Minimal Supersymmetric Models

Extension of the Standard Model

Supersymmetric partner for each SM particle

2 Higgs doublets

Minimal structure to guarantee cancellations of anomalies Two Higgs fields needed to give masses to 'up' and 'down' type quarks in a consistent way

New quantum number: R-parity R_p

Particles: $R_p = +1$

S-Particles: $R_p = -1$

R_p-conservation circumvents proton decay; conservation of B-L

Motivation of SUSY

Avoid divergent quantum corrections to Higgs mass Allows for unification of gauge couplings Existence of lightest supersymmetric particle (LSP); candidate for dark matter

 $R_p = (-1)^{B+L+2S}$

[Repetition]

Minimal Supersymmetric Models

[Repetition]

Supersymmetry is not an exact symmetry

... as SUSY particles are not observed at low masses

Needs model(s) for (soft) symmetry breaking

Most models assume "hidden" sector ...

Hidden sector: particles neutral to SM gauge group Visible sector: MSSM particle spectrum

SUSY breaking occurs in the hidden sector

Transmitted to MSSM by specific mechanism: Gravity Mediated Supersymmetry Breaking (mSUGRA, cMSSM) Gauge Mediated Supersymmetry Breaking (GMSB) Anomaly Mediated Supersymmetry Breaking (AMSB)

SUSY breaking leads to extra parameters

Unconstrained models: 105 parameters (Masses, couplings, phases) Constrained models: 4 or 5 parameters, assuming SUSY breaking scheme Examples: mSugra, cMSSM ...

LSP: Neutralino

LSP: Gravitino

mSUGRA – A Constrained Model

Unification assumption

Assume universal masses for all bosons and fermions at the GUT (Grand Unification Theory) scale

Symmetry breaking assumption

Model where breaking is mediated by gravity

[Repetition]

Results in

5 remaining parameters

- m₀: universal boson (scalar) mass
- m_{1/2}: universal gaugino mass
- A₀: universal trilinear coupling
- tanβ: ratio of the two Higgs VEVs (vacuum expectation values)
- $sgn(\mu)$: sign of the higgsino mass parameter

MSSM Higgs Sector

Consider MSSM Higgs:

Two Higgs doublets \rightarrow 5 physical Higgs bosons: h, H, A, H[±] ...

Enhanced coupling to 3rd generation ...

Strong coupling to down-type fermions ...

[at large tan β get strong enhancements to h/H/A production rates]

Couplings: $g_{MSSM} = \xi \cdot g_{SM}$

Searching for the MSSM Higgs

A popular and well-studied extension ...

Mass of light CP-even Higgs $m_h < 135$ GeV

For large parts of the parameter space $H \rightarrow bb$ and $H \rightarrow \tau\tau$ decays dominate [and also $H^{\pm} \rightarrow \tau^{\pm}v$; see later]

WW/ZZ decays are suppressed for heavier CP-even Higgs H ... [decoupling limit]

Use m_h^{max} Scenario ... [Carena et al.]

MSSM parameters chosen to maximize m_h for given m_A , tan β ...

 $\label{eq:main_states} \begin{array}{l} \blacktriangleright \quad M_A < 130 \ GeV: \ m_h \approx m_A, \ m_H \approx 130 \ GeV \\ M_A > 130 \ GeV: \ m_h \approx m_H, \ m_h \approx 130 \ GeV \end{array}$

[Repetition]

MSSM Higgs Production

[Repetition]

MSSM Φ(h,H,A) → ττ

Two categories: b-tag, non b-tag [Increased sensitivity via associated b-production] Event Selection: $e\mu$, $e\tau_h$, $\mu\tau_h$ signatures ... [oppositely charged; isolation]

- eµ : electron with $|\eta| < 2.3$; muon $|\eta| < 2.1$ p_{T,1} > 20 GeV; p_{T,2} > 10 GeV
- eth : electron with $p_T > 20$ GeV; $|\eta| < 2.1$ hadronic τ with $p_T > 20$ GeV; $|\eta| < 2.3$
- $\begin{array}{ll} \mu\tau_h & : & \mbox{muon with } p_T > 17 \mbox{ GeV; } |\eta| < 2.1 \\ & \mbox{hadronic } \tau \mbox{ with } p_T > 20 \mbox{ GeV; } |\eta| < 2.3 \end{array}$

non b-tag category

b-tag category

MSSM Φ(h,H,A) → ττ

Two categories: b-tag, non b-tag [Increased sensitivity via associated b-production] Event Selection: $e\mu$, $e\tau_h$, $\mu\tau_h$, $\tau_h\tau_h$... [oppositely charged; isolation] $e\mu$: electron with $p_T > 15$ GeV; $|\eta| < 2.47$ muon with $p_T > 10$ GeV; $|\eta| < 2.5$ $e\tau_h$ electron with $p_T > 25$ GeV; $|\eta| < 2.47$... $\mu\tau_h$: electron with $p_T > 20$ GeV; $|\eta| < 2.47$... + hadronic τ with $p_T > 20$ GeV; $|\eta| < 2.5$ $\tau_h\tau_h$: 2 taus $p_{T,1} \& p_{T,2} > 29 \& 20$ GeV

non b-tag category

b-tag category

MSSM Φ(h,H,A) → ττ

Two categories: b-tag, non b-tag [Increased sensitivity via associated b-production] Event Selection: $e\mu$, eT_h , μT_h , $T_h T_h \dots$ [oppositely charged; isolation] $e\mu$: electron with $p_T > 15$ GeV; $|\eta| < 2.47$ muon with $p_T > 10$ GeV; $|\eta| < 2.5$ eT_h electron with $p_T > 25$ GeV; $|\eta| < 2.47 \dots$ μT_h : muon with $p_T > 20$ GeV; $|\eta| < 2.5 \dots$ + hadronic τ with $p_T > 20$ GeV; $|\eta| < 2.5 \dots$ $\tau_h T_h$: 2 taus $p_{T,1} \& p_{T,2} > 29 \& 20$ GeV

non b-tag category

MSSM Φ(h,H,A) → ττ

Two categories: b-tag, non b-tag [Increased sensitivity via associated b-production] Event Selection: $e\mu$, $e\tau_h$, $\mu\tau_h$, $\tau_h\tau_h$... [oppositely charged; isolation] $e\mu$: electron with $p_T > 15$ GeV; $|\eta| < 2.47$ muon with $p_T > 10$ GeV; $|\eta| < 2.5$ $e\tau_h$ electron with $p_T > 25$ GeV; $|\eta| < 2.47$... $*\mu\tau_h$: muon with $p_T > 20$ GeV; $|\eta| < 2.5$... + hadronic τ with $p_T > 20$ GeV; $|\eta| < 2.5$ $\tau_h\tau_h$: 2 taus $p_{T,1}$ & $p_{T,2} > 29$ & 20 GeV

non b-tag category

Invariant TT-Mass Reconstruction

Possible techniques: [see NIM A654 (2011) 48]

- A. Transverse mass method ...
- B. Collinear approximation technique ...
- C. Missing mass calculator technique ...

Method A:

Method B:

with
$$P^{\mu}(\not\!\!E_{T}) = (\sqrt{\not\!\!E_{T_{x}}^{2} + \not\!\!E_{T_{y}}^{2}}, \not\!\!E_{T_{x}}, \not\!\!E_{T_{y}}, 0)$$

similar to A, but assume neutrinos collinear to visible τ -decay products [works well if $\tau\tau$ system is boost]

$$\rightarrow M_{\tau\tau} = m_{\rm vis} / \sqrt{x_1 x_2}$$
 with $x_{1,2} = p_{\rm vis_{1,2}} / (p_{\rm vis_{1,2}} + p_{\rm mis_{1,2}})$

e,µ,h

Invariant TT-Mass Reconstruction

Possible techniques: [see NIM A654 (2011) 48]

- A. Transverse mass method ...
- B. Collinear approximation technique ...
- C. Missing mass calculator technique ...

Method A: ...

Method B: ...

Method C:

A step beyond collinear approximation assuming angle $\Delta \varphi$ between neutrino and visible τ -decay products to be non-zero \ldots

Results in 4 equations with 6-8 unknowns depending on τ -decay mode (hadronic, leptonic) ...

Use likelihood method with PDFs $\mathcal{P}(\Delta R, p_{\tau})$ to find best estimate for invariant mass M($\tau \tau$) ...

Tau Decay

e,µ,h

Invariant TT-Mass Reconstruction

Possible techniques: [see NIM A654 (2011) 48]

- A. Transverse mass method ...
- B. Collinear approximation technique ...
- C. Missing mass calculator technique ...

Method A: ...

Method B: ...

Method C:

A step beyond collinear approximation assuming angle $\Delta \varphi$ between neutrino and visible τ -decay products to be non-zero \ldots

Results in 4 equations with 6-8 unknowns depending on τ -decay mode (hadronic, leptonic) ...

Use likelihood method with PDFs $\mathcal{P}(\Delta R, p_{\tau})$ to find best estimate for invariant mass M($\tau \tau$) ...

Tau Decay

e,µ,h

Statistical Analysis

[ATLAS Collaboration, arXiv: 1211.6956]

95% Confidence Limit – m^{max} Scenario

95% Confidence Limit – m^{max} Scenario

95% Confidence Limit – Generic Model

LHC BSM Higgs Searches

[Repetition]

BSM Scenarios:

[see e.g. PDG: Status of Higgs Boson Physics]

Supersymmetric Extensions ...

One neutral Higgs with close to SM properties (h); two extra neutral Higgs bosons (H,A), one SM-like; two charged Higgs bosons (H[±]); potential departures from SM Higgs decay rates (e.g. $h \rightarrow bb$) ...

Two Higgs-Doublet Models (2-HDMs)...

Simple extension with 7 free parameters; different types, distinguished based on coupling to fermions ... Type-I: only one doublet couples to fermions; Type-II (SUSY): ϕ_1/ϕ_2 couples to up/down-type fermions ...

Composite Higgs Scenarios ...

Idea: Higgs is composite bound state; e.g. Little Higgs Models; partial compositeness ... Extra particles at the TeV scale (Z', W', ...); extra Higgs bosons; charged and doubly charged Higgs bosons ...

Higgs Triplet Models ...

Add electroweak triplet scalar to SM; motivation: neutrinos acquire Majorana mass ... Extra Higgs bosons, in particular doubly charged Higgs (H^{±±}); fermiophobic Higgs (also for 2HDM) ...

Fermiophobic Higgs

BSM Model with two Higgs doublets and no coupling to fermions ...

Theory predictions: Use numbers from NNLO VBF, WH/ZH ... EW radiative corrections are unknown assign ±5%.

 Gluon fusion and ttH production forbidden ... No change in VBF and VH processes ...
Big enhancement (10x) to γγ branching
Yields for FP Higgs at 125 GeV
comparable to SM: γγ, ZZ, WW ...

Analysis strategy:

Re-analysis/re-interpretation of H \succ WW, $\gamma\gamma,$ ZZ \ldots and exploit different event topology

WW, $\gamma\gamma$: re-analysis; H $\rightarrow \gamma\gamma$ /WW + dijets/leptons... VBF and VH \rightarrow utilize that Higgs is boosted ...

For ZZ: re-interpretation of existing analysis ...

[Theory]

Fermiophobic Higgs

[from R. Tanaka, 2011]

BSM Model with two Higgs doublets and no coupling to fermions ...

Theory predictions: Use numbers from NNLO VBF, WH/ZH ... EW radiative corrections are unknown assign ±5%.

[Couplings] [Experimental Status]

Fermiophobic Higgs

ATLAS: $\mu = 1.30 \pm 0.20$

CMS: $\mu = 0.80 \pm 0.14$

Fermiophobic Higgs

BSM Model with two Higgs doublets and no coupling to fermions ...

Theory predictions: Use numbers from NNLO VBF, WH/ZH ... EW radiative corrections are unknown assign ±5%.

 Gluon fusion and ttH production forbidden ... No change in VBF and VH processes ...
Big enhancement (10x) to γγ branching
Yields for FP Higgs at 125 GeV
comparable to SM: γγ, ZZ, WW ...

Analysis strategy:

Re-analysis/re-interpretation of H \rightarrow WW, $\gamma\gamma,$ ZZ \ldots and exploit different event topology

WW, $\gamma\gamma$: re-analysis; H $\rightarrow \gamma\gamma$ /WW + dijets/leptons... VBF and VH \rightarrow utilize that Higgs is boosted ...

For ZZ: re-interpretation of existing analysis ...

Fermiophobic Higgs

Summary of analysis channels and sub-channels included

[CMS, JHEP 09 (2012) 111]

Channel	$m_{\rm H}$ range	Sub-	Luminosity	Deference
	(GeV)	channels	(fb^{-1})	Neierence
$H \rightarrow \gamma \gamma$	110-150	4	5.1	[17]
$H \rightarrow \gamma \gamma + dijet$	110 - 150	1	5.1	[17]
$H \rightarrow \gamma \gamma + lepton$	110 - 150	2	5.1	
$H \rightarrow WW \rightarrow 2\ell 2\nu$	110-300	4	4.9	[18]
$H \rightarrow WW \rightarrow 2\ell 2\nu + dijet$	110 - 300	1	4.9	[18]
$H \rightarrow WW \rightarrow 2\ell 2\nu + lepton$	110-300	1	4.9	
$H \rightarrow ZZ \rightarrow 4\ell$	110-300	3	5.0	[19]
$H \rightarrow ZZ \rightarrow 2\ell 2\nu$	250 - 300	2	5.0	[20]
$H \rightarrow ZZ \rightarrow 2\ell 2q$	130-165, 200-300	6	5.0	[21]
$H \rightarrow ZZ \rightarrow 2\ell 2\tau$	180-300	8	5.0	[22]

Fermiophobic Higgs

Invariant di-jet mass, m_{jj} and rapidity difference $\Delta \eta_{jj}$ after the H \rightarrow WW selection

Fermiophobic Higgs

95% Confidence limit on FP Higgs Cross Section

Fermiophobic Higgs

Fermiophobic Higgs

95% Confidence limit on FP Higgs Cross Section [Re-interpreting only di-photon decay events]

Another Reinterpretation: $H \rightarrow aa \rightarrow 4\gamma$

SUSY Models:

- 2HDM CP-odd Higgs very light; fermiophobic
- NMSSM 3 CP-even ($h_{1,2,3}$) and 2 CP-odd ($a_{1,2}$) Higgs

[coupling of light Higgs to SM particles weak ...]

Event signature:

2 high E_T 'photons' ...

Decay photons reconstructed as one EM cluster due to large boost ...

Event selection similar as for SM Higgs analysis ...

... but somewhat looser.

Result:

 $\sigma_h \times BR < 0.1 \ pb$ [@95% CL] for 115 GeV < m_h < 140 GeV

 $[100 \text{ MeV} \le m_a \le 400 \text{ MeV}]$

Another Reinterpretation: $H \rightarrow aa \rightarrow 4\gamma$

SUSY Models:

- 2HDM CP-odd Higgs very light; fermiophobic
- NMSSM 3 CP-even ($h_{1,2,3}$) and 2 CP-odd ($a_{1,2}$) Higgs

[coupling of light Higgs to SM particles weak ...]

Event signature:

2 high E_T 'photons' ...

Decay photons reconstructed as one EM cluster due to large boost ...

Event selection similar as for SM Higgs analysis ...

... but somewhat looser.

Result:

 $\sigma_h \times BR < 0.1 \ pb \ [@95\% \ CL] \label{eq:stars}$ for 115 GeV $< m_h < 140 \ GeV$


```
[100 \text{ MeV} \le m_a \le 400 \text{ MeV}]
```


Event signature:

2 high E_T 'photons' ...

Decay photons reconstructed as one EM cluster due to large boost ...

Event selection similar as for SM Higgs analysis ...

... but somewhat looser.

Result:

 $\sigma_h \times BR < 0.1 \ pb$ [@95% CL] for 115 GeV < m_h < 140 GeV

Event signature:

2 high E_T 'photons' ...

Decay photons reconstructed as one EM cluster due to large boost ...

Event selection similar as for SM Higgs analysis ...

... but somewhat looser.

Result:

 $\sigma_h \times BR < 0.1 \ pb \ [@95\% \ CL] \label{eq:stars}$ for 115 GeV $< m_h < 140 \ GeV$

Search for CP-odd Light Higgs via a $\rightarrow \mu\mu$

SUSY Models:

- 2HDM CP-odd Higgs very light
- NMSSM 3 CP-even $(h_{1,2,3})$ and 2 CP-odd $(a_{1,2})$ Higgs

[coupling of light Higgs to SM particles weak ...]

 $[5.5 \text{ GeV} \le m_a \le 8.8 \text{ GeV}]$ $[11.5 \text{ GeV} \le m_a \le 14 \text{ GeV}]$

Left:

Dimuon invariant for barrel (\uparrow) and end cap (\downarrow)

Right:

Upper limits at 95% CL on $\sigma \cdot B(pp \rightarrow a \rightarrow \mu^+\mu^-)$

Search for Higgs \rightarrow 2a + X \rightarrow 4µ + X

[CMS PAS HIG-13-010]

SUSY Models:

- NMSSM 3 CP-even $(h_{1,2,3})$ and 2P-odd $(a_{1,2})$ Higgs
- Dark SUSY -

light massive photons γ_D , lightest neutralino n_1 non-stable; $n_1 \rightarrow n_D + \gamma_D \dots$ [n_D dark neutralino; γ_D dark photon, $m_{\gamma D} < O(1 \text{ GeV})$; DM mass scale at ~ 1 TeV]

 $h \rightarrow 2n_1 \rightarrow 2n_D + 2\gamma_D \rightarrow 2n_D + 4\mu$

[CMS PAS HIG-13-010]

Search for Higgs \rightarrow 2a + X \rightarrow 4µ + X

SUSY Models:

- 3 CP-even ($h_{1,2,3}$) and 2P-odd ($a_{1,2}$) Higgs

Dark SUSY -

light massive photons γ_D , lightest neutralino n_1 non-stable; $n_1 \rightarrow n_D + \gamma_D \dots$ [n_D dark neutralino; γ_D dark photon, $m_{\gamma D} < O(1 \text{ GeV})$; DM mass scale at ~ 1 TeV]

Selection:

NMSSM

4 muon; 2 isolated pairs Mass: $m_{\mu\mu} < 5$ GeV; $m_{\mu\mu^1} \approx m_{\mu\mu^2}$...

Background:

bb via double leptonic decays J/Ψ pair production

Blinded Analysis ...

[8 events outside $m_{\mu\mu1} \approx m_{\mu\mu2}$ region]

Search for Higgs \rightarrow 2a + X \rightarrow 4µ + X

[CMS PAS HIG-13-010]

SUSY Models:

3 CP-even (h_{1,2,3}) and 2P-odd (a_{1,2}) Higgs

Dark SUSY

light massive photons γ_D , lightest neutralino n_1 non-stable; $n_1 \rightarrow n_D + \gamma_D \dots$ [n_D dark neutralino; γ_D dark photon, $m_{\gamma D} < O(1 \text{ GeV})$; DM mass scale at ~ 1 TeV]

Selection:

NMSSM

4 muon; 2 isolated pairs Mass: $m_{\mu\mu} < 5$ GeV; $m_{\mu\mu^1} \approx m_{\mu\mu^2}$...

Background:

bb via double leptonic decays J/Ψ pair production

[CMS PAS HIG-13-010]

Search for Higgs \rightarrow 2a + X \rightarrow 4µ + X

SUSY Models:

- 3 CP-even ($h_{1,2,3}$) and 2P-odd ($a_{1,2}$) Higgs

Dark SUSY -

light massive photons γ_D , lightest neutralino n₁ non-stable; n₁ \rightarrow n_D + γ_D ... [n_D dark neutralino; γ_D dark photon, m_{YD} < O(1 GeV); DM mass scale at ~ 1 TeV]

Selection:

NMSSM

4 muon; 2 isolated pairs Mass: $m_{\mu\mu} < 5$ GeV; $m_{\mu\mu^1} \approx m_{\mu\mu^2}$...

Background:

bb via double leptonic decays J/Ψ pair production

[CMS PAS HIG-13-010]

Search for Higgs \rightarrow 2a + X \rightarrow 4µ + X

SUSY Models:

- 3 CP-even (h_{1,2,3}) and 2P-odd (a_{1,2}) Higgs

Dark SUSY -

light massive photons γ_D , lightest neutralino n₁ non-stable; n₁ \rightarrow n_D + γ_D ... [n_D dark neutralino; γ_D dark photon, m_{yD} < O(1 GeV); DM mass scale at ~ 1 TeV]

Selection:

NMSSM

4 muon; 2 isolated pairs Mass: $m_{\mu\mu} < 5$ GeV; $m_{\mu\mu^1} \approx m_{\mu\mu^2}$...

Background:

bb via double leptonic decays J/Ψ pair production

[CMS PAS HIG-13-010]

Search for Higgs \rightarrow 2a + X \rightarrow 4µ + X

SUSY Models:

- 3 CP-even (h_{1,2,3}) and 2P-odd (a_{1,2}) Higgs

Dark SUSY -

light massive photons γ_D , lightest neutralino n_1 non-stable; $n_1 \rightarrow n_D + \gamma_D \dots$ [n_D dark neutralino; γ_D dark photon, $m_{\gamma D} < O(1 \text{ GeV})$; DM mass scale at ~ 1 TeV]

Selection:

NMSSM

4 muon; 2 isolated pairs Mass: $m_{\mu\mu} < 5$ GeV; $m_{\mu\mu^1} \approx m_{\mu\mu^2}$...

Background:

bb via double leptonic decays J/Ψ pair production

Search for Higgs \rightarrow 2a + X \rightarrow 4µ + X

[CMS PAS HIG-13-010]

SUSY Models:

Dark SUSY

NMSSM – 3 CP-even (h_{1,2,3}) and 2P-odd (a_{1,2}) Higgs

- light massive photons γ_D, lightest neutralino n₁ non-stable; n₁ → n_D + γ_D ... [n_D dark neutralino; γ_D dark photon, m_{γD} < O(1 GeV); DM mass scale at ~ 1 TeV]

