## BSM Higgs Searches

Experimental view ...

## Theoretical Problems and Open Questions

Standard model cannot be valid up to large energy scales $\wedge$...
Problem: Higgs self-energy $\left[\Delta \mathrm{m}_{H}^{2} \sim \Lambda^{2}\right]$

- Quadratically divergent
- Only stable if $\mathrm{m}_{\mathrm{H}} \approx \wedge$ ["natural" Higgs mass]
- Typical value $\Lambda=10^{15} \mathrm{GeV}$, scale of new grand unified theory (GUT)
$\left[\rightarrow\right.$ fine tuning problem: keep $\mathrm{m}_{H}$ 《 $\wedge$ ]


## Unification of SM forces

 at GUT scale- RGE evolutions of coupling constants do not meet in one point

$$
\alpha_{1} \equiv \frac{5}{3} \frac{\alpha}{\cos ^{2} \theta_{w}}, \quad \alpha_{2} \equiv \frac{\alpha}{\sin ^{2} \theta_{w}}, \quad \alpha_{3} \equiv \alpha_{S}
$$



[Amaldi et al., Phys. Lett. B260 (1991) 447]

## Theoretical Problems and Open Questions

Cancellation of chiral anomaly requires "conspiracy" between QCD and electroweak theory ... SM: fulfilled "by accident"; deeper reason?


Gravity not included in Standard Model ...
Gravity much weaker than all other forces ... Hierarchy problem, i.e. ...
why is the Planck scale ( $10^{19} \mathrm{GeV}$ ) much larger than EW scale ( 250 GeV )?
SM = gauge theories of quantum fields in space-time, but general relativity = non-quantized geometrical field theory ...

No renormalizable quantum theory of gravity so far ...

## Theoretical Problems and Open Questions

How can we solve the mystery
of dark energy?


## What Theorists Think About ...

There exists a large number of models which predict new physics at the TeV scale accessible @ LHC ...

- Grand Unified Theories (SU(5), O(10), E6, ...)
embed SM gauge group in larger symmetry
- Supersymmetry (SUSY - around since a long time)
- Extended Higgs sector
e.g. in SUSY models
- Leptoquarks
- New heavy gauge bosons
- Technicolour
- Compositeness
- Extra dimensions

Any of this is what
the LHC still hopes for ...

## LHC BSM Higgs Searches

## BSM Scenarios:

[see e.g. PDG: Status of Higgs Boson Physics]

## Supersymmetric Extensions ...

One neutral Higgs with close to SM properties (h); two extra neutral Higgs bosons (H,A);
two charged Higgs bosons $\left(H^{ \pm}\right)$; potential departures from SM Higgs decay rates (e.g. h $\rightarrow$ bb) ...

## Two Higgs-Doublet Models (2-HDMs)...

Simple extension with 7 free parameters; different types, distinguished based on coupling to fermions ... Type-I: only one doublet couples to fermions; Type-II (SUSY): $\Phi_{1} / \phi_{2}$ couples to up/down-type fermions ...

## Composite Higgs Scenarios ...

Idea: Higgs is composite bound state; e.g. Little Higgs Models; partial compositeness .
Extra particles at the TeV scale ( $Z^{\prime}, W^{\prime}, \ldots$ ); extra Higgs bosons; charged and doubly charged Higgs bosons ...

## Higgs Triplet Models ...

Add electroweak triplet scalar to SM; motivation: neutrinos acquire Majorana mass ..
Extra Higgs bosons, in particular doubly charged Higgs ( $\mathrm{H}^{ \pm \pm}$); fermiophobic Higgs (also for 2HDM)

## Search Categories ...

Three main subgroups:

1. Neutral Higgs with SM-like properties ...
[ $m \neq 125 \mathrm{GeV}$; using the SM as a benchmark ...]
2. Neutral Higgs with non-SM properties
[additional Higgs @ m=125 GeV; BSM properties of Higgs @ m=125 GeV]
3. Charged Higgs Bosons ...
[Single and doubly charged ...]

Signatures:
Hadronic decay channels, decays into gauge bosons leptonic decay channels, invisible Higgs ...

## Public Results - ATLAS [CONF Notes]

CONF-2013-090

CONF-2013-067

CONF-2013-027

CONF-2013-011

CONF-2012-079

CONF-2011-135

CONF-2011-020

Search for charged Higgs bosons in the $\mathrm{T}+\mathrm{jets}$ final state with pp collision data recorded at $\sqrt{ } \mathrm{s}=8 \mathrm{TeV}$ with the ATLAS experiment

Search for a high-mass Higgs boson in the H->WW->Ivlv decay channel with the ATLAS detector using $21 \mathrm{fb}^{-1}$ of proton-proton collision data

Search for Higgs bosons in Two-Higgs-Doublet models in the $H \rightarrow$ WW $\rightarrow$ ev $\mu v$ channel with the ATLAS detector

Search for invisible decays of a Higgs boson produced in association with a $Z$ boson in ATLAS

Search for a Higgs boson decaying to four photons through light CP-odd scalar coupling using $4.9 \mathrm{fb}^{-1}$ of 7 TeV pp collision data taken with ATLAS detector

Higgs in SM with $4^{\text {th }}$ fermion generation
[in "Update of the Combination of Higgs Boson Searches in 1.0 to $2.3 \mathrm{fb}^{-1}$..."]

A search for a light CP-Odd Higgs boson decaying to $\mu^{+} \mu^{-}$in ATLAS

## Public Results - ATLAS [Papers]

| PH-EP-2012-347 | Search for charged Higgs bosons through the violation of lepton universality <br> in tt events using pp collision data at $\sqrt{ } \mathrm{s}=7 \mathrm{TeV}$ with the ATLAS experiment |
| :--- | :--- |
| PH-EP-2012-338 | Search for a light charged Higgs boson in the decay channel $\mathrm{H}^{+} \rightarrow \mathrm{cs}$ <br> in tt events using pp collisions at $\sqrt{ } \mathrm{s}=7 \mathrm{TeV}$ with the ATLAS detector |
| PH-EP-2012-323 | Search for the neutral Higgs bosons of the Minimal Supersymmetric Standard <br> Model in pp collisions at $s=\sqrt{7} \mathrm{TeV}$ with the ATLAS detector |
| PH-EP-2012-105 | Search for a fermiophobic Higgs boson in the diphoton decay <br> channel with the ATLAS detector |
| PH-EP-2012-083 | Search for charged Higgs bosons decaying via $H^{ \pm} \rightarrow$ Tv in tt events using <br> pp collision data at $s=\sqrt{ } 7 \mathrm{TeV}$ with the ATLAS detector |

## Higgs Searches Supersymmetry


"One day, all of these will be supersymmetric phenomenology papers."

## Motivation

Electrons in classical Electrodynamics

Electromagnetic self-energy:

$$
\Delta E_{C}=\frac{1}{4 \pi \epsilon_{0}} \frac{e^{2}}{r_{e}}
$$

Self-energy must be part of


QED: Photon exchange $\Leftrightarrow$ Coulomb law electron mass:

$$
\left(m_{e} c^{2}\right)_{\text {observed }}=\left(m_{e} c^{2}\right)_{b a r e}+\Delta E_{C}
$$

Experiment:

$$
\begin{aligned}
& \mathrm{r}_{\mathrm{e}}<10^{-17} \mathrm{~cm} \rightarrow \Delta \mathrm{E}_{\mathrm{C}}>10 \mathrm{GeV} \\
& \mathrm{~m}_{\mathrm{e}}=511 \mathrm{keV}=0.511 \mathrm{MeV} \\
& \begin{aligned}
\left(m_{e} c^{2}\right)_{\text {bare }} & =\left(m_{e} c^{2}\right)_{\text {observed }}-\Delta E_{C} \\
& =0.511 \mathrm{MeV}-10000 \mathrm{MeV} \\
& =-9999.489 \mathrm{MeV}
\end{aligned}
\end{aligned}
$$

Classical Electrodynamic
not valid for $\Delta \mathrm{E}_{\mathrm{c}}>\mathrm{me}_{e} \mathrm{C}^{2}$, i.e. for $\mathrm{d}<2.8 \cdot 10^{-13} \mathrm{~cm}$
[from $d<e^{2} / 4 \pi \varepsilon_{0} m e C^{2}$ ]

## Motivation

Electrons in classical Electrodynamics

Description of self-energy in Quantum Electrodynamics via photon exchange.

Introduction of positron ...


QED: Photon exchange $\Leftrightarrow$ Coulomb law cure of "fine-tuning problem" via vacuum fluctuations.

Modify physics at

$$
\begin{array}{r}
d \sim \mathrm{c} \cdot \Delta \mathrm{t} \sim 200 \cdot 10^{-13} \mathrm{~cm} \\
\quad \text { with } \Delta \mathrm{t} \sim \hbar / \Delta \mathrm{E} \sim \hbar / 2 \mathrm{mec}^{2}
\end{array}
$$


$\rightarrow \Delta E_{\text {Pair }}=-\frac{1}{4 \pi \epsilon_{0}} \frac{e^{2}}{r_{e}}+\ldots$


Vacuum fluctuations: $\mathrm{e}^{+} \mathrm{e}^{-}$-pair production

$$
\Delta E=\Delta E_{C}+\Delta E_{P a i r}=\frac{3 \alpha}{4 \pi} m_{e} c^{2} \log \frac{\hbar}{m_{e} c r_{e}}
$$

smaller
self-energy!

## Motivation

Electrons in classical Electrodynamics

Description of self-energy in Quantum Electrodynamics via photon exchange.

Introduction of positron ... cure of "fine-tuning problem" via vacuum fluctuations.

Modify physics at

$$
d \sim c \cdot \Delta t \sim 200 \cdot 10^{-13} \mathrm{~cm}
$$

$$
\text { with } \Delta \mathrm{t} \sim \hbar / \Delta \mathrm{E} \sim \hbar / 2 \mathrm{mec}^{2}
$$

Doubling d.o.f. \& symmetry result in divergence cancellation.
$\rightarrow$ "Naturally" small mass correction.

$$
\left(m_{e} c^{2}\right)_{\text {observed }}=\left(m_{e} c^{2}\right)_{\text {bare }}\left[1+\frac{3 \alpha}{4 \pi} \log \frac{\hbar}{m_{e} c r_{e}}\right] \quad \begin{aligned}
& \text { max. } 9 \% \\
& \text { even } @ r_{\mathrm{e}}=1 / \mathrm{M}_{\mathrm{P}}
\end{aligned}
$$

## Motivation

Supersymmetry and the Higgs self-energy

Higgs
self-energy: $\quad V=-\mu^{2}|H|^{2}+\lambda|H|^{4}$

$$
M_{H}=\sqrt{2} \mu
$$

Self-energy correction through top-loops:


$$
\Delta \mu_{\mathrm{top}}^{2}=-6 \frac{h_{t}^{2}}{4 \pi^{2} r_{H}^{2}}+\ldots
$$

$\rightarrow$ Standard Model not applicable for $\mathrm{d}<10^{-17} \mathrm{~cm}$; "Higgs radius" i.e. above a scale $\wedge>2 \mathrm{TeV}$...

Solution: double d.o.f. introducing boson partners for each fermion;

$$
\Delta \mu_{\text {stop }}^{2}=+6 \frac{h_{t}^{2}}{4 \pi^{2} r_{H}^{2}}+\ldots
$$ results in loop corrections with opposite sign.

Remaining correction:

$$
\Delta \mu_{\text {top }}^{2}+\Delta \mu_{\text {stop }}^{2}=-6 \frac{h_{t}^{2}}{4 \pi^{2}}\left(m_{\tilde{t}}^{2}-m_{t}^{2}\right) \log \frac{1}{r_{h}^{2} m_{\tilde{t}}^{2}}
$$

$\rightarrow$ "Naturalness" argument: $m_{\tilde{t}}$ not much larger than $m_{t}$, i.e. $m_{\tilde{t}}$ in $T e V$ range.

## Supersymmetric Particle Spectrum



## SUSY Higgs Sector

Higgs sector
extended in SUSY:
SM: simplest mechanism to generate gauge boson and fermion masses
$\rightarrow$ single SU(2) doublet

$$
\phi=\binom{\phi_{1}}{\phi_{2}}=\binom{\phi^{+}}{\phi^{0}}
$$

Minimal model compatible with
SUSY: two Higgs doublet models [2HDM]
$\rightarrow$ separate fields coupling to down-type and up-type quarks [SM: $\tilde{\phi}=i \tau_{2} \phi^{*}$ for up-type]

$$
\phi_{u}=\binom{\phi_{u}^{+}}{\phi_{u}^{0}}, \quad \phi_{d}=\binom{\phi_{d}^{0}}{\phi_{d}^{-}}
$$

Higgs bosons in 2HDM:
8 degrees of freedom: 3 massive vector bosons, 5 physical Higgs bosons
2 charged Higgs $\mathrm{H}^{ \pm}$
1 CP-odd neutral Higgs [A]
2 CP-even neutral Higgs [H ("heavy") and h ("light")]
Key parameter: $\tan \beta$
Ratio of vacuum expectation values of $\phi_{u}$ and $\phi_{d}$

$$
\tan \beta=\frac{v_{u}}{v_{d}}, \quad v_{u}^{2}+v_{d}^{2}=v_{\mathrm{SM}}^{2}
$$

## Minimal Supersymmetric Models

## Extension of the Standard Model

Supersymmetric partner for each SM particle
2 Higgs doublets
Minimal structure to guarantee cancellations of anomalies
Two Higgs field needed to give masses to 'up'
and 'down' type quarks in a consistent way
New quantum number: R-parity $R_{p}$
Particles: $\quad R_{p}=+1$
S-Particles: $\quad R_{p}=-1$

$$
R_{p}=(-1)^{B+L+2 S}
$$

$\mathrm{R}_{\mathrm{p}}$-conservation circumvents proton decay; conservation of B-L

Motivation of SUSY
Avoid divergent quantum corrections to Higgs mass
Allows for unification of gauge couplings
Existence of lightest supersymmetric particle (LSP);
candidate for dark matter

## Minimal Supersymmetric Models

Supersymmetry is not an exact symmetry
... as SUSY particles are not observed at low masses
Needs model(s) for (soft) symmetry breaking
Most models assume "hidden" sector ...

completely neutral with respect to SM gauge group

LSP: Neutralino
LSP: Gravitino

SUSY breaking leads to extra parameters
Unconstrained models: 105 parameters (Masses, couplings, phases)
Constrained models: 4 or 5 parameters, assuming SUSY breaking scheme Examples: mSugra, cMSSM ...

## mSUGRA - A Constrained Model

## Unification assumption

Assume universal masses for all bosons and
fermions at the GUT (Grand Unification Theory) scale

## Symmetry breaking assumption

Model where breaking is mediated by gravity


Results in
5 remaining parameters
$m_{0}$ : universal boson (scalar) mass
$\mathrm{m}_{1 / 2}$ : universal gaugino mass
$\mathrm{A}_{0}$ : universal trilinear coupling
$\tan \beta$ : ratio of the two Higgs VEVs (vacuum expectation values)
$\operatorname{sgn}(\mu)$ : sign of the higgsino mass parameter

## mSUGRA Mass Spectrum



Running masses:
Universal masses at GUT scale lead to sparticle masses at EW scale via RGE evolution

## mSUGRA Parameter Space



## Map of mSUGRA parameter space

[CMS, LHCC-2006-021]
Position of the test points in the $m_{0}$ versus $m_{1 / 2}$ plane. The lines in this plane correspond to the assumptions that $\tan \beta=10, A_{0}=0$ and $\mu>0$. The shaded regions are excluded because either the stau1 would be the LSP or because there is not radiative electroweak symmetry breaking. The regions excluded by the LEP limit on the ho or the chargino masses are delineated by dashed lines. The CMS test points are indicated by stars and the points used in the CMS DAQ TDR by triangles.

## mSUGRA Parameter Space



## Map of mSUGRA parameter space

[Bear et al., Phys Rev. D87, 2013]

Contours of $\triangle H$ in the mSUGRA model with $A 0=0$ and $\tan \beta=10$. We take $\mu>0$ and $m_{t}=173.2 \mathrm{GeV}$. The grey region on the left is excluded either because the stau is too light or becomes tachyonic, the grey region at the bottom is excluded by LEP1 constraints, while in the region on the right we do not get the correct pattern of EWSB, since either $\mu^{2}$ or $\mathrm{mA}^{2}$ become negative. The region labeled LEP2 is excluded by constraints on the chargino mass. The region labeled $a_{\mu}$ is allowed at the $3 \sigma$ level by the E821 experiment while in the dark-shaded (green-shaded) region, the thermal neutralino relic density is at or below the WMAP measurement of the cold dark matter density. The region below black contour labeled LHC7 is excluded by SUSY searches. The lighter Higgs boson mass $m_{h}<123 \mathrm{GeV}$ throughout this parameter plane.

## mSUGRA Particle Spectrum

SUSY parameter
space too large ..
Define
Benchmark points
Example: SPS1a'

$$
\begin{aligned}
\tan \beta & =10 \\
m_{1 / 2} & =250 \mathrm{GeV} \\
\mathrm{~m}_{0} & =70 \mathrm{GeV} \\
\mathrm{~A} & =-300 \mathrm{GeV} \\
\operatorname{sign}(\mu) & =+1
\end{aligned}
$$



## ATLAS SUSY Searches* - 95\% CL Lower Limits

ATLAS Preliminary
Status: SUSY 2013
$\int \mathcal{L} d t=(4.6-22.9) \mathrm{fb}^{-1}$
$\sqrt{s}=7,8 \mathrm{TeV}$

*Only a selection of the available mass limits on new states or phenomena is shown. All limits quoted are observed minus $1 \sigma$ theoretical signal cross section uncertainty.

## mSUGRA Particle Spectrum

SUSY parameter space too large ...
Define
Benchmark points ...


## mSUGRA Particle Spectrum

SUSY parameter space too large ...

Define
Benchmark points ...

Example: Post-LHC8

$$
\begin{aligned}
\tan \beta & =15 \\
m_{1 / 2} & =800 \mathrm{GeV} \\
m_{0} & =10 \mathrm{TeV} \\
\mathrm{~A} & =-5.45 \mathrm{TeV} \\
\operatorname{sign}(\mu) & =+1
\end{aligned}
$$



## NUMH2 Particle Spectrum

SUSY parameter space too large ...

Define
Benchmark points ...

Example: Post-LHC8

$$
\begin{aligned}
\tan \beta & =7 \\
m_{1 / 2} & =500 \mathrm{GeV} \\
\mathrm{~m}_{0} & =10 \mathrm{TeV} \\
\mathrm{~A} & =-16 \mathrm{TeV} \\
\mu & =6 \mathrm{TeV}
\end{aligned}
$$



## NUMH2 Particle Spectrum

SUSY parameter space too large ...

Define
Benchmark points ...

Example: Post-LHC8

$$
\begin{aligned}
\tan \beta & =7 \\
\mathrm{~m}_{1 / 2} & =500 \mathrm{GeV} \\
\mathrm{~m}_{0} & =10 \mathrm{TeV} \\
\mathrm{~A} & =-16 \mathrm{TeV} \\
\mu & =6 \mathrm{TeV}
\end{aligned}
$$



## MSSM Higgs Sector

## Consider MSSM Higgs:

Two Higgs doublets $\rightarrow 5$ physical Higgs bosons: h, H, A, H ${ }^{ \pm} \ldots$
Enhanced coupling to $3^{\text {rd }}$ generation ...
Strong coupling to down-type fermions ...
[at large $\tan \beta$ get strong enhancements to h/H/A production rates]
Couplings: $\mathrm{gmssm}=\varepsilon \cdot$ gsm

| $\xi$ | $t$ | $b / \tau$ | $W / Z$ |
| :---: | :---: | :---: | :---: |
| $h$ | $\cos \alpha / \sin \beta$ | $-\sin \alpha / \cos \beta$ | $\sin (\alpha-\beta)$ |
| $H$ | $\sin \alpha / \sin \beta$ | $\cos \alpha / \cos \beta$ | $\cos (\alpha-\beta)$ |
| A | $\cot \beta$ | $\tan \beta$ | - |

Mixing angels: $\alpha, \beta$
a: Mixing of CP even Higgs $H_{u}, H_{d} \rightarrow h, H$
$\beta$ : Mixing of charged fields $\phi^{ \pm}{ }_{1,2}$
[also: $\tan \beta=v_{u} / v_{d}$ ]
usually vanishing
[decoupling limit; $M_{A} \gg M_{z}$ ]
Large $\tan \beta$ :
Enhancement of Higgs couplings to b,t ...
[and decreased coupling to top ...]

## MSSM Higgs Sector

## Consider MSSM Higgs:

Two Higgs doublets $\rightarrow 5$ physical Higgs bosons: h, H, A, H ${ }^{ \pm} \ldots$
Enhanced coupling to $3^{\text {rd }}$ generation ...
Strong coupling to down-type fermions ...
[at large $\tan \beta$ get strong enhancements to h/H/A production rates]
Enhanced bb申 diagrams $[\phi=h, H, A]$
[Examples]


## MSSM Higgs Sector



Masses of Higgs bosons h,H,A parametrized by two parameters: $\tan \beta, m_{A} \ldots$

$$
\begin{aligned}
& m_{\mathrm{h}, \mathrm{H}}^{2}=\frac{1}{2}\left(m_{\mathrm{A}}^{2}+m_{\mathrm{Z}}^{2} \mp \sqrt{\left(m_{\mathrm{A}}^{2}-m_{\mathrm{Z}}^{2}\right)^{2}+4 m_{\mathrm{A}}^{2} m_{\mathrm{Z}}^{2} \sin ^{2}(2 \beta)}\right) \\
& m_{\mathrm{A}}^{2}=2 b / \sin (2 \beta)
\end{aligned}
$$

Decoupling limit ...
i.e. $m_{A}$ large ...

$$
m_{H} \approx m_{A}, m_{h} \approx m_{Z}|\cos 2 \beta|
$$

[needs radiative corrections to allow $\mathrm{m}_{\mathrm{h}}=125 \mathrm{GeV}$ ]
Low ma ...

$$
\begin{aligned}
& m_{h} \approx m_{A}|\cos 2 \beta| \\
& m_{H} \approx m_{Z}
\end{aligned}
$$



## Searching for the MSSM Higgs

A popular and well-studied extension ...
Mass of light CP-even Higgs $m_{h}<135 \mathrm{GeV}$
For large parts of the parameter space $H \rightarrow$ bb and $H \rightarrow T$ decays dominate [and also $\mathrm{H}^{ \pm} \rightarrow \mathrm{T}^{ \pm} \mathrm{V}$; see later]

WW/ZZ decays are suppressed for heavier CP-even Higgs H ... [decoupling limit]

Use $\mathrm{m}_{\mathrm{h}}^{\text {max }}$ Scenario ...
[Carena et al.]
MSSM parameters chosen
to maximize $m_{h}$ for given $m_{A}, \tan \beta \ldots$
$\rightarrow M_{A}<130 \mathrm{GeV}: m_{h} \approx m_{A}, m_{H} \approx 130 \mathrm{GeV}$
$M_{A}>130 \mathrm{GeV}: m_{h} \approx m_{H}, m_{h} \approx 130 \mathrm{GeV}$
[arXiv:1201.3084]


## MSSM Higgs Production



