

Lecture 12

[Repetition]

Renormalization Group Equation (RGE): for the self coupling λ ...

$$\frac{d\lambda}{d\log Q^2} = \frac{1}{16\pi^2} \left[12\lambda^2 + 6\lambda y_t^2 - 3y_t^4 - \frac{3}{2}\lambda \left(3g_2^2 + g_1^2 \right) + \frac{3}{16} \left(2g_2^4 + (g_2^2 + g_1^2)^2 \right) \right]$$

Bounds at large and small λ :

$$\begin{aligned} & \underset{[\lambda \ \approx \ y_{t}, g]}{\text{large } \lambda:} \qquad \lambda(Q^{2}) = \left[-\frac{3}{4\pi^{2}} \log \frac{Q^{2}}{v^{2}} + \frac{1}{\lambda_{0}} \right]^{-1} = \lambda_{0} \left[1 - \frac{3}{4\pi^{2}} \lambda_{0} \log \frac{Q^{2}}{v^{2}} \right]^{-1} \\ & \underset{[\lambda \ \ll \ y_{t}, g]}{\text{small } \lambda:} \qquad \lambda(Q^{2}) \sim \quad \lambda_{0} + \frac{1}{16\pi^{2}} \left[-\frac{12m_{t}^{4}}{v^{4}} + \frac{3}{16} \left(2g_{2}^{4} + \left(g_{2}^{2} + g_{1}^{2}\right)^{2} \right) \right] \log \frac{Q^{2}}{v^{2}} \end{aligned}$$

negative!

[Repetition]

Consequences of a Light Higgs

[Repetition]

There exists a large number of models which predict new physics at the TeV scale accessible @ LHC ...

- Grand Unified Theories (SU(5), O(10), E6, ...) embed SM gauge group in larger symmetry
- Supersymmetry (SUSY around since a long time)
- Extended Higgs sector e.g. in SUSY models
- Leptoquarks
- New heavy gauge bosons
- Technicolour
- Compositeness
- Extra dimensions

Any of this is what the LHC still hopes for ...

I TODING INCOVITIYOROG VILLE INCOURS

LHCb Key Measurements

Also: Measurement of the CKM angle γ in tree level decays

LHCb Key Measurements

Also: Measurement of the CKM angle γ in tree level decays

Rare Decays – e.g. $B_s \rightarrow \mu\mu$

SM

Loop and helicity suppressed [BR $\approx 3 \times 10^{-9}$]

NP

b → sγ Penguins

SM

Flavor Changing NC Loop suppressed

NP

b → sγ Penguins

SM

Flavor Changing NC Loop suppressed

NP

b → sγ Penguins

SM

Flavor Changing NC Loop suppressed

NP

LHCb Detector

LHCb Parameters ...

pp collisions at $\sqrt{s} = 7$, 10, 14 TeV

 $\sigma_{inel} \sim 100 \text{ mb}$

 $\sigma_{bb} ~~ \sim 500 ~\mu b ~[\sim 250 ~\mu b @ 7 ~TeV]$

Forward production of bb ...

B[±], B⁰, B_s, B_c, Λ_b , ...

 $L \sim 2 \times 10^{32} \text{ cm}^{-2} \text{ s}^{-1}$

50 kHz bb events in LHCb ca. 10¹² bb events/year (2 fb⁻¹) 0.7 interactions/bunch crossing [ATLAS: 5 – 25]

Charged particle multiplicity ca. 30/unit of rapidity.

LHCb Detector

Forward spectrometer ...

Emphasis on tracking & particle identification ...

LHCb – Vertexing and Tracking

Vertex detector 8mm from beam \rightarrow excellent IP resolution: 20µm Long lever arm, excellent momentum resolution $\delta p/p \sim 0.4 - 0.6 \%$ Mass resolution for two body B-decays ~ 25 MeV

LHCb – Particle Identification & Trigger

$B_s^0 \rightarrow \mu^+\mu^-$ and $B^0 \rightarrow \mu^+\mu^-$ [SM]

Purely leptonic final state; theoretically and experimentally clean ... [SM: $B_s^0 \rightarrow \mu^+\mu^-$ and $B^0 \rightarrow \mu^+\mu^-$ loop (GIM) and helicity suppressed ...]

SM prediction (B⁰ suppressed by $|V_{td}/V_{ts}|^2$):

 $B(B_{s}^{0} \rightarrow \mu^{+}\mu^{-})_{SM} = (3.35 \pm 0.28) \cdot 10^{-9}$ $B(B^{0} \rightarrow \mu^{+}\mu^{-})_{SM} = (1.07 \pm 0.10) \cdot 10^{-10}$ [Eur. Phys. J. C72 (2012) 2172] [arXiv:1207.1158]

Sizable life time difference $\Delta\Gamma_s$, correction for time integrated measurement: B(B⁰_s $\rightarrow \mu^+\mu^-)^{\Delta\Gamma}_{SM} = (3.56 \pm 0.30) \cdot 10^{-9}$

[arXiv:1207.1158]

$B_s^0 \rightarrow \mu^+\mu^-$ and $B^0 \rightarrow \mu^+\mu^-$ [BSM]

Purely leptonic final state; theoretically and experimentally clean ... [SM: $B_s^0 \rightarrow \mu^+\mu^-$ and $B^0 \rightarrow \mu^+\mu^-$ loop (GIM) and helicity suppressed ...]

Beyond the SM:

Interesting models with extended Higgs sector: MSSM, 2HDM ...

MSSM: $B(B_s^0 \rightarrow \mu^+ \mu^-)_{SM} \propto \tan^6 \beta / m_A^4$

[→ constrains the remaining MSSM parameter space ...]

Signal and Background Classification

Normalization Procedure

Combinatorial background from bb $\rightarrow \mu^+\mu^-$ described by exponential function ...

 $B^0 \rightarrow h^+h^-$; $h = \pi, K$ with double mis-identification calibrated using data ...

Semi-leptonic exclusive backgrounds

 $B^0 \rightarrow \pi \mu \nu$, $B \rightarrow \pi \mu \mu$ negligible in B^0 mass window ...

Determine expected background yields from normalization to $B^+ \rightarrow J/\psi K^+$, di-muon invariant mass and BDT shape from MC

[LHCb, PRL 11 (2013) 101805]

 \dots of the selected B⁰ candidates \dots

[LHCb, PRL 11 (2013) 101805]

[Additional Material]

... of the selected events in first BDT bin ...

[LHCb, PRL 11 (2013) 101805]

[Additional Material]

[LHCb, PRL 11 (2013) 101805]

[Additional Material]

... for all 8 BDT bins; after unblinding ... Candidates / (50 MeV/c² Candidates / (50 MeV/ c^2 Candidates / (50 MeV/c² LHCb LHCb LHCb LHCb 3 fb⁻¹ 3 fb⁻¹ 3 fb⁻¹ 3 fb⁻¹ Counts 0.25<BDT≤0.4 BDT≤0.25 **₽**.4<BDT≤0.5 0.5<BDT≤0.6 1000 500 $m_{\mu^+\mu^-}$ [MeV/ c^2] $m_{\mu^+\mu^-}$ [MeV/ c^2] $m_{\mu^+\mu^-}$ [MeV/ c^2] $m_{\mu^+\mu^-}$ [MeV/ c^2] Candidates / (50 MeV/ c^2) LHCb LHCb LHCb LHCb 3 fb⁻¹ 3 fb⁻¹ 3 fb⁻¹ 3 fb⁻¹ 0.6<BDT≤0.7 0.7<BDT≤0.8 0.8<BDT≤0.9 0.9<BDT≤1 5800 $m_{\mu^+\mu^-}$ [MeV/ c^2] $m_{\mu^+\mu^-}$ [MeV/ c^2] $m_{\mu^+\mu^-}$ [MeV/ c^2] $m_{\mu^+\mu^-}$ [MeV/ c^2] Full PDF $m_{\mu\mu}$ $B_s^0 \to \mu^+ \mu^-$

[LHCb] $[B^0 \rightarrow \mu^+ \mu^-]$

Log-Likelihood Fit ...

[LHCb, PRL 11 (2013) 101805]

[Additional Material]

[<2σ]

BR determination:

Result:

Simultaneous un-binned maximum-likelihood fit to mass projections of all eight BDT bins ...

Limit for $B^0 \rightarrow \mu^+\mu^-$

[LHCb, PRL 11 (2013) 101805]

[CMS] $[B^{0} \rightarrow \mu^{+}\mu^{-}]$

CMS Result for $B_s^0 \rightarrow \mu^+\mu^-$

[CMS, PRL 111 (2013) 101804]

[Mahmoudi, arXiv:1310.2556v1]

[Mahmoudi, arXiv:1310.2556v1]

b → sγ Penguins at BaBar [and Belle]

BaBar Operation @ Y(4S)

Radiative Penguin Signature

Note: Events tend to be isotropic

Radiative Penguin

[arXiv:1207.5772v2]

Investigate ...

B → X_sγ

[SM: BR(B \rightarrow X_s γ) = (3.14 ± 0.22) × 10⁻⁴] [for E_{γ}* > 1.6 GeV]

Fully inclusive Analysis:

Hadronic Events: \geq 3 tracks; spherical [explore more isotropic topology of BB events] [qq and $\tau\tau$ events more jet-like]

High energy isolated photon [veto η,π⁰ decays]

Tagging of charged lepton [opposite side B-decay]

continuum and BB background estimated using data ...

Final Photon Spectrum

[arXiv:1207.5772v2]

Partial Event Fraction

[arXiv:1207.5772v2]

[BaBar]

Comparison of $B \rightarrow X_s \gamma$ Results

[arXiv:1309.1327v1]

[Mahmoudi, arXiv:1310.2556v1]

[Mahmoudi, arXiv:1310.2556v1]

Other Search Channel Examples

Search for Charged Higgs in $B \rightarrow \tau v$

Charged Higgs Discovery Potential

[arXiv:0901.0512]

Belle II and SuperKEKB

Belle II Physics Sensitivity

[arXiv:1002.5012]

Observable	Belle 2006	SuperKEKB		[†] LHCb	
	$(\sim 0.5 \text{ ab}^{-1})$	(5 ab^{-1})	(50 ab^{-1})	(2 fb^{-1})	(10 fb^{-1})
Radiative/electroweak $b \rightarrow s$ transitions					
$\mathcal{S}_{K^0_S\pi^0\gamma}$	0.32	0.10	0.03	-	-
$\mathcal{B}(\ddot{B} o X_s \gamma)$	13%	7%	6%	-	-
$A_{CP}(B \to X_s \gamma)$	0.058	0.01	0.005	-	-
$C_9 \text{ from } \overline{A}_{\text{FB}}(B \to K^* \ell^+ \ell^-)$	-	11%	4%		
$C_{10} \text{ from } \overline{A}_{\text{FB}}(B \to K^* \ell^+ \ell^-)$	-	13%	4%		
C_7/C_9 from $\overline{A}_{\rm FB}(B \to K^* \ell^+ \ell^-)$	-		5%		7%
R_K		0.07	0.02		0.043
$\mathcal{B}(B^+ \to K^+ \nu \nu)$	$^{\dagger\dagger} < 3 \ \mathcal{B}_{\rm SM}$		30%	-	-
$\mathcal{B}(B^0 \to K^{*0} \nu \bar{\nu})$	$^{\dagger\dagger} < 40 \ \mathcal{B}_{\rm SM}$		35%	-	-
Radiative/electroweak $b \rightarrow d$ transitions					
$\mathcal{S}_{ ho\gamma}$	-	0.3	0.15		
$\mathcal{B}(B \to X_d \gamma)$	-	$24\%~({\rm syst.})$		-	-
Leptonic/semileptonic B decays					
$\mathcal{B}(B^+ \to \tau^+ \nu)$	3.5σ	10%	3%	-	-
$\mathcal{B}(B^+ \to \mu^+ \nu)$	$^{\dagger\dagger} < 2.4 \mathcal{B}_{\rm SM}$	4.3 ab^{-1} for 5σ discovery		-	-
$\mathcal{B}(B^+ \to D \tau \nu)$	-	8%	3%	-	-
${\cal B}(B^0 o D au u)$	-	30%	10%	-	-
LFV in τ decays (U.L. at 90% C.L.)					
$\mathcal{B}(\tau \to \mu \gamma) \ [10^{-9}]$	45	10	5	-	-
$\mathcal{B}(\tau \to \mu \eta) \ [10^{-9}]$	65	5	2	-	-
$\mathcal{B}(\tau \to \mu \mu \mu) \ [10^{-9}]$	21	3	1	-	-

