Lecture 11

BSM Higgs Searches What we discussed so far ...

PH-EP-2012-323	Search for the neutral Higgs bosons of the Minimal Supersymmetric Standard Model in pp collisions at s = $\sqrt{7}$ TeV with the ATLAS detector
PH-EP-2012-105	Search for a fermiophobic Higgs boson in the diphoton decay channel with the ATLAS detector
CONF-2012-079	Search for a Higgs boson decaying to four photons through light CP-odd scalar coupling using 4.9 fb ⁻¹ of 7 TeV pp collision data taken with ATLAS detector
CONF-2011-020	A search for a light CP-Odd Higgs boson decaying to µ⁺µ⁻ in ATLAS
PAS HIG-13-010	Search for a non-standard-model Higgs boson decaying to a pair of new light bosons in four-muon final states

BSM Higgs Searches Still to come today ...

PH-EP-2012-347	Search for charged Higgs bosons through the violation of lepton universality in tt events using pp collision data at $\sqrt{s} = 7$ TeV with the ATLAS experiment
PH-EP-2012-338	Search for a light charged Higgs boson in the decay channel H ⁺ \rightarrow cs in tt events using pp collisions at $\sqrt{s} = 7$ TeV with the ATLAS detector
PH-EP-2012-083	Search for charged Higgs bosons decaying via $H^{\pm} \rightarrow \tau v$ in tt events using pp collision data at s = $\sqrt{7}$ TeV with the ATLAS detector
CONF-2013-090	Search for charged Higgs bosons in the $\tau+jets$ final state with pp collision data recorded at $\sqrt{s}=8$ TeV with the ATLAS experiment
CONF-2013-011	Search for invisible decays of a Higgs boson produced in association with a Z boson in ATLAS
CONF-2013-067	Search for a high-mass Higgs boson in the H->WW->IvIv decay channel with the ATLAS detector using 21 fb ⁻¹ of proton-proton collision data
CONF-2013-027	Search for Higgs bosons in Two-Higgs-Doublet models in the $H \rightarrow WW \rightarrow ev\mu v$ channel with the ATLAS detector

Invisible Higgs Decays

BSM Models:

- Supersymmetry
- Extra Dimension
- Dark Matter Singlets -
- decay to neutralinos
 - oscillation or decay to graviscalars
 - decay into dark matter particles

Signature:

Higgs decays invisibly ...

to stable or long-lived weakly interacting particles ... i.e. additional final state particles required ...

Signal process: ZH production ... Expectation: large missing energy, $E_{T,miss}$... Main background: ZZ \rightarrow IIvv ...

Analysis:

ATLAS : exploration of $E_{T,miss}$ distribution ... CMS : shape analysis of transverse mass m_T ...

Invisible Higgs Decays

Invisible Higgs Decays

[ATLAS-CONF-2013-011]

Event Selection:

Two high p_T electrons/muons ... Leptons isolated ...

 $|m_z - m_{\parallel}| < 15 \text{ GeV}$

 $E_{T,miss} > 90 \text{ GeV}$

 $\Delta \phi(E_{T,miss}, p_{T,miss}) < 0.2$ $\Delta \phi(Z, E_{T,miss}) > 2.6$ $\Delta \phi(I,I) < 1.7$

 $|E_{T,miss} - p_{T,II}| / p_T < 0.2$

Jet veto: $p_T > 20$ GeV, $|\eta| < 2.5$

Invisible Higgs Decays

[ATLAS-CONF-2013-011]

Event Selection:

Two high p_T electrons/muons ... Leptons isolated ...

 $|m_z - m_{\parallel}| < 15 \text{ GeV}$

 $E_{T,miss} > 90 \text{ GeV}$

 $\Delta \phi(E_{T,miss}, p_{T,miss}) < 0.2$ $\Delta \phi(Z, E_{T,miss}) > 2.6$ $\Delta \phi(I,I) < 1.7$

 $|E_{T,miss} - p_{T,II}| / p_T < 0.2$

Jet veto: $p_T > 20$ GeV, $|\eta| < 2.5$

Invisible Higgs Decays

Invisible Higgs Decays

Invisible Higgs Decays

Invisible Higgs Decays

Bgr. estimate:

WW/Top Background Estimate

[ATLAS] [ABCD Method]

Invisible Higgs Decays

[ATLAS] [ABCD Method]

Invisible Higgs Decays

[ATLAS] [Matrix Method]

Invisible Higgs Decays

Invisible Higgs Decays

[ATLAS-CONF-2013-011]

Systematics on background estimates [Processes, methods, uncertainties]

Drogog	Estimation mathed	Uncertainty (%)	
PIOCESS	Estimation method	2011	2012
ZH Signal	MC	7	6
ZZ	MC	11	10
WZ	MC	12	14
WW	MC	14	not used
Top quark	MC	90	not used
Top quark, <i>WW</i> and $Z \rightarrow \tau \tau$	<i>e</i> μ CR	not used	4
Ζ	ABCD method	56	51
W + jets, multijet	Matrix method	15	22

Invisible Higgs Decays

[ATLAS-CONF-2013-011]

Observed and expected number of events for 2011 and 2012 data taking periods

Data Period	2011 (7 TeV)	2012 (8 TeV)
ZZ	$23.5 \pm 0.8 \pm 2.5$	$56.5 \pm 1.2 \pm 5.7$
WZ	$6.2 \pm 0.4 \pm 0.7$	$13.9 \pm 1.2 \pm 2.1$
WW	$1.1\pm0.2\pm0.2$	used eµ data-driven
Top quark	$0.4\pm0.1\pm0.4$	used eµ data-driven
Top quark, WW and $Z \rightarrow \tau \tau$ (<i>eµ</i> data-driven)	used MC	$4.9\pm0.9\pm0.2$
Z	$0.16 \pm 0.13 \pm 0.09$	$1.4 \pm 0.4 \pm 0.7$
W + jets, multijet	$1.3\pm0.3\pm0.2$	$1.4\pm0.4\pm0.3$
Total BG	$32.7\pm1.0\pm2.6$	$78.0\pm2.0\pm6.5$
Observed	27	71

Invisible Higgs Decays

Invisible Higgs Decays

Search for a Heavy Higgs

Search for a second, heavier, CP-even, SM-like Higgs boson ... e.g. predicted by 2HDM models ...

Limit setting includes the 125 GeV Higgs boson and assumes that this is the light scalar, h, of a 2HDM \ldots

H decay mode	H production	Exclusive final states	No. of channels	$m_{\rm H}$ range [GeV]	$m_{\rm H}$ resolution
$WW \to \ell \nu \ell \nu$	0/1-jets	$((ee, \mu\mu), e\mu) + (0 \text{ or } 1 \text{ jets})$	4	145–600	20 %
$WW \to \ell \nu \ell \nu$	VBF tag	$((ee, \mu\mu), e\mu) + (jj)_{VBF}$	2	145-600	20 %
WW $\rightarrow \ell \nu qq$	Untagged	$(e\nu, \mu\nu) + ((jj)_W \text{ with } 0 \text{ or } 1 \text{ jets})$	4	180–600	5-15 %
$ZZ \rightarrow 2\ell 2\ell'$	Inclusive	4e, 4 μ , 2e2 μ	3	145–1000	1-2 %
		$(ee, \mu\mu) + (\tau_h\tau_h, \tau_e\tau_h, \tau_\mu\tau_h, \tau_e\tau_\mu)$	8	200-1000	10–15 %
$ZZ \rightarrow 2\ell 2q$	Inclusive	$(ee, \mu\mu) + ((jj)_Z \text{ with } 0, 1, 2b\text{-tags})$	6	200-600	3 %
$ZZ \rightarrow 2\ell 2\nu$	Untagged	$(ee, \mu\mu) + 0, 1, 2 \text{ non-VBF jets}$	6	200-1000	7 %
$ZZ \rightarrow 2\ell 2\nu$	VBF tag	$(ee, \mu\mu) + (jj)_{VBF}$	2	200-1000	7 %

[CMS]

Search for a Heavy Higgs

[EPJ 73 (2013) 2469]

Search for a Heavy Higgs

[ATLAS-CONF-2013-027]

Search for Higgs bosons in 2HDMs in the $H \rightarrow WW \rightarrow ev\mu v$ channel ...

Neural Network techniques are used to maximize the sensitivity ... Low- and high-mass Higgs bosons can be well separated ...

Search for a Heavy Higgs

LHC BSM Higgs Searches

[Repetition]

BSM Scenarios:

[see e.g. PDG: Status of Higgs Boson Physics]

Supersymmetric Extensions ...

One neutral Higgs with close to SM properties (h); two extra neutral Higgs bosons (H,A), one SM-like; two charged Higgs bosons (H[±]); potential departures from SM Higgs decay rates (e.g. $h \rightarrow bb$) ...

Two Higgs-Doublet Models (2-HDMs)...

Simple extension with 7 free parameters; different types, distinguished based on coupling to fermions ... Type-I: only one doublet couples to fermions; Type-II (SUSY): ϕ_1/ϕ_2 couples to up/down-type fermions ...

Composite Higgs Scenarios ...

Idea: Higgs is composite bound state; e.g. Little Higgs Models; partial compositeness ... Extra particles at the TeV scale (Z', W', ...); extra Higgs bosons; charged and doubly charged Higgs bosons ...

Higgs Triplet Models ...

Add electroweak triplet scalar to SM; motivation: neutrinos acquire Majorana mass ... Extra Higgs bosons, in particular doubly charged Higgs (H^{±±}); fermiophobic Higgs (also for 2HDM) ...

Search for a Heavy Higgs

A Generic 2HDM ...

Possible Production:

Light H⁺ : $gg \rightarrow tt \rightarrow bWbH^+$ Heavy H⁺: $gb \rightarrow tH^+$ and $gg \rightarrow tbH^+$

Charged Higg Decay:

Light H⁺ : Almost exclusively to τv [at low tan β predominantly to cs] Heavy H⁺: tb; τv ; $\chi^+ \chi^0$

[ATLAS, CMS]

Light Charged Higgs

[JHEP 06 (2012) 039] [JHEP 07 (2012) 143] [EPJ C 73 (2013) 2465]

Searches channels ... considering T-decay

 τ_{had} + lepton:

tt \rightarrow bWbH⁺ \rightarrow bb lv T_{had} V T_{had} + jets:

tt \rightarrow bWbH⁺ \rightarrow bb qq T_{had} V T_{lep} + jets:

tt \rightarrow bWbH⁺ \rightarrow bb qq T_{lep}V

Searches channels ... considering hadronic Higgs decay

e,µ + jets:

tt \rightarrow bWbH+ \rightarrow bb Iv cs

W decay: hadronically H decay : to τ (or charm)

Light Charged Higgs, H⁺ → τv

[JHEP 06 (2012) 039]

τ _{lep} + W(→ jets)	⊤ _{had} + W(→ jets)	T _{had} + W(→ Iv)	Three
One isolated e/μ pτ > 25/20 GeV	One hadronic τ pτ > 40 GeV	One isolated e/μ pτ > 25/20 GeV	
		One hadronic τ pτ > 20 GeV	
≥ 4 jets; p⊤ > 20 GeV exactly 2 b-jets	≥ 4 jets; p⊤ > 20 GeV at least one b-jet	≥ 2 jets; p⊤ > 20 GeV at least one b-jet	
MET & topological cuts	MET & topological cuts	MET & topological cuts	

Dominant backgrounds:

ttbar, single-top, multi-jets,W+jets, Z+jets, Di-boson events

Dominant systematics:

Jet energy resolution/scale, b-tagging efficiency, misidentification probability ...

Light Charged Higgs, H⁺ → τv

[JHEP 06 (2012) 039]

Most sensitive: T+jets channel ...

The lepton+jets channel, $H^+ \rightarrow \tau^+ v \rightarrow I^+ v v v$, has a very similar signature to $W^+ \rightarrow I^+ v$, so rely on kinematics for discrimination of signal and background ...

- USE COSO^{*} distribution [W boson polarization from top decay ...]
- use charged Higgs transverse mass, $m_{T,H}$, estimate ...
- b-jet-to-top association important for both; done with via jjb-mass

Light Charged Higgs, H⁺ → τv

[JHEP 06 (2012) 039]

Statistical analysis: binned likelihood ...

Light Charged Higgs, H⁺ → τv

[JHEP 03 (2013) 076]

Light Charged Higgs, H⁺ → cs

[EPJ C, 73 (2013) 2465]

Searches channel ... considering hadronic decay

- Light Charged Higgs Search ...
- Final state allows for full reconstruction of H⁺ candidate ...
- Examine dijet spectrum and look for extra mass peak ...

Selection ...

Isolated e/ μ ; p_T > 20 GeV

At least 4 jets; $p_T > 20$ GeV; one b-tag

$$\label{eq:MT} \begin{split} M_T &> 25 \ \text{GeV} \\ \text{MET} + M_T &> 60 \ \text{GeV} \end{split}$$

Kinematics ...

Neutrino momentum from E_{T,miss} calculated by constraining the W-mass ...

Solve combinatorics using kinematic χ^2 -fit to (blv) and (bjj) systems ... [both required to be the top mass]

Light Charged Higgs, H⁺ → cs

[EPJ C, 73 (2013) 2465]

Light Charged Higgs, H⁺ → cs

[EPJ C, 73 (2013) 2465]

Light Charged Higgs, H⁺ → cs

[EPJ C, 73 (2013) 2465]

 m_{H^+} [GeV]

Light & Heavy Charged Higgs

[ATLAS-CONF-2013-090]

Combined analysis of:

Three- and Four-jet final states with H⁺ \rightarrow T_{had} + V ... $t\bar{t} \rightarrow [H^+b] [W^-\bar{b}] \rightarrow [(\tau^+ + \nu_\tau)b] [q\bar{q}\bar{b}]$ $g\bar{b} \rightarrow [\bar{t}] [H^+] \rightarrow [q\bar{q}\bar{b}] [\tau^+ + \nu_\tau]$ 3-jet final state 1 b-tags $gg \rightarrow [\bar{t}b] [H^+] \rightarrow [(q\bar{q}\bar{b})b] [\tau^+ + \nu_\tau]$ 4-jet final state 2 b-tags 4-jet final state 2 b-tags

Light & Heavy Charged Higgs

Data and background prediction after final selection ...

Light & Heavy Charged Higgs

Light & Heavy Charged Higgs

[ATLAS, CMS]

Doubly Charged Higgs

[EPJ C 72 (2012) 2189] [EPJ C 72 (2012) 2244]

BSM Models:

See-Saw Type II Models ... Little Higgs Models ...

Production:

Predominantly via pp \rightarrow H⁺⁺H⁻⁻ ... Also: pp \rightarrow H⁺⁺H⁻...

Signature:

Decay in two like-sign particles ... e.g. two like-sign leptons:

 $H^{++} \rightarrow e^+e^+, H^{++} \rightarrow \mu^+\mu^+ \dots$ $H^{++} \rightarrow e^+\mu^+, H^{++} \rightarrow \mu^+\tau^+ \dots$

→ Search for same-sign lepton pairs in 3- and 4-lepton final states ...

n(u±u±) [Go\/]

Doubly Charged Higgs

[EPJ C 72 (2012) 2244]

ATLAS:

Assuming qq $\rightarrow Z/\gamma^* \rightarrow H^{++}H^{--}$ decaying to pairs of $\mu^{\pm}\mu^{\pm},~e^{\pm}e^{\pm},~e^{\pm}\mu^{\pm}$

Limits on H^{±±} mass at 375 GeV to 409 GeV; BR=100%

؛V]

[CMS]

Doubly Charged Higgs

[EPJ C 72 (2012) 2189]

CMS:

3- and 4-lepton final states with same sign di-leptons ... [ee, $\mu\mu$, $e\mu$, $e\tau$, $e\mu$, $\tau\tau$]

