Lecture 6

Signal Strength – Summer 2013

Relevant observable: mbb ...

Refined energy scale and resolution for b-jets ...

include muon momenta account for jet properties

. . .

Higgs → bb in Associated Production

Main Backgrounds

Main Backgrounds

Event Selection – Basics

Common Selection:

at least 2 jets with pt > 45 GeV and pt > 20 GeV; $|\eta| < 2.5 \dots$ the 2 jets with highest momenta are b-tagged, i.e. leading b-jets \dots electrons and muons passing loose, medium or tight ID criteria \dots [depends on signal categorie]

Object	0-lepton	1-lepton	2-lepton					
Lantana	0 loose leptons	1 tight lepton	1 medium lepton					
Leptons		+ 0 loose leptons	+ 1 loose lepton					
		2 <i>b</i> -tags						
Late	$p_{\rm T}^{\rm jet_1} > 45 {\rm ~GeV}$							
JEIS	$p_{\rm T}^{\rm jet_2} > 20 {\rm GeV}$							
	$+ \le 1$ extra jets							
Missing E	$E_{\rm T}^{\rm miss} > 120 {\rm GeV}$	$E_{\rm T}^{\rm miss} > 25 { m Gev}$	$E_{\rm T}^{\rm miss} < 60 { m GeV}$					
MISSING L_T	$p_{\rm T}^{\rm miss} > 30 {\rm ~GeV}$	1						
	$\Delta \phi(E_{\rm T}^{\rm miss}, p_{\rm T}^{\rm miss}) < \pi/2$							
	$\min[\Delta \phi(E_{T}^{\text{miss}}, \text{jet})] > 1.5$							
	$\Delta \phi(E_{\rm T}^{\rm miss}, b\bar{b}) > 2.8$							
Vector Boson	-	$m_{\rm T}^W < 120 { m GeV}$	$83 < m_{\ell\ell} < 99 {\rm GeV}$					

Detailed selection criteria for the three signal channels ...

> ... 0-lepton ... 1-lepton ... 2-lepton

Event Selection – Topological Requirements

Determine transverse momentum p_T of the produced vector boson using ...

ET,miss	
ET,miss + PT,lep	
P _{T,Z}	

0-lepton channel 1-lepton channel 2-lepton channel

Expectation:

The higher p_T of the Vector Boson the lower the opening angle between Higgs decay products (b-jets) ...

	$p_{\rm T}^V [{\rm GeV}]$	0-90	90-120	120-160	160-200	>200
All Channels	$\Delta R(b, \bar{b})$	0.7-3.4	0.7-3.0	0.7-2.3	0.7-1.8	<1.4

B-Quark Tagging in ATLAS

Impact parameter (IP) based ...

IP3D: Log-likelihood based algorithm ...

Utilizes PDFs of ...

- ... transverse and longitudinal IP significance ...
 - \rightarrow track weight w_{track} = P_{b-jet}/P_{light}

$$\rightarrow$$
 jet weight w_{tjet} = $\sum_{\text{track}} \log(w_{\text{track}})$

B-Quark Tagging in ATLAS

Secondary vertex (SV) based ...

SV1: Log-likelihood based algorithm ...

Utilizes SV reconstructing ...

Untuned simulation & jet flavor fractions

- ... 2D and 1D likelihood ratios ...
 - → 2D: SV mass, $\sum (P_{T,SV}) / \sum (P_{T,jet}) \dots$
 - ➤ 1D: number of 2-track vertices ...
 - → 1D: ΔR (jet, PV-to-SV direction) ...

B-Quark Tagging in ATLAS

Secondary vertex (SV) based ...

JetFitter: Special algorithm ...

Exploits topology of weak B/D-hadron decay chain inside jets ...

- → reconstruct PV-SV1-SV2 line ...
- → use likelihood similar to SV1 method ...

SV1

Lxy > 0

Secondary Vertex

Primary Vertex

PV

 d_0

Jet Axis

Secondar

B-Quark Tagging in ATLAS

Advanced combined algorithm ...

MV1: Neural net based ...

Combines output weights from IP3D, SV1 and JetFitter in a multivariate method ...

MVA: Multivariate Data Analysis

Automatized multi-dimensional classification of different event categories; select optimal classifier [e.g. NN] ...

Background Determination

()
()
. <u> </u>
\mathbf{O}
\square
<u> </u>
HT
CO
()

	Signal	gnai region		Control region		
	2 jets 2 tags	3 jets 2 tags	2 jets 1 tag	3 jets 1 tag	e-µ 2 tags] Total:
0-lepton (x 3 p _{T,V} bins)	Shape	Shape	Norm	Norm	_	26 SR
1-lepton (x 5 p _{T,V} bins)	Shape	Shape	Norm	Norm	-	31 CR
2-lepton (x 5 p _{T,V} bins)	Shape	Shape	Norm	Norm	Norm	

General approach:

Global log-likelihood fit of data in 26 signal and 31 control regions ... Exploit different background and signal compositions in different regions ...

- ➤ yields background normalization & shape systematics ...
- → allows to account for signal contamination in CRs ...
- ➤ includes systematic uncertainties via nuisance parameters ...

Background Determination

Background Determination

Background Determination

Higgs → bb Mass Peak

Background subtracted mass peak ... with regions weighted by S/B

Gray: Di-Boson signal [WZ, ZZ, Z → bb]

Red: Higgs signal [Dark: fitted; light: SM]

Higgs → bb Signal Strength

 $\sqrt{s} = 7$ TeV: Substantial deficit ... $\mu = -2.1 \pm 1.4$ $\sqrt{s} = 8$ TeV: About 1σ excess ... $\mu = 0.6 \pm 0.7$ Combined: Consistent with $\mu = 0$ or 1... $\mu = 0.2 + 0.7 - 0.6$

Validation of Fit Model

Di-boson fit summary for each year and channel ...

Validation fit done with Higgs constrained to SM ...

Observed rate:

 $\mu = 0.9 \pm 0.2$ [Consistent with SM]

ATLAS Preliminary

Higgs → bb Mass Peak

Combined limit at $m_H=125$ GeV ... $\sigma/\sigma_{SM} < 1.4$ (1.3 expected) @ 95% CL

22

ATLAS Preliminar

ATLAS-CONF-2012-160 CMS PAS HIG-13-004 CMS PAS HIG-13-053

Search for Higgs $\rightarrow \tau \tau$

Most sensitive production mode ...?

[Gluon fusion only at high p_T]

qqH production most sensitive

low rate less sensitive

ttH production dedicated search

Experimental challenges:

Decay modes lead to 3 different final states \dots Invariant mass reconstruction due to missing neutrinos \dots Energy scale determination and uncertainty for τ -decays \dots

 $\begin{array}{l} \mbox{mostly sensitive} \\ \mbox{for high } p_T(\tau,\tau) \end{array}$

τ-decays:

Leptonic [ca. 35%]: $\tau^{\pm} \rightarrow e^{\pm}v_e v_{\tau}, \tau^{\pm} \rightarrow \mu^{\pm}v_{\mu}v_{\tau}$ Hadronic [ca. 65%]: $\tau^{\pm} \rightarrow \pi^{\pm}v_{\tau}, \tau^{\pm} \rightarrow \pi^{\pm}\pi^{\pm}\pi^{\mp}v_{\tau}...$

Tau-Reconstruction and Identification

Main Background: QCD jets

Reconstruction

Identification

Boosted decision trees (BDT) or log-likelihood methods ...

Identification variables:

calorimetric (HAD and EM shower shapes) tracking (isolation, momentum, ...)

Veto on electrons and muons ...

Signature:

Collimated calorimeter clusters ... Low track multiplicity ... Displaced vertex ... Close by tracks ...

Tau ID input variables ...

Track radius Lead core energy fraction Leading track momentum fraction Number of isolation tracks Ring isolation Cluster mass Track mass Transverse flight path significance Leading track IP significance First 2(3) leading clusters energy ratio Maximum ΔR Electromagnetic fraction TRT HT fraction Maximum strip ET Hadronic track fraction Electromagnetic track fraction Hadronic radius Corrected cluster isolation energy

Variable	Eqn.	Jet discriminants				ants		Electron discriminants		
		C	Cut	It LLH BDT		Cut BDT				
		1	m	1	m	1	m	1	1	
R _{track}	11	٠	٠	٠	٠	•	٠		•	
$f_{ m track}$	12	•	•			•	•		•	
$f_{\rm core}$	13			•	•	•	•		•	
$N_{ m track}^{ m iso}$		•	•	•		•	•			
<i>R</i> _{Cal}	14			•		•	•			
$f_{ m iso}$	15								•	
m _{eff. clusters}	16					•	•			
m _{tracks}	18				٠		•			
$S_{\rm T}^{\rm flight}$	19		•		•		•			
$S_{\rm lead\ track}$	20					•	•			
f_2 lead clusters				•						
f_3 lead clusters						•	٠			
$\Delta R_{\rm max}$					٠		٠			
fем	21								•	
fнт	22							•	•	
$f_{\rm Had}^{\rm track}$	23							•	•	
$E_{\mathrm{T,max}}^{\mathrm{strip}}$								•	•	
$f_{\rm EM}^{\rm track}$	24							•		
$R_{\rm Had}$	25								•	
$E_{\rm T,corr}^{\rm iso}$	26	•	•							

Some sample input variables ...

Calorimetric Radius

Some sample input variables ...

Number of isol. tracks

Maximum ΔR between τ -axis and core track

[arXiv:physics/0408124]

Boosted Decision Tree

Training:

Use a set of simple criteria to categorize events by a decision tree ...

Splitting values picked, by optimizing separation of signal and background ...

Rebuilt tree by re-weighting events misclassified by the decision tree ...

Built many decision trees ...

Scoring:

Follow every event through each tree ... Assign "+1" if classified as signal; "-1" otherwise ...

Renormalized sum of scores: BDT output.

A Somewhat Intuitive Example

A Somewhat Intuitive Example

Jet BDT Score and Performance

Jet BDT Score and Performance

Electron BDT Score

Electron BDT Performance

Visible $Z \rightarrow \tau \tau$ mass distributions after full event selection before and after tight BDT identification

Higgs → ττ ATLAS

H → ττ Analysis Results

[Example Plots]

Higgs → ττ ATLAS

H → ττ Analysis Results

Run Number: 209109, Event Number: 86250372

Date: 2012-08-24 07:59:04 UTC

