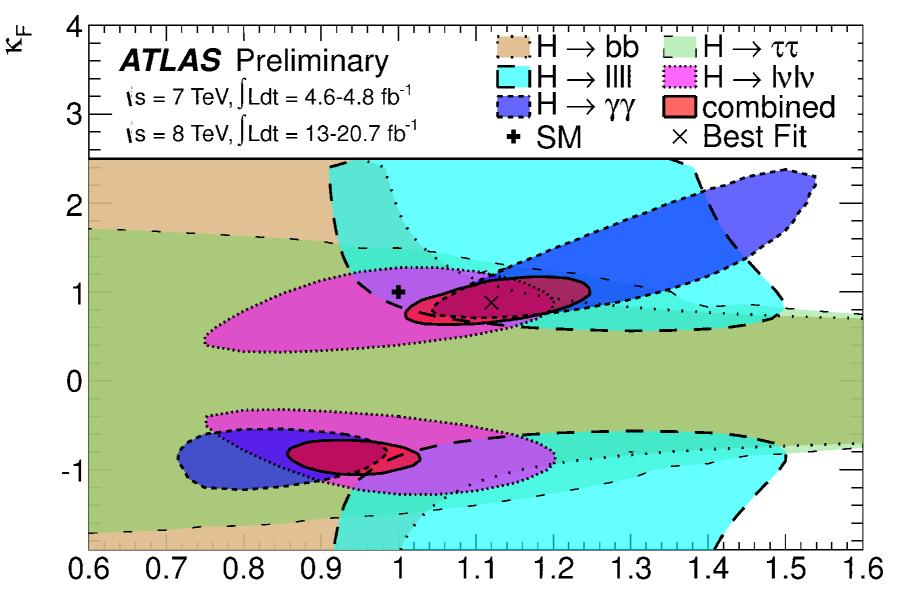
[ATLAS-CONF-2013-034]


$$\kappa_V = \kappa_W = \kappa_Z$$

 $\kappa_F = \kappa_t = \kappa_b = \kappa_\tau = \kappa_g$

$$\begin{split} \sigma(gg \to H) * \mathrm{BR}(H \to \gamma\gamma) &\sim \quad \frac{\kappa_F^2 \cdot \kappa_\gamma^2(\kappa_F, \kappa_V)}{0.75 \cdot \kappa_F^2 + 0.25 \cdot \kappa_V^2} \\ \sigma(qq' \to qq'H) * \mathrm{BR}(H \to \gamma\gamma) &\sim \quad \frac{\kappa_V^2 \cdot \kappa_\gamma^2(\kappa_F, \kappa_V)}{0.75 \cdot \kappa_F^2 + 0.25 \cdot \kappa_V^2} \\ \sigma(gg \to H) * \mathrm{BR}(H \to ZZ^{(*)}, H \to WW^{(*)}) &\sim \quad \frac{\kappa_F^2 \cdot \kappa_V^2}{0.75 \cdot \kappa_F^2 + 0.25 \cdot \kappa_V^2} \\ \sigma(qq' \to qq'H) * \mathrm{BR}(H \to ZZ^{(*)}, H \to WW^{(*)}) &\sim \quad \frac{\kappa_V^2 \cdot \kappa_F^2}{0.75 \cdot \kappa_F^2 + 0.25 \cdot \kappa_V^2} \\ \sigma(qq' \to qq'H, VH) * \mathrm{BR}(H \to \tau\tau, H \to b\bar{b}) &\sim \quad \frac{\kappa_V^2 \cdot \kappa_F^2}{0.75 \cdot \kappa_F^2 + 0.25 \cdot \kappa_V^2} \end{split}$$

Fermion vs. Vector Coupling Standard Model only contributions to total width


[ATLAS-CONF-2013-034]

κ_v

Fermion vs. Vector Coupling Standard Model only contributions to total width

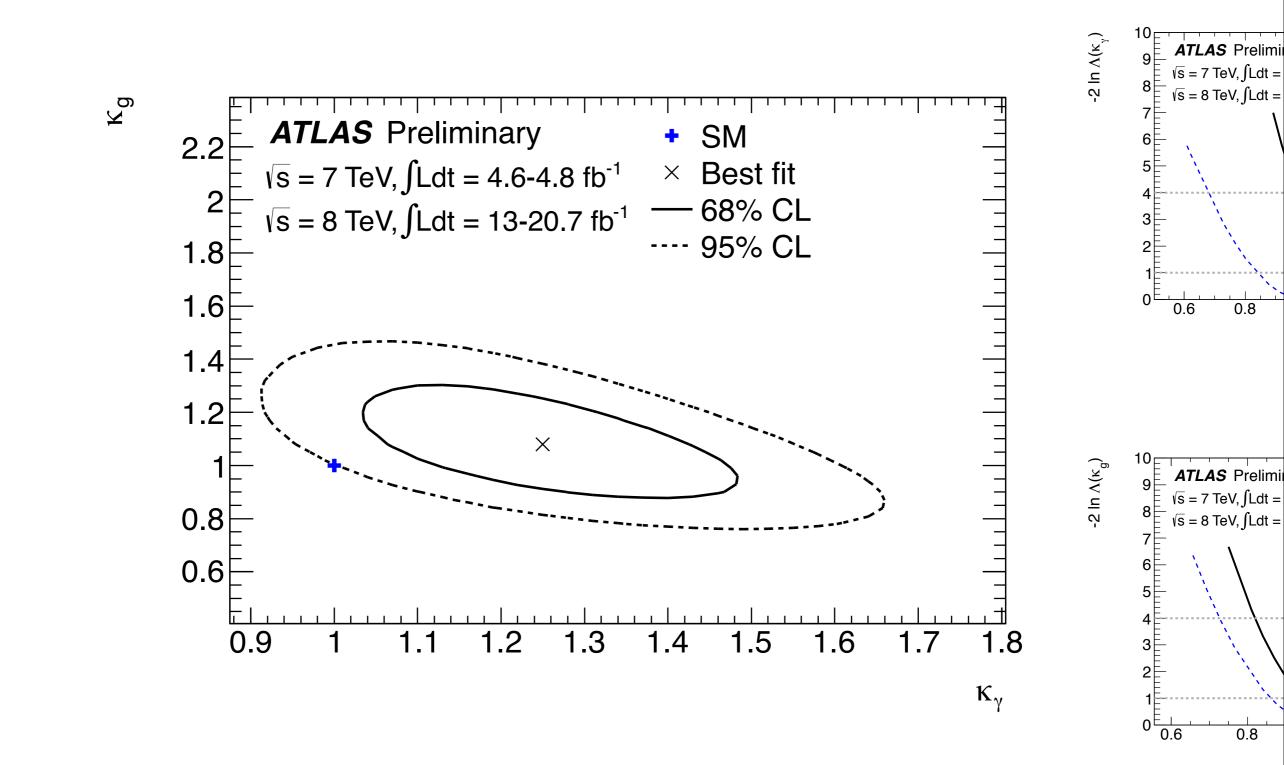
[ATLAS-CONF-2013-034]

 κ_V

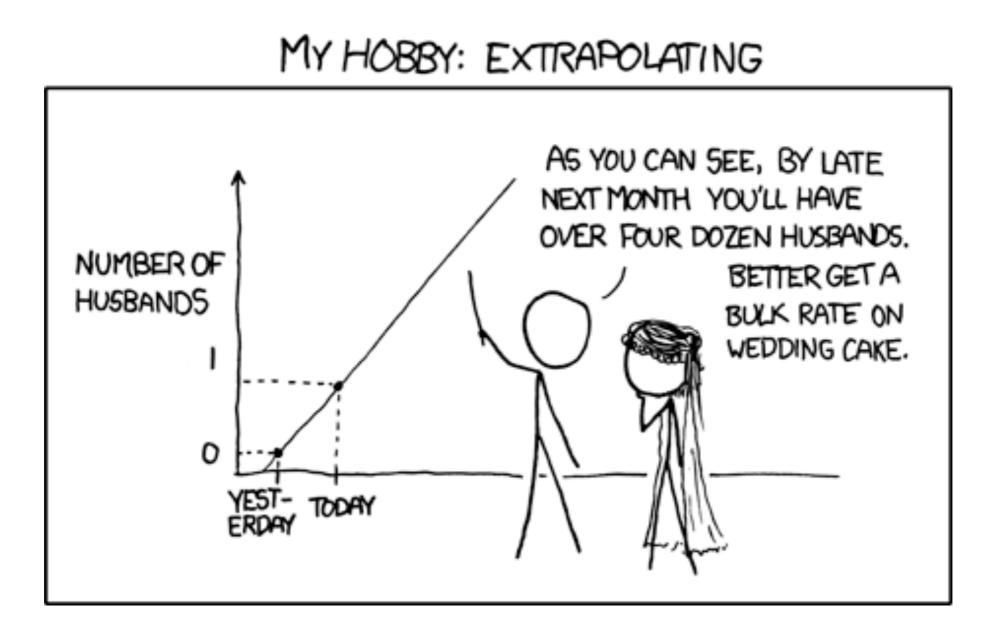
Probing BSM Contributions Standard Model only contributions to total width

Expressions for

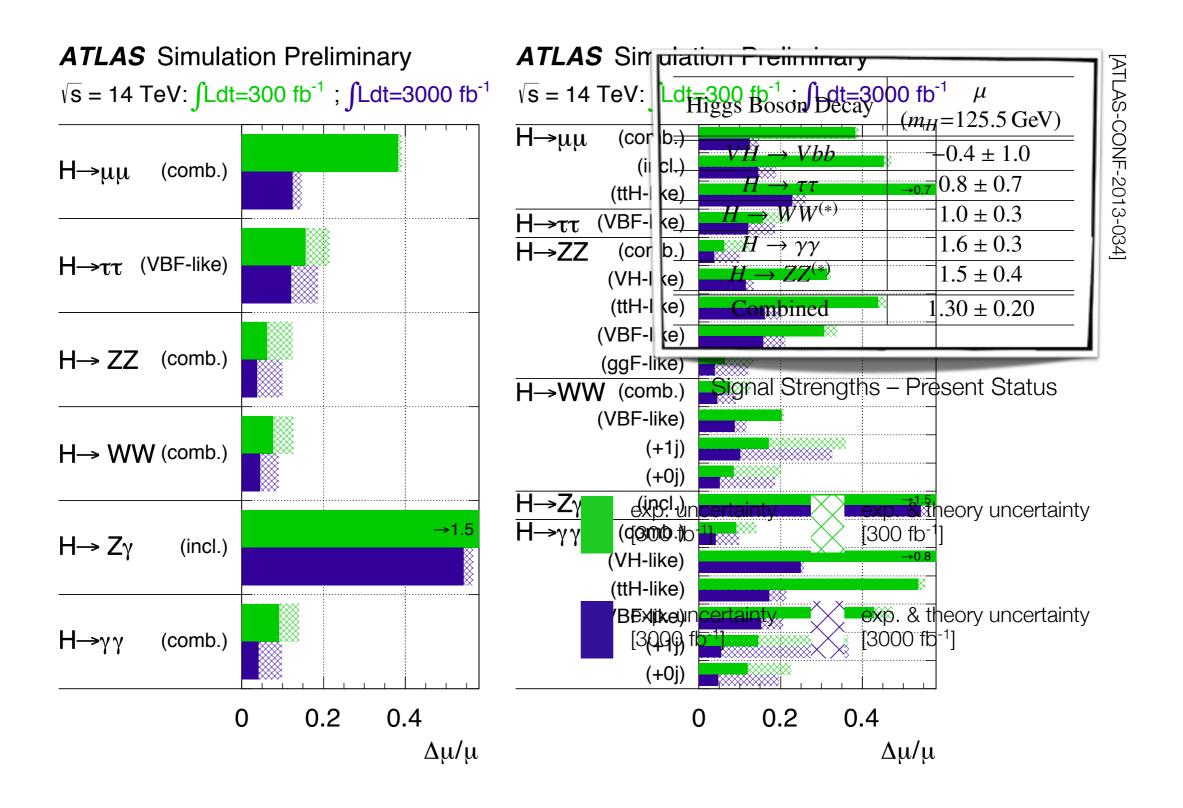
Higgs production and decays:

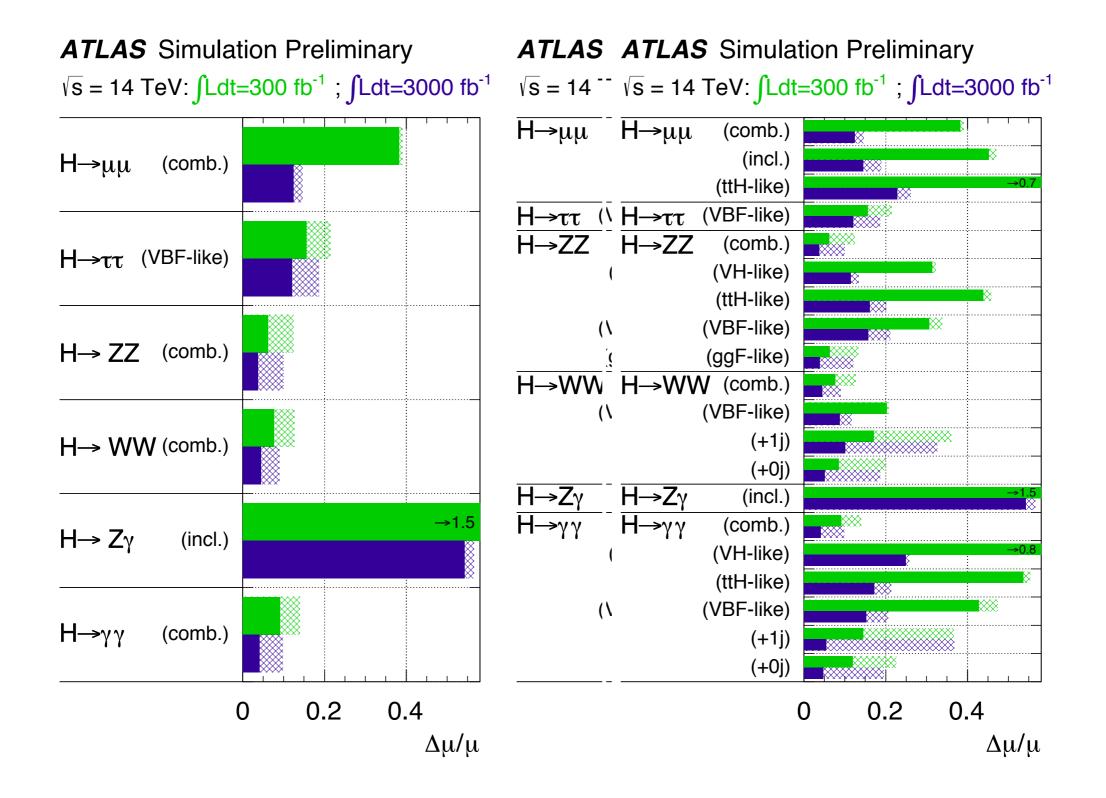

[ATLAS-CONF-2013-034]

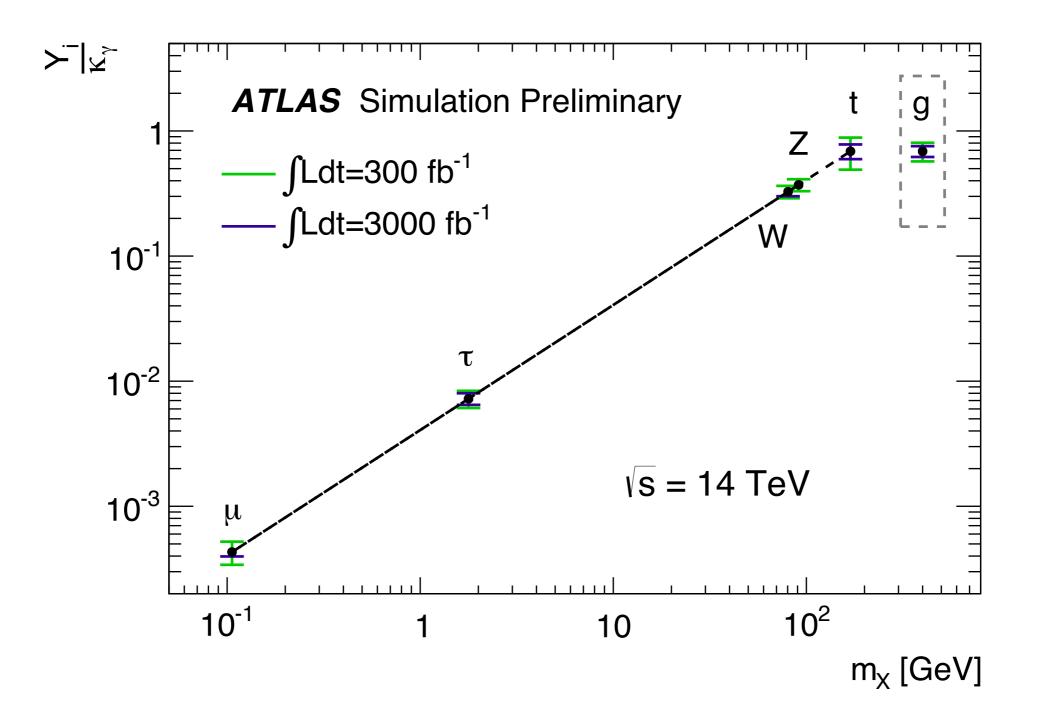
scale factors κ_g and κ_γ $\kappa_i = 1$ rest


$$\begin{split} \sigma(qg \to H) * \mathrm{BR}(H \to \gamma\gamma) &\sim & \frac{\kappa_{\mathrm{g}}^2 \cdot \kappa_{\gamma}^2}{0.085 \cdot \kappa_{\mathrm{g}}^2 + 0.0023 \cdot \kappa_{\gamma}^2 + 0.91} \\ \sigma(qq' \to qq'H) * \mathrm{BR}(H \to \gamma\gamma) &\sim & \frac{\kappa_{\gamma}^2}{0.085 \cdot \kappa_{\mathrm{g}}^2 + 0.0023 \cdot \kappa_{\gamma}^2 + 0.91} \\ \sigma(qg \to H) * \mathrm{BR}(H \to ZZ^{(*)}, H \to WW^{(*)}) &\sim & \frac{\kappa_{\mathrm{g}}^2}{0.085 \cdot \kappa_{\mathrm{g}}^2 + 0.0023 \cdot \kappa_{\gamma}^2 + 0.91} \\ \sigma(qq' \to qq'H) * \mathrm{BR}(H \to ZZ^{(*)}, H \to WW^{(*)}) &\sim & \frac{1}{0.085 \cdot \kappa_{\mathrm{g}}^2 + 0.0023 \cdot \kappa_{\gamma}^2 + 0.91} \\ \sigma(qq' \to qq'H, VH) * \mathrm{BR}(H \to \tau\tau, H \to b\bar{b}) &\sim & \frac{1}{0.085 \cdot \kappa_{\mathrm{g}}^2 + 0.0023 \cdot \kappa_{\gamma}^2 + 0.91} \end{split}$$

Probing BSM Contributions Standard Model only contributions to total width


[ATLAS-CONF-2013-034]


Future Prospects ...

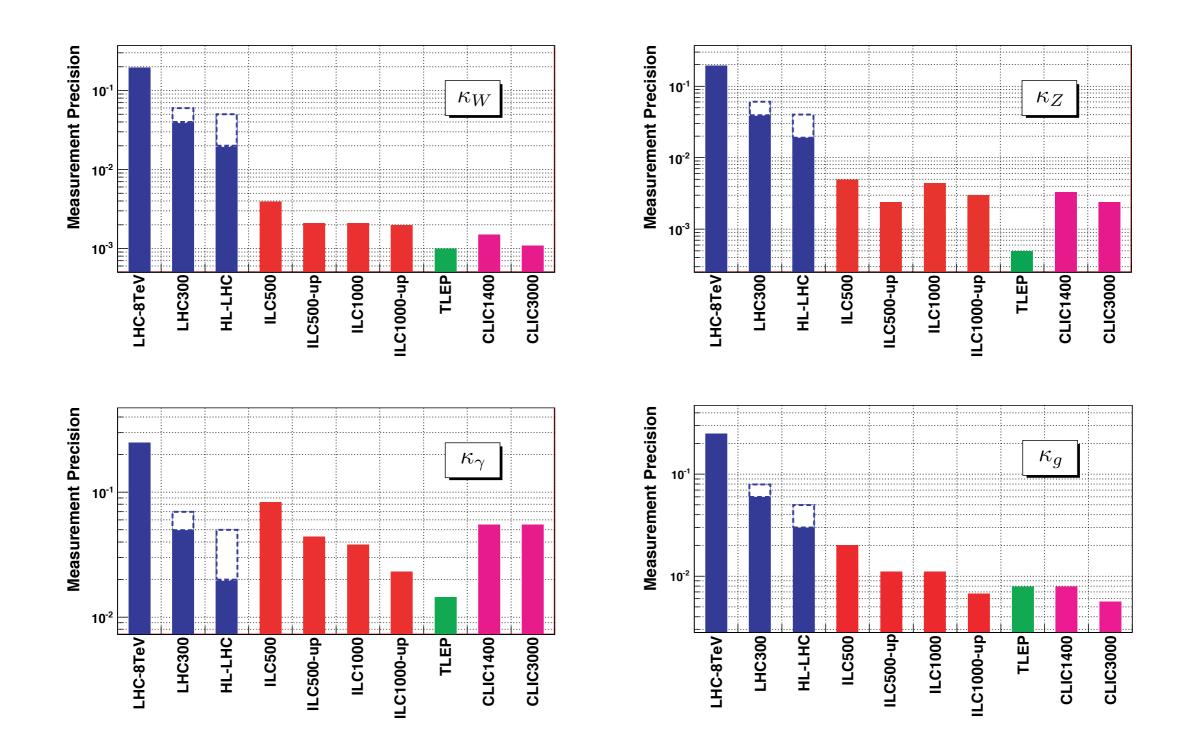


[ATLAS-PHYS-PUB-2013-014]

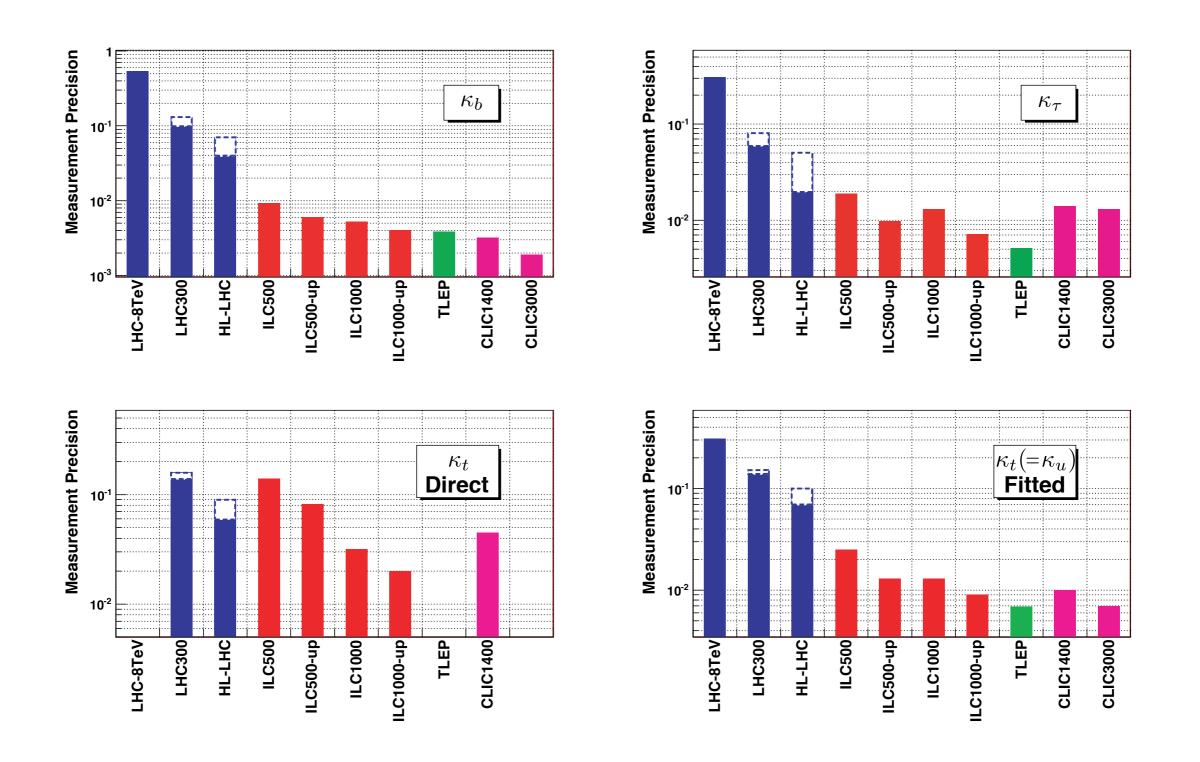
[ATLAS-PHYS-PUB-2013-014]

[Snowmass 2013; ILC Higgs White Paper]

Reconsideration of LHC projections by Snowmass 2013 ... [using different assumptions how systematics evolve ...]


Best prospects given by CMS assuming ... decrease of theory errors by factor of 2 ... decrease of experimental systematics by √N ...

	Kγ	Kw	KZ	Kg	Kb	Kt	Kτ	K _{Zγ}	Kμ
ATLAS	[8,13]	[6,8]	[7,8]	[8,11]	N/a	[20,22]	[13,18]	[78,79]	[21,23]
CMS	[5,7]	[4,6]	[4,6]	[6,8]	[10,13]	[14,15]	[6,8]	[41,41]	[23,23]
ATLAS	[5,9]	[4,6]	[4,6]	[5,7]	N/a	[8,10]	[10,15]	[29,30]	[8,11]
CMS	[2,5]	[2,5]	[2,4]	[3,5]	[4,7]	[7,10]	[2,5]	[10,12]	[8,8]
ILC500	8.4	0.4	0.5	2.0	0.9	2.5	1.9	_	_
ILC500up	4.4	0.2	0.3	1.1	0.6	1.3	1.0	_	_
ILC1000up	2.3	0.2	0.3	0.7	0.4	0.9	0.7		
	CMS ATLAS CMS ILC500 ILC500up	ATLAS [8,13] CMS [5,7] ATLAS [5,9] CMS [2,5] ILC500 8.4 ILC500up 4.4	ATLAS[8,13][6,8]CMS[5,7][4,6]ATLAS[5,9][4,6]CMS[2,5][2,5]ILC5008.40.4ILC500up4.40.2	ATLAS[8,13][6,8][7,8]CMS[5,7][4,6][4,6]ATLAS[5,9][4,6][4,6]CMS[2,5][2,5][2,4]ILC5008.40.40.5ILC500up4.40.20.3	ATLAS [8,13] [6,8] [7,8] [8,11] CMS [5,7] [4,6] [4,6] [6,8] ATLAS [5,9] [4,6] [4,6] [5,7] CMS [2,5] [2,5] [2,4] [3,5] ILC500 8.4 0.4 0.5 2.0 ILC500up 4.4 0.2 0.3 1.1	ATLAS [8,13] [6,8] [7,8] [8,11] N/a CMS [5,7] [4,6] [4,6] [6,8] [10,13] ATLAS [5,9] [4,6] [4,6] [5,7] N/a CMS [5,9] [4,6] [4,6] [5,7] N/a CMS [2,5] [2,5] [2,4] [3,5] [4,7] ILC500 8.4 0.4 0.5 2.0 0.9 ILC500up 4.4 0.2 0.3 1.1 0.6	ATLAS [8,13] [6,8] [7,8] [8,11] N/a [20,22] CMS [5,7] [4,6] [4,6] [6,8] [10,13] [14,15] ATLAS [5,9] [4,6] [4,6] [5,7] N/a [8,10] ATLAS [5,9] [4,6] [2,4] [3,5] [4,7] [7,10] ILC500 8.4 0.4 0.5 2.0 0.9 2.5 ILC500up 4.4 0.2 0.3 1.1 0.6 1.3	ATLAS [8,13] [6,8] [7,8] [8,11] N/a [20,22] [13,18] CMS [5,7] [4,6] [4,6] [6,8] [10,13] [14,15] [6,8] ATLAS [5,9] [4,6] [4,6] [5,7] N/a [8,10] [10,15] ATLAS [5,9] [4,6] [4,6] [5,7] N/a [8,10] [10,15] CMS [2,5] [2,5] [2,4] [3,5] [4,7] [7,10] [2,5] ILC500 8.4 0.4 0.5 2.0 0.9 2.5 1.9 ILC500up 4.4 0.2 0.3 1.1 0.6 1.3 1.0	ATLAS [8,13] [6,8] [7,8] [8,11] N/a [20,22] [13,18] [78,79] CMS [5,7] [4,6] [4,6] [6,8] [10,13] [14,15] [6,8] [41,41] ATLAS [5,9] [4,6] [4,6] [5,7] N/a [8,10] [10,15] [29,30] CMS [2,5] [2,5] [2,4] [3,5] [4,7] [7,10] [2,5] [10,12] ILC500 8.4 0.4 0.5 2.0 0.9 2.5 1.9 - ILC500up 4.4 0.2 0.3 1.1 0.6 1.3 1.0 -


All numbers in percent.

Snowmass Higgs Working Group Report ATL-PHYS-PUB-2013-007 CMS NOTE-13-002

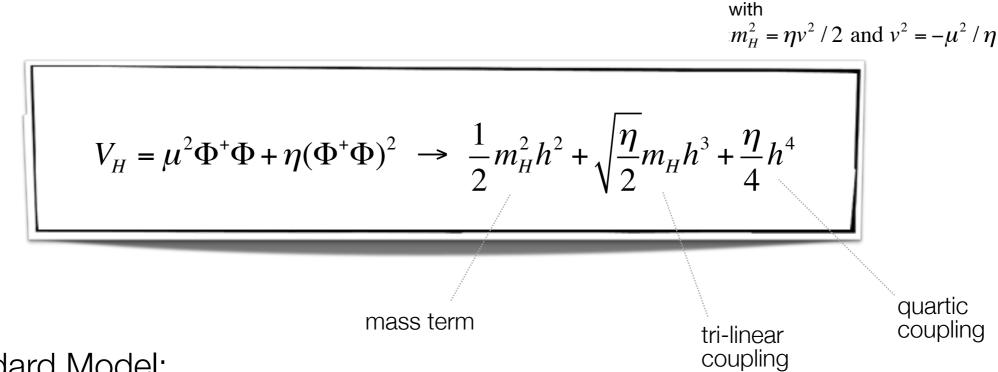
[Snowmass 2013; ILC Higgs White Paper]

[Snowmass 2013; ILC Higgs White Paper]

Physics Motivation

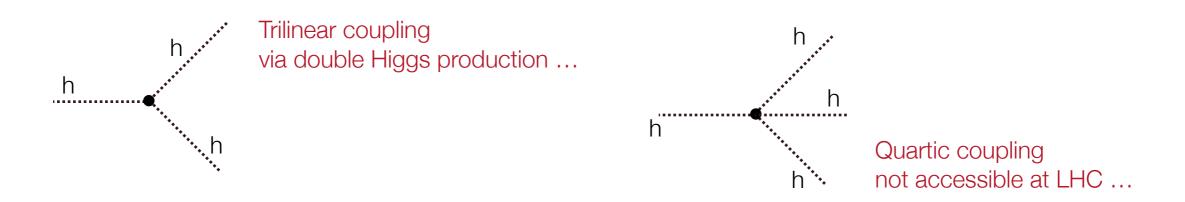
[Snowmass Higgs Working Group Report]

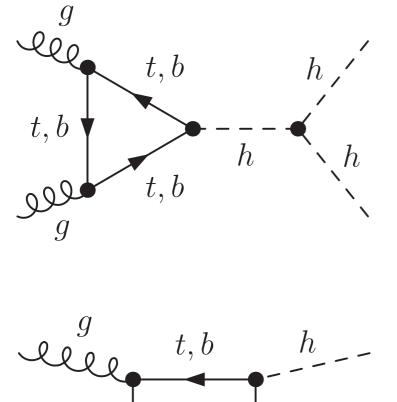
Non-Standard Higgs couplings possible due to new phenomena well beyond the present mass scales ...


e.g. extra Higgs Bosons in a 2HDM ...

Snowmass 2013: Survey of effects for M = 1 TeV ...

Model	κ_V	κ_b	κ_γ
Singlet Mixing	$\sim 6\%$	$\sim 6\%$	$\sim 6\%$
2HDM	$\sim 1\%$	$\sim 10\%$	$\sim 1\%$
Decoupling MSSM	$\sim -0.0013\%$	$\sim 1.6\%$	$\sim4\%$
Composite	$\sim -3\%$	$\sim -(3-9)\%$	$\sim -9\%$
Top Partner	$\sim -2\%$	$\sim -2\%$	$\sim +1\%$

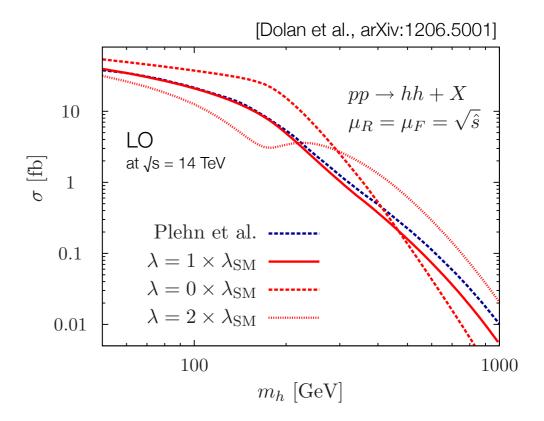

Generic size of Higgs coupling modifications for new physics at M = 1 TeV ...

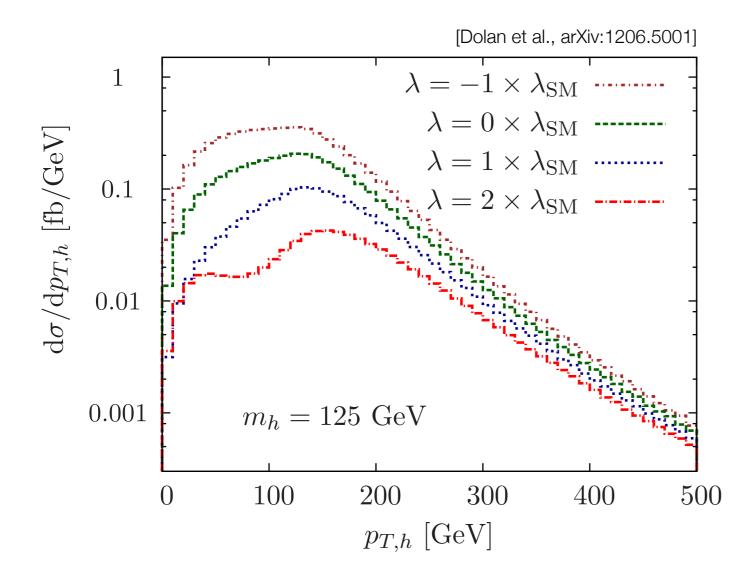

[arXiv:1310.8361v1]

Standard Model:

Higgs self couplings follow from the Higgs potential after expanding the Higgs doublet field Φ around the electroweak symmetry breaking vacuum expectation ...

 $\begin{array}{c} g \\ t, b \\ t, b \\ g \\ t, b \\ h \end{array}$


NLO: $\sigma = 34 \text{ fb}$ [m_H = 125 GeV]


± 20 %

from QCD, PDF, EFT

Destructive interference ...

 σ_{DH} depends on trilinear coupling $\lambda = m_H \cdot \sqrt{\frac{1}{2}\eta} \dots$ relatively large λ -dependence at $m_H \approx 125$ GeV ...

Theory predicts:

Higgs bosons in Di-Higgs production processes naturally boosted $p_{T,h} \ge 100 \text{ GeV} \dots$

Maximum sensitivity on trilinear coupling λ expected for transverse momenta of $p_{T,h} \sim 100 \text{ GeV} \dots$

Higgs transverse momentum $p_{T,h}$ good observable to identify kinematical region sensitive to different λ ...

ATLAS Study on HH \rightarrow bbyy

[E. Meoni, Aspen, March 2013]

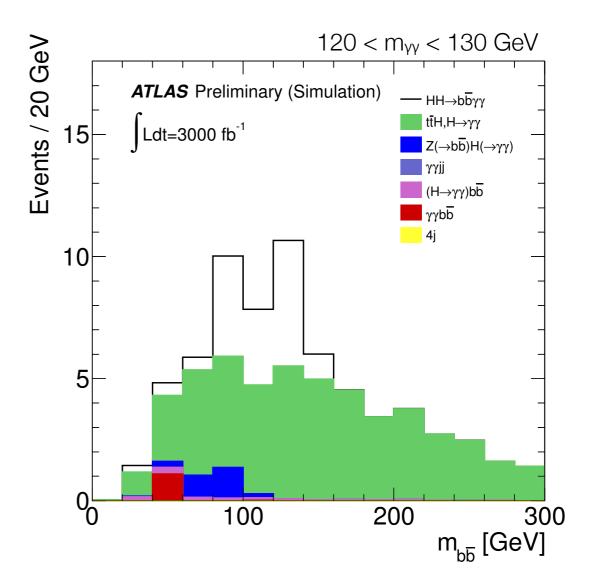
Many channels to pursue, since $m_H = 125 \text{ GeV} \dots$

Preliminary

Generator study

for HH \rightarrow bbyy channel ...

Tight $m_{\gamma\gamma}$ and b-tag p_T -cut leave mostly ttH background ...


Selection:

2 b-jets with $p_T > 40$, 25 GeV 2 isolated photons, $p_T > 25$ GeV Separation: $\Delta R_{\gamma b} > 0.4$

Expectation:

With additional channels and two experiments: 30% measurement.

[see e.g. Barr et al. arXiv:1309.6318]

Decay channel	Branching ratio (%)	Events @ 14 TeV (L = 3,000 fb ⁻¹)
b b + b b	33.4084	33,976
b b + ₩+₩-	24.9696	25,394
$bb + \tau^+\tau^-$	7.3638	7,488
$W^+W^- + W^+W^-$	4.6656	4,745
ZZ + b b	3.0866	3,138
ZZ + W+W-	1.1534	1,174
γ γ + b b	0.2658	270
YY + YY	0.0010	1